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Spectral representations are derived for current correlation functions in relativistic many-body theory. Equal-
time current commutation relations allow the derivation of spectral-function sum rules at finite temperature. It
is shown that the spectral representation for the Schwinger term in the usual time-space current commutator
has a finite temperature-dependent part. The mass relations between the vector and axial-vector meson masses
derivable from Weinberg sum rules remain unaltered. These results are used to evaluate the temperature
dependence of the pion electromagnetic mass difference m,+ — m,o in the soft-pion limit.

I. INTRODUCTION

The nature of the dependence of symmetry on
temperature and density in relativistic many-par-
ticle systems has been investigated recently.'”5
The general approach has been to determine the
minima of the effective potential in order to see
whether a given symmetry is spontaneously broken
or not, and further, to obtain the critical tempera-
ture and critical density at which symmetry
changes may be expected.? This is done by extend-
ing the usual field-theory techniques to the many-
particle system by defining the thermodynamic
Green’s functions, or the temperature Green’s
functions, to be the ground-state expectation value
of the time-ordered products of fields averaged
over the thermodynamic ensemble.®*” The particle
spectrum becomes a function of the temperature
and the density in a many-particle system, and the
spectrum reflects the symmetry changes. It is
of interest to investigate further consequences of
the temperature-dependent field theory.

In the present paper the formalism of tempera-
ture-dependent field theory is extended to define
thermodynamic current correlation functions.
Spectral representations are derived for the ther-
modynamic current correlation functions in Sec.
II, and it is shown that equal-time current commu-
tation relations allow the derivation of spectral-
function sum rules at finite temperature. The
spectral representation for the Schwinger term?®®
in the time-space current commutator at equal
times has a finite temperature-dependent part. If
chiral SU(2)X SU(2) current algebra is assumed
the new thermodynamic spectral functions satisfy
Weinberg sum rules.!®!' The usual input of single-
particle saturation of the spectral functions used
to obtain mass and coupling-constant relations
from these sum rules yields results obtained
earlier by Weinberg.!® This is to be expected be-
cause the position of the pole in the single-particle
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thermodynamic Green’s function remains unaltered
in the many-body formulation®'” when quantum cor-
rections are ignored. An application of the sum
rules to multiparticle production is under investi-
gation.?

In Sec. III the pion electromagnetic mass differ-
ence at finite temperature is evaluated.'®* On using
current algebra in the soft-pion limit the pion mass
difference is related' to current correlation func-
tions and to the photon propagator which is now
temperature dependent. To order e? the mass dif-
ference is found to be

am 2(T) =<—e—2-)<m 2D In2 —-1,76m T>
4 )\"P 2n : L
At extremely high temperatures the electromag-
netic mass difference is seen to vanish.

II. SPECTRAL-FUNCTION SUM RULES
A. The structure factor

The thermodynamic average of the product of two
currents J§ (x) and J5(¥), where a,b are internal-
symmetry indices and u, v are Lorentz indices, is
defined as

AL (2, 9)=(TE @) (Y
=Tr[e-B(H-#N)J¢‘z‘ (x)J':,(y)] /Tr(e—ﬂ(}l-pN) ).

@)

In Eq. (1) B=1/k,T is the inverse temperature,
where kj is the Boltzmann constant set equal to
unity, and p is the chemical potential, Also, H is
the Hamiltonian and N is the number operator.
The double angular brackets after the first equality
sign in Eq. (1) denote thermal averaging. We shall
ignore the effects of a nonzero chemical potential
in the following and consider only thermal excita-
tions of bosons above the vacuum.

The cyclic property of the trace® allows us to
write the Hermitian conjugate of (1) as
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[ag , G, y)]* = (I5(y) % (x)))
=ap (,y). @)

As a matrix in the indices (u,a,x) and (v,b,y) the
above functions A“’fv>’<(x, y) are Hermitian so that

Aﬁ>,<(x’3’)=[A3‘L>,<(J’,x)]*, (3)
and the functions are positive semidefinite,
Ay ,<r,9)= 0. @

The two functions A%, (x,y) and A%} (x,y) are the
same owing to the Hermiticity of J§, except that
they are evaluated at different values of the argu-
ments (u,a,x) and (v,b,y). We therefore have

azty le,y)=ak (v,x)
=[a%, 0, y)]*. (5)

If the medium is homogeneous the functions depend
only on the coordinate difference (¥, -%,,X—7).

