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Stress-energy tensor near a charged, rotating, evaporating black hole*
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The recently developed two-dimensional stress-energy regularization techniques are applied to the two-
dimensional analog of the Reissner-Nordstrom family of black-hole metrics. The calculated stress-energy
tensor in all cases contains the thermal radiation discovered by Hawking. Implications for the evolution of the
interior of a charged black hole are considered. The calculated stress-energy tensor is found to diverge on the
inner, Cauchy, horizon. Thus the effect of quantum mechanics is to cause the Cauchy horizon to become
singular. The stress-energy tensor is also calculated for the "most reasonable" two-dimensional analog of the
Kerr-Newman family of black-hole metrics. Although the analysis is not as rigorous as in the Reissner-
Nordstrom case, it appears that the correct value for the Hawking radiation also appears in this model.

Since the discovery of Hawking' that the gravi-
tional field of a collapsing object will induce the
emission of thermal radiation, much work has
been done studying the properties of the radiation
far from the collapsing object."' An outstanding
problem is understanding the physics of the emis-
sion process in the neighborhood of the collapse.
Owing to ambiguities in the definition of "particle"
in regions where the curvature of spacetime is
large, current efforts are aimed at calculating the
effective stress energy of the radiation. 'The

stress-energy tensor is also needed for any rea-
sonable calculation of the back reaction on the
gravitational field due to the emission of the ther-
mal radiation.

Recently, Davies, Fulling, and Unruh" have
succeeded in regularizing the stress-energy ten-
sor of a massless scalar field in an arbitrary two-
dimensional spacetime, using the method of geo-
desic point separation. When applied to the two-
dimensional equivalent of a Schwarzchild black
hole, their stress-energy tensor correctly repro-
duced the radiation flux at infinity.

In this paper I shall show that the two-dimen-
sional formalism developed in Ref. 5 can be ap-
plied to a wider class of spherically symmetric
spacetime metrics, the Reissner-Nordstrom
metrics, and will in all cases reproduce the cor-
rect radiation flux at infinity. ' I also find that the
stress-energy tensor diverges on that segment
of the inner horizon which is a Cauchy horizon.
Since the most general black-hole metric, the
Kerr-Newman metric, is only axisymmetzic, no
two-dimensional spacetime metric can correctly
represent the full four-dimensional spacetime.
Choosing what seems to be the "best" two-dimen-
sional analog to the Kerr-Newman spacetime, I
find that the calculated stress-energy tensor pre-
dicts the correct temperature for a Kerr-Newman
black hole.

'The metric of a two-dimensional spacetime can
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Null coordinates Q, V have always been found to
exist in which the solutions to Eg. (2) take the form
of the flat-space normal-mode solutions,
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The in-vacuum state on which the calculation is

based is the state annihilated by the field operators
with ~ &0. Imposing the condition that the geo-
metry be asymptotically flat, the in-vacuum state
is uniquely defined by requiring the modes to be
plane waves near past null infinity.

In Ref. 5, Davies, Fulling, and Unruh have cal-
culated the expectation value of the stress-energy
tensor in the in-vacuum state, using geodesic
point separation. T'he expectation value is
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where

e„,= (i2m)-'c'"(c-"') -„-„,

e-„„=-(l2v)-'C'~'(C-'~') -„-„,

C is the conformal factor of Eq. (1), and R is the
scalar curvature. 'This expression for T„v is con-
served (&"T„„=0), hut is not conformally invari-
ant.

Now consider the rapid gravitational collapse
of a thin charged shell of matter, as described in

in general be written in the double null form

ds'= C(u, v)dudv,

where C(u, v) is a conformal factor. Since all two
dimensional spacetimes are conformally flat, the
massless scalar wave equation will be
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or, in double nu11 form,

(6)

Ref. 4, with appropriate modifications to allow
for the presence of charge. In order to treat a
two-dimensional problem, ignore the spherical
angle coordinates e and (((). I.et R be the radius of
the shell. 'The exterior spacetime metric is given
by

ds = 1 — + 2 d — 1 —™+,dr

f l2

C(tt, V)= 1 — + (13)

before collapse, with r an implicit function of u
and V. Long after collapse has~begun, it is given
by
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where u = t —r*, v = t+ r*, r* is the usual tortoise
coordinate defined by

dr* 2M
1 — + 2dr r r2 (8)

'The interior metric is flat:

ds2 = dy2 —dr

or

ds' = dU dV

in double null form.
The remaining problem is simply to relate the

three sets of null coordinates, (tt, v), '(0, V), and

(u, V). By arguments similar to those in Ref. 5,
one obtains for the advanced-time coordinates
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for all relevant times provided the collapse is
sufficiently rapid. For the retarded-time coor-
dinates, one has u=u for retarded times before
the collapse begins, and
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for retarded times long after the collapse has be-
gun. Here u=A, are the equations of the future
outer and inner horizons, r, is defined by r, =M
+ (M' —Q')'/', and B(tt) is a slowly varying func-
tion of u, dependent on the exact nature of the col-
lapse, which does not affect the final results. One
also obtains

with O(l) representing terms of order unity.
Evaluating T,„using Eq. (13) for the conformal

