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We discuss some features of the description of hadron-nucleus total and inelastic cross sections at present and
foreseeable energies within the framework of Reggeon calculus. In the first (theoretical) part we discuss the
Amati-Stanghellini-Fubini cancellation, emphasizing the analytic features involved, especially the consistency
with unitarity in the Reggeon-particle channel. In the second (phenomenological) part we show that the
observed triple-Pomeron coupling is so small that effects of Reggeon interactions can probably be ignored
both at Fermilab energies and for observations of extensive air showers. It follows that the Glauber formula
should describe all current experiments with only small corrections for inelastic intermediate states.

I. INTRODUCTION

The object of this paper is to investigate some
aspects of the description of hadron-nucleus total
cross sections within the framework of Reggeon
calculus at present and foreseeable energies.

We can illustrate the main problems by con-
sidering the double-scattering term for a nucleon
incident on a heavy nucleus of radius R (Fig. 1).
The forward scattering amplitude can be reduced
in the lab frame to the form!
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where s=(p,+p,)% s,=(p,-k)? p is the nuclear
form factor [p(0) =1], and f is the six-point func-
tion in the top half of Fig. 1. At fixed s, as's
- it approaches the form shown in Fig. 2. (We
neglect rescattering on individual nucleons.)

Since negligible energy can be transferred to a
nucleon without knocking it out of the nucleus we
have

2

ki~ %ELi , (1.2)
where k,,=k+p /|D,| and E ; is the lab energy of the
projectile. The essential features of this situation
can be seen by supposing that the nuclear form fac-
tor is Gaussian:

p(4k?) =e=1** (1.3)
We then obtain
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The integration is over a causal contour. The
role of the nuclear form factor is to confine the
s, integration to

|s, —m?|<2E, Ny . (1.5)

IfE; and A are fixed, and y -« so that the target
is very rarified, scattering takes place entirely
through one-particle intermediate states of the
projectile (the Glauber result). If E; -« at fixed
¥,A then the endpoints of the s, contour approach
infinity, and propagation through heavy inter-
mediate states can be important.

In this paper we discuss two questions. In Sec.
II we summarize our view of the transition from
pure elastic to allowed inelastic intermediate
states. We try to give a fairly complete descrip-
tion of one aspect of this transition—the Amati-
Stanghellini-Fubini (ASF) cancellation.?

The second part of this paper concerns the phe-
nomenology of the Reggeon interactions that occur
inside the six-point function (Fig. 2). These inter-
actions correspond to heavy inelastic intermediate
states (s,>» m?). In Sec. III we discuss the inter-
pretation of data at energies ranging from those at
Fermilab to those of extensive air showers (EAS).
On the basis of the value of the triple-Pomeron
coupling deduced from pp - pX experiments we
conclude that Reggeon interactions are only a
small effect at Fermilab and are also not very im-
portant in the interpretation of inelastic cross
sections on air as deduced from EAS. The Glauber
formula is not an unreliable way to analyze those
data, at least with present-day errors on the data.

II. ASF PROBLEM

We have already noted that for lab energies such
that only elastic rescattering is coherent on the
nucleus, the s, integration is dominated by the pole
at s, =m*®. Picking up this pole we obtain the Glau-
ber approximation. However, as first noted in
Ref. 3 in a field-theory model, the pole is con-
tained in completely planar graphs. Therefore,
when E ; increases so that inelastic intermediate
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FIG, 1. Double scattering on a heavy nucleus.

states are coherent on the nucleus, the pole term
is canceled.' and the Glauber approximation should
cease to be valid. This point has recently been
emphasized and discussed from a configuration-
space point of view in Ref. 5.

On the other hand, it has become clear from ex-
periments at Fermilab® that the Glauber approxi-
mation is quite good for all nuclei even at 300
GeV,/c¢. This observation involves no real contra-
diction with soft field theory.™® Firstly, unitarity
in the Pomeron-particle channel guarantees pos-
itivity of the s, discontinuity. Secondly, it appears
from experiment that ¢(0) >1. This means that no
subtraction is necessary in the Gribov-Migdal sum
rule. The pole at s, =m” does indeed give a lower
bound to the cut strength.

Our objective in this section is merely to clarify
the discussion of the ASF cancellation, and so is of
only theoretical interest. In particular we want to
show that the ASF cancellation can be understood
for any sum of graphs in the soft field theory (with
one technical assumption explained below) and for
anyv Reyge intercept.

We first examine arbitrary planar graphs to see
il they can ever build a Regge cut. Recall the sit-
uation for the simplest planar graph (Fig. 3) where
the blobs have high-energy behavior determined by
a Regge pole. We set the denominator 2 on shell.
We only need to examine the cancellation in the
upper P-p amplitude. We could as well couple the
Reggeons to external sources (nucleons). Choose
Sudakov variables

k=abl+pp)+ K, (2.1)
m-
Plambi = b (2.2)

In the limit s -, «,f are light-cone variables

FIG. 2. High-enevrgy form of the six-point function
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FIG. 3. ASF diagram.

when they take finite values. The Reggeon-parti-
cle subenergies are

s, =(p,=R)*=aps —K*—as =pm*>+m?*,  (2.3)
s,=(p,+ R =aps —K?+am®+fs +m® . (2.4)

Let ¢, =afs —K°. We assume the whole diagram
is only large when ¢, is finite and s - (as in Fig.
4). Setting s,=m* we have

t,=—-alam®+t) -K*. (2.5)
If ¢, is finite @ ~ 1 and K*~ m®, so B~ m?/s. Also

K2+@?m?