Owing to the cyclic nature of the trace, and the
time translations being generated by H, the func-
tions satisfy the relations

A‘:LI:»L (xvy) = A‘:va<0‘o =Yos X- -3;)

= 0%, (0 -y, ~1B8,X - 7). (6)
It can be shown that the Fourier transforms of
A% and A% defined by
ab d4k = ik (x=y) Aab o 7)
AL, <(x,y)=f (217)43 Auv>.<(w:k) (
satisfy the relations
A%, (k)= A%, (0,R)*, ®)
A?LZ)K(“)’E)EO’ (9)
A%, (@, K) = A%, (-0, ~K)* =A%, (-0, -K),  (10)
and '
8% (0, k) =ePeam (v, K) . (11)

Following the practice of nonrelativistic many-
body theory®” it is convenient to define the struc-
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ture factor

5% (x,y) = ({7 x), J2(9)})

= a5, 9) + A, (r, 9) . (12)
Its Fourier transform defined by
1

S0, 9) = e f d* e IS (1o ) (13)
satisfies the relations

S% (w,K) =52 (~w, —k) =825 (w0, K)*= 0 (14)
and

S% (w,K) = (1+e-98) A%t (w, &)
=(1+ e“fade (w, )
=(1+e%")a® (~w, -K). (15)

In internal-symmetry space S"‘L”,,(w,l';) is a sym-
metric tensor. We shall assume that the ground
state is invariant under internal-symmetry trans-
formations so that

S;‘ﬁ,(w, E) = 6ébsuu(w’ E) . (16)

Furthermore, symmetry in the Lorentz indices
u and v, and positivity dictate that

- k kR
S, (w,k)= _<gw - —-};ﬁ)Sl (#?)

+%f—v S, (#?) 17)
with
S,(»)=0 (18)
and
S, (*)=0. (19)

Finally, we note that for conserved currents
k*S,, (k%) =0,

éo that in this case
S,(k?*)=0. (20)

B. The current commutator

The thermodynamic expectation value of the current commutator is defined by

(o2 () , 78(9)])) = Tre®#[J2 (x), J3(y)]/ Tre-*#

‘e _;
=f @y e"k("'y)[A“‘f

_rd%
—J @n)?

Using Egs. (15) and (17) we have
da*e

2

75,60, TH(I) = 8, 5

eik(=) tanh(ﬁ—"u-)Sﬁ"v(w,'f{) .

v>(w’E) - Az,bw(w, E)] .

@1)

ikt tanh(—2—>[ -(gu, ﬁ;@)sl *?) +’i}§f—vs2(k2)] . (22)
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For the commutator of time components of the currents at equal times we set u=v=0 in (22) and obtain

(T80, I () D)y, =0 (23)
for any value of 8.
The commutator of the time component of the current with the space component of the current is
. a: w\/wki
(l%ex), 72 (9)])) =5, e e th(x=) tanh<B—2—> <?—>[Sl(k2) +S,(k?)] . (24)
At equal times Eq. (24) becomes
0a i ; ki G Bw 2 2
(L7%6), T2 (9)D)soog0= 005 (=i0)) | osze wtanh( == (S, (6%) + 5, ()] . @5)
Using the identity
f dm25(m? - k) =1,
0
we express the structure factors in terms of the usual spectral variable m? to obtain
*d 2 d3 v .- 2 2 -
1%, TP (D= B (i) [ [ b ot G SOV L5l a2y, (26)
0 m (27T) m
In the limit of zero temperature we have
. Bw\_Y+1, for w>0
ii,nl tanh<7>—{_1 , for w<0
=€(w), @m
and Eq. (26) reduces to
; , - >dm? (S, (m?) + S, (m? ’
LI, T Dy, 0= =0, =0, [ 2 (Sl 05D @8
0
The commutator appearing on the left side of JOx) =ie(d'(x)d(x) - dT(x)® (x))
(28) is known to be nonzero on general grounds® and
& & +2620" (x) 3(x)A°(x) (31)

we may write
[7°(x), Tt (p)] 0,40 = EC**T (x)3 (X — )
-148,,0,0&x-7),

1

(29)

where C®° is the group structure constant of the
symmetry group of the current algebra, and § ,
is the Schwinger term.

Substituting (29) into (28) we obtain

(867 = 0{(8))

_[mdw Bw (S,(k%) +S, ()
= Ewtanh——(—-‘—k%-)

as the spectral representation for the Schwinger
term at finite temperature. We now show that in
canonical field theory ((8)) has a finite many-body
contribution besides the usual zero-temperature
term obtained by taking the vacuum expectation
value of the commutator in (29). Consider for
simplicity electrodynamics of complex scalar
fields & and the photon field A, in which the cur-
rents are '

I’}

Jix)=e(d191d - 3ipTd) +2e2DTRA

Then canonical commutation relations for the fields
lead to

([7°w), Ji(9)])) = —ie*[o 6 - 7)]
X{U@Tx)d(y) + d' () k). (32)

The Fourier decomposition of the fields then leads
to

(16, ) =0 DG =) o

X fd—:)k~[1+n3(w) +7g(®)],
(33)
where
nB(w)= 1/(eB“’ - 1)

is the Bose-Einstein distribution function.