factor, and then transforming back to the more
usual u, v and r, t coordinates, one finds
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Recalculating T„„using Eq. (14), one finds that
only the value of T„„has changed, as compared to
T,„ in the u, v coordinate system in Eq. (15). Dis-
carding terms which die off for large values of u,
Tgg 1S
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The effect of the collapse is to add a constant
term, (M' —Q2)/48wr, 4, to the expression for T„„.
It will appear at large r as an outward-going flux
of radiation, whose magnitude precisely matches
the equivalent result from the analysis of Hawking,

u= 1- + 2- U (12)
1 (t) (f(d
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for all times relevant to the calculation.
The conformal factor needed for. Eq. (5) can now

be found by combining Eqs. (7), (10), (11), and
(12). It is given by

(M2 Q2)1/2
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where, for a Reissner-Nordstrom black hole, the
temperature is given by



3056 WILLIAM A. HIS COCK

Furthermore, if one takes the limit of T„„as
r -r„one finds it approaches -(M' —Q')/48@'r, ',
a flux of negative energy through the horizon which
precisely balances the flux at infinity. Transform-
ing T~„ to a Kruskal-type coordinate system regu-
lar across the outer horizon, one finds that T„„
is finite and well behaved there.

Thus, the two-dimensional stress-energy calcu-
lation reproduces the Hawking result not just for
the Schwarzchild solution, but for the entire Reis-
sner-Nordstrom class of black-hole metrics. This
result increases one's confidence that the two-di-
mensional calculation accurately depicts some of
the physics of the four-dimensional real world.

If the collapse is sufficiently rapid, the calcula-
tion of T~„can be extended inwards to the inner
horizon at x= x . The stability of such horizons
has long been in question, but little progress has
been made in studying them. '

Evaluating T„„near x=x, one finds that T„„
is as given in the u, e coordinate system in Eqs.
(15) and (16), except that the term (M' —Q')/48zr, '
in Eq. (16) has been replaced by a similar constant
term, (M' —Q')/48m '. Evidently, there is a flux
of energy, similar to the Hawking radiation, trav-
eling along the u= - segment of the inner horizon.
Again evaluating T„„in a Kruskal-type coordinate
system, this time one which is regular across the
inner horizon, one finds that the stress energy is
finite on the u= -~ segment of the inner horizon,
but diverges on the e= ~ segment of the inner hori-
zon, the segment which is a Cauchy horizon. This
singularity on the Cauchy horizon both closes off
the throat of the Reissner-Nordstrom interior
(exterior to the shell of matter), and in a sense
"clothes" the naked singularity of the analytically
extended Reissner -Nordstrom interior.

While the inclusion of the emission of charged
particles and the back reaction of the metric is
needed to obtain a realistic evolutionary scenario
(e.g., where the black hole will quickly discharge),
the above result is still interesting, as it shows
the quantum mechanics of matter fields can dras-
tically influence the internal structure of a black
hole.

Now consider the most general black-hole me-
tric, the Kerr-Newman spacetime. The metric is
given in Boyer-Lindquist coordinates by

ds' = —dt' ——dh', (2o)

where now Z='x2+a2. On the symmetry axis the
metric also has the desirable property that g«—- 0
defines the horizon, whereas in general it defines
the ergosurfaee.

Since no two-dimensional model can properly
describe angular momentum, I shall make no at-
tempt to analyze a rotating collapse, but rather
simply calculate the stress-energy tensor for the
static metric of Eq. (20), transformed to the double
null form

ds = —dud5 ~ (21)

As usual, u=t —x~, v=t+x*, and now x* is defined
by Ck*/dr = Z/&.

Calculating the stress-energy tensor, one obtains
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Since the effects of gravitational collapse have
not been included, there is no constant term in
T„„representing the Hawking radiation, as there
was in Eq. (16). To find the Hawking flux, we
again consider the value of T„„atx= z„ the energy
flux through the horizon, where now r, =M+ (M'
—a' —Q')'~'. Since &=0 at r=r„T„„is simply

Tvv J r=r+ ]92~ g2
r=r+

Since the Kerr-Newman metric possesses only
axial, not spherical, symmetry, no two-dimension-
al spaeetime can fully represent the four-dimen-
sional geometry. An obvious choice for a "best
possible" two-dimensional approximation of the
Kerr-Newman metric is to take the metric on the
symmetry axis: 8 = 0, m and d8 = d&f& = 0. The two-
dimensional spacetime is then described by the
metric

4M++ si 48m (r,'+ a') (23)

——sin'8 dQ' ——Ch' —Z d8' (19)

This is exactly the negative of the Hawking flux
at infinity as predicted by Eq. (1'f), since the tem-
perature of a Kerr-Newman black hole is given by

where Z=r'+a'cos'8, &=x'-2Mr+a'+Q', and
A = (r'+ a')' —a'b, sin'8.
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Thus, the thermal radiation discovered by Hawk-
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ing is present even in this two-dimensional model
of the Kerr-Newman netric. As this model cer-
tainly possesses extremely limited validity, it
is then perhaps even more interesting that the
Hawking radiation appears so persistently in the

stress-energy tensor.

It is a pleasure to acknowledge a very helpful
conversation with %. G. Unruh concerning these
results.
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