£, = P (2.6)
so /, finite implies
az~-1+n forn>0. (2.7)

In the (—q) plane there is a pole and a right-hand
cut due to s, thresholds. There is another right-
hand cut at @ =~1 +ie due to singularities in ¢, but
this is irrelevant because of Eq. (2.7). It is clear
that the o contour can be freely distorted into the
region |@|~1 where s,~ s and the denominator 1 in
Fig. 3 is far off shell. Therefore in soft field
theory the diagram is negligible and does not con-
tain a Regge cut.

On the other hand, if we deform the o contour to
just pick up the pole at s, =m?, then the result is
not small. It contains an “ASF cut.” It also con-
tains such a cut if we include only the contribution
of the s, cut. The sum of the pole and the branch
cut cancel in the s, integration.

Since the o contour can be distorted so that s,
~ s, the cancellation must occur for any s = s,
where s, is the threshold for Regge asymptotic
behavior.

We next consider the high-energy limit of Figs.

FIG. 4. High-energy form of the ASF diagram.
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K, 3

P,

FIG. 5. A more general planar graph.

5 and 6. In each case the blobs are assumed pla-
nar but otherwise have arbitrary structure. Con-
sider first Fig. 5. Let

ky=a,py+ B, P +K . (2.8)
Then
§,= (b, +k)*=(1+a)(m?*/s+B)s -K?, (2.9)

5, =(p,-k)=(1-B)(m*/s-a)s-K>. (2.10)

As before, B~m?/s and s,=(p, — k)*>~ —as. The
singularities in the a, plane come from (2.9),
(2.10), and the denominators

d,=a,B,s-K*-m’+ie (2.11)
d,=(a,—a)(B,-B)s - (K, - K)* —=m? +ie , (2.12)
d,=d, . (2.13)

The integral over @, vanishes unless there are
singularities on both sides of the contour. Hence
0<B,<1.

Inclusion of the normal thresholds in &% does
not alter this argument as they are on the same
side of the o, contour as the poles in d, and d,.
The «, contour can be deformed entirely around
the right-hand cut in §, and hence lies in a, <0.
Since the field theory is soft d, is finite (say |d,|
< M,?), and we have

K2~Mp?, ,B,5~M>. (2.14)

Now d,~ M,>. We conclude that the graph can only
give a finite contribution if

ozBlsuMo2 . (2.15)
Therefore
|$,8,5l = My%s . (2.16)

Now, for exactly the same reason as in discussing
the ASF diagram, the o contour can be deformed
into |oz|~ 1 (so that s,~s). We conclude that the
graph of Fig. 5 gives only a small contribution
when s,,~s. The graph itself is not necessarily
negligible; for example, the blob can contain
single-Pomeron exchange.

Next we turn to Fig. 6. The discussion is the
same as for Fig. 5 except that in order to de-
termine the dominant region of B, integration as
0<pB,<1 we found it necessary to assume that the
only singularity in the variable (p, —k&,)? is a right-
hand cut. As we are discussing the analyticity of
a production amplitude it is not certain this will be
so. If it is not so, then it is much harder to de-
termine the asymptotic form of Fig. 6 as s—« and
our conclusion may or may not be altered.

We next show that the cancellation effect is con-
sistent with unitarity in the Reggeon-particle chan-
nel. The general discontinuity equation in this
channel® is

discA, ;,=2i fA({l)(sl;n)A(,?*(sl;n)dp(n) .

n,j,k

(2.17)

This equation applies either for the full Pp—~ Pp
amplitude or if we consider only planar graphs on
each side of the equation. As noted in Ref. 10, the
equation can be derived for the planar case by the
methods of Ref. 11.

In the original ASF diagram, the cancellation
occurs between “off-diagonal” terms in Pp - Pp
discontinuity and the original pole term. This
does not happen for the full planar Pp - Pp ampli-
tude since the discontinuity of the full amplitude is
necessarily positive. In other words the canceling
terms are recanceled by further diagonal terms in
the discontinuity equation. (This is clear from an
application of Schwarz’s inequality.) How then does
the ASF cancellation occur?

The point is that planar graphs can only build a
Reggeon with intercept<1. If a(0)>1, then the
Pomeron cannot be built consistent with direct-
channel unitarity entirely from planar graphs.*

In the unitarity equation the full two-particle am-
plitude is proportional to s*. The two-particle
discontinuity is proportional to s?**~! and all the
other multiparticle discontinuities are positive.
This situation is only self-consistent if a(0) < 1.
(This argument would fail in the presence of non-
planar graphs because they contain Regge cuts

P, P,

ki

P P,

FIG. 6. Another general planar graph.
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b

FIG. 7. Large-s; form of Fig. 2.

which can enforce the Froissart bound.) It follows
that there is no sensible ASF problem for «(0) > 1.