We thus have additional finite contributions to
the Schwinger term in many-body theory. At zero
temperature n; and #; vanish and the usual field-



theory term remains on the right side of (33). It
may be noted that in nonrelativistic theory the
Schwinger term in (33) reduces to

é? ng(w)
[ —3:; ,

@n)®
leading to the longitudinal sum rule
2 2
Nel _ [79% tann )(S 169 > (34)
m w 2T 2

The absence of the term S,(%?) is due to current
conservation.

In the algebra of field models the Schwinger term
is a ¢ number and the current commutator is given
by

[Joa(x)’ Ji (y)],o.,,o =iCPeJ i (x)5(X - §)

2
-iéab}’-"—g—aié&—%, (35)
I

J
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and the corresponding sum rule is

ﬂf-i: g—:-wtanh( >[s ®2)/k?) . (36)

In spinor field theory again similar conclusions
can be drawn regarding the presence of a finite,
temperature-dependent contribution to the Schwing-
er term.

C. The time-ordered product of currents

The thermodynamic average of the time-ordered
product of currents is defined by

iAvaF(x?y) =6 (xo _yo)Anub»(x’ y)

+6(xo = yo) AL, lx, ) 37

with A%, . given by (1). Interms of the structure
factors the Fourier transform of (37) is

dw’ 1 1 1 1 kR - Rk ]
ab 2 v ’ v I
185 )= Za“"f [w- W’ +i€ (1 +e"*""> Tw-w e <1+e“"3>:| [<—g”"+_ka>sl(w K+ Syl =

b, gogvof

The structure factor S, is related to the tempera-
ture-dependent spectral function pw(w k) in the
following way. The cyclic property (11) can be
implemented by writing

Afzbw(wa i;) =puv(wy E)[l +Npg (w)] ’
A‘:lbll((w’ i;) =puv(w5 iz)nB (w) )

so that
pu.v(w k) A u)(w k) - v<(w,k’)
_tanh(Bz )sab (39)

In the limit B -« we have
p%(w, k)= €(w)S%,(w, K).

In terms of p,, the causal function is

- dw’ 0, R[1+7,(w
Azva(w’k)=6ubfﬁ{puV( : )[ B( )]

W —-w’+i€
S’ K g(w”)
S B

which, for B— «, reduces to the causal function of
the usual field theory:

’ r
di pgv(w ) k) (41)

b -
A“I‘”F(w’ﬁ)_é“” 2T w—-w' +i€ °

— w'tan h( ;,>[Sl(w',l;)+sz(w’,1?)] ) (38)

For a single particle the spectral function p,,, is

k

Puv(w,, k-) =<‘guv+_’%>2n6(w2 - wlz) €(w -w’).

42)

From Egs. (39) and (40) it is clear that p,, repre-
sents the discontinuity in 4, across the real
axis in the complex frequency plane.

D. Weinberg sum rules at finite temperature

Consider spectral functions for vector and axial-
vector currents. In SU(2) X SU(2) current algebra
the equality of the Schwinger terms in the vector
and the axial-vector current commutators gives

42 a2

43)

The structure factor S} is absent because of cur-
rent conservation. In terms of spectral functions
we have

J’ A [p}'(m ,B) (pl(m B)+p (m?, B)ﬂ 0.

m

(44)
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FIG. 1. Feynman diagram for the electromagnetic
self-energy of the pion.

This is Weinberg’s first sum rule.!® The spectral
functions here are of course temperature depen-
dent and the states appearing in the matrix ele-
ments defining the spectral functions are weighted
by Boltzmann factors.

As a direct consequence of the field-current
identity we have for vector currents V, and axial-
vector currents A,

« [%V;‘(x) -9, Vi), V?(y)]»,o:yo
=([8,49(r) - 8,43(x) , A% Moo (45)

leading to the second Weinberg sum rule!®!!

:%“1’; tanh(Bz—w>[S}’(k2) -SA#?]=0, (46)
or
[ aml p¥on?,8) - pom®, B)]=0. @)

In the specific case of single-particle saturation
the spectral functions in (44) and (47) reduce to
those of the zero-temperature theory. It canbe
shown®” that the propagators of free field theory

have their singularity structure unaltered on going
over to temperature-dependent field theory. On
saturating the specral functions by the p meson,
the axial vector A,, and the pion, using the field-
current identity*®

VE=(m,? /f 0", 48)

and the corresponding relation for the axial-vector
mesons

. et €
0lA*w)|Ap = A (49)

and the partial conservation of the axial-vector
current!®

8,Ax)=Fm2¢,k), (50)

we obtain from (44) and (47) the well-known rela-
tions

mpz/ff:mAz/fAz +F1r2 (51)
and
(m 2/, = m2/f, ). (52)

Use of the Kawarabayashi-Suzuki-Riazuddin-Fay-
yazuddin (KSRF) relation'®

Fim/2f, (53)
then leads to the Weinberg relation
mA12=2m92 . (54)

The relations (51), (52), and (54) are consequences
of the theory at the single particle or the tree ap-
proximation. At this level-of the theory the cou-
plings and masses remain unchanged from the
zero-temperature theory even though decay widths
will show thermal broadening due to modifications
in the phase space brought about by the many-
body aspects of the theory at finite temperature.>

III. THE PION ELECTROMAGNETIC MASS DIFFERENCE AT FINITE TEMPERATURE

Let us apply the results of Sec. II in the evaluation of the electromagnetic mass difference of pions

Am2(B) =my.? — myd

(55)

at finite temperature. To order e? it is given by the Feynman diagram of Fig. 1. The photon propagator

at finite temperature is

iD,,(q%) =i(—gu,+quqv/q2)[ - 2wi6(q2)n8(qo)}

q° +ie
=i(_guy+ququ/q2)D(qz) .
The mass difference is then given by'3

P2 4
am (@)= [ G M, p,0),

where

(56)

(57)

M, (p,q)=i f eivigiz[{(m*(p) | T*(Vem(z)VEm(0)) | m*(p))) — (r°(p) | T*(Vem(z) Vem(0) |7 (p)D)] . (58)
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The matrix elements in (58) can be evaluated in the soft-pion limit. On reducing out the pions we have
—1(P* =m®) [ e hCx=y) =) ) om(,, \yron
M, (0, )=yt [ etendz [ dudy e LUTH0,4° ()2, AP )V VO
T T
= {T*(0,A4°P(x)8,AX (y)Vem(2) VE(O)))] .

Using current algebra in the soft-pion limit M,,(0,¢) can be written as

M,,0,0) =55 [ de (TP VI ON - (THAP @ AL OW)]

=T, 2L liaT, - %, B) = i, (g%, B)], (59)

where the temperature dependence of the causal functions of currents is explicitly shown.
Now the mass difference is given by

. 3ze 1-n5lqy) np(gq)
am,? = (277)4D( 43 f [SV(q ) =S&(q?, q)][ qué 7 —Bq(',?- ie] . (60)

We use Weinberg sum rules (51) and (52), obtained by single-particle saturation of the structure functions
by p, A,, and 7 mesons, to write

mi =357 [ | e ~ e mala 0o = [+ 2 ny(-a90a+ 3] (%)

P

X{ 3 ! 7 -3 ! z —EnB(qo)[ﬁ(qo—é’p)—G(qo—é’A)] +Z—Zn3(—qo)[6(qo+8,,)—6(qo+é’A)]}-
' o

q "'mp q —-my 90
Hence '
2/ a _16€2m 2 d"q( 1 1 > . [ d3 [na(lal) d% [n (8) ny(8,)
am(B) =—pryd f“qf =) 3 G e :]+6e2 L gé’f}' (61)

The first term in (61) is the usual zero-temperature expression of Das et al.'* A Wick rotation of the &,
integration gives

3 2 2
Am,2(6'1=0)=%% In2. : O (62)

The second term in (61) represents the correction to the pion self-energy due to the thermal background
of photons at finite temperature, and we have

362 d%q nB(I'c]l)=_g__l
- @m)® (1gh 4r B2

- _%)m . (63)

The last term in (61) is evaluated in the high-texhperature limit using the result

B(qztmz)ll '1N [ 1 m - _ -J
f(277)3m—(e -0 127 "B 41r (21n41r+4 2y =1nBm)+ -]

Thus the pion mass difference is

3e? m 2 I:ez e 3m}? ]
2_ o - 2 i 2 Z Yo
Am,®=7— 2= 1n2 1r<4ﬂ>T A (6 3V2)m oL +g— =% In2
(2 21nz 1.76m T) . (64)
T4m\2m -
At l}igh enough temperatu.res the mass difference _ 9 m,In2 | 430 MeV .
vanishes. As a rough estimate of the temperature T2 "1.76

at which Am,? is zero we retain the leading term
in the temperature to obtain Higher-order effects and refinements in the theory
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could naturally change this estimate.

In this paper we have extended the temperature
formalism to relativistic current correlation func-
tions and have shown how the current-algebra sum
rules are modified in many-body theory. We have

MOHAN ' 15
presented an application of these sum rules to the .
evaluation of the pion electromagnetic mass differ-
ence at finite temperature. An application of the
sum rules to multiparticle production*? and rela-
tivistic transport theory is under investigation.

*Work supported in part by the U. S. Energy Research
and Development Administration.
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