On the other hand if o(0) <1, then the s, integra-
tion projecting the fixed pole in the Pp elastic am-
plitude necessarily diverges. Let the Pp—~Pp am-
plitude be dominated by P exchange for s, = N.
Then the integral Eq. (1.4) is proportional to

N /my
32 +f , 45, Imf(s,) + f ds, Br,sTHO | (2.18)
(m+my) N

We know because of the previous argument for
ASF cancellation using the Sudakov variables that
the contribution from the lower limit of the final
integration must cancel the previous two terms.
The remaining term corresponds to single P ex-
change coupling to the whole nucleus.®

We conclude that the ASF problem is only sensi-
ble if @(0) <1, and in that case the cancellation
effect is perfectly consistent with the positive dis-
continuity in the Reggeon-particle amplitude.

Notice also that the piece of the s, integration
responsible for the ASF cancellation comes en-
tirely from s, <N. Now, once E, is large enough
that production of a state of (mass)?=N is coherent
on a nucleus, the first integral of Eq. (2.18) does
not differ essentially from the fixed-pole projec-
tion in hadron-hadron scattering. It follows that
the ASF cancellation occurs in just the same way
for hadron-nucleus scattering as for hadron-had-
ron scattering once E; > NR, where R is the nu-
clear radius.

We can also see this cancellation in configuration
space. Production of a state of (mass)? =s, takes
a longitudinal distance Z~E,/s,. For a planar
Feynman graph the scattering process on two nu-
cleons is sequential.® Hence it can only occur on
a nucleus if sl~EL/2R. However, since a planar
pP amplitude contains no fixed pole in the ¢ chan-
nel, it is small as s, ~«. Hence planar diagrams
cannot contribute to double scattering on a finite-
size nucleus as E; —~x.

III. EFFECT OF REGGEON INTERACTIONS

In this section we investigate the importance of
graphs containing the triple- Pomeron coupling as-
suming the validity of perturbation theory in the
triple-Pomeron coupling. We first determine the

size of the simplest such graph (Fig. 7) compared
with the Glauber double-scattering term.

The ratio of these terms is simply the ratio of
the fixed poles in the respective Pomeron-particle
amplitudes. For the Glauber term the fixed pole
is

F =2mp%, (3.1)

where B is the NN coupling constant, normalized
so that o ,(NN) =82
For Fig. 7 the fixed pole is

2E1 /R
F,=2m f as, B,
M

& $1
— 2E
=2nﬁ70\/21nk—ﬂ—/[1;5 , (3.2)

where M,? is the lowest energy at which pP—~pP is
dominated by P exchange and 7, is the triple-
Pomeron coupling normalized such that

3,
do__§ roV2 (3.3)
dtdM?  167M 2

At these energies it is irrelevant if (0) is slightly
above 1. With this normalization 7, coincides with
that defined in Ref. 12.

At a level of approximation sufficient for our
purpose we can assume pp-~pp is dominated by
one-Pomeron exchange so that g~ 10 GeV~'. If we
assume the Fermilab data on pp - pX are dominated
by only the triple-Pomeron coupling we obtain 7,
~ 0.5 GeV~!. However, it appears'® that about one
half the observed inclusive cross section is due to
non-triple-Pomeronterms. Thuswe should take
7, 0.25 GeV™'. We take M,=2 GeV. Then

F, _rgV2 | 26

F, B "RM;S"
At E; =200 GeV, we have F,/F,~%1n(20/R) if R is
in fermis. Clearly this is negligible. It is equally
clear that small changes in our assumptions (dif-
ferent model of the nuclear shape, inclusion of
Regge cuts, etc.) should not change this result es-
sentially.

We now consider the relative importance of

higher graphs. A simple model incorporating
these in a systematic way is that given by Schwim-

1

(3.4)

FIG. 8. Example of a “fan diagram.”
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mer.'* He sums all graphs corresponding to the
classical approximation; the eikonal of this model
is the sum of connected “fan diagrams” [one Pom-
eron emitted by the projectile undergoes succes-
sive splittings ending up with n Pomerons which
are absorbed on separate nucleons (see Fig. 8)].
Self-energy insertions in the Reggeon propagator
are ignored because at present energies double
diffraction dissociation into heavy states is on the
order of only 1-2% of the total cross section and
in Reggeon calculus increases as Ins.

We start with a uniform-sphere nucleus and re-
place it by a cylindrical nucleus of the same ra-
dius whose optical thickness is the average optical
thickness of the sphere. Let R be the radius:

. ﬁerAy/TfRz

* T (froa i) @ —7a] (R PD

(3.5)

where

2

¥, =1n RZO and A =a(0) -1.

Since the effect of light (m <s,= 2.5 GeV) inter-
mediate states in propagation is comparatively
small'® as long as effects of graphs renormalizing
the bare Pomeron propagator are small, this mo-
del should be qualitatively correct up to very high
energies (at least those in extensive air showers).

It is immediately apparent from formula (3.5)
plus our original estimate of 7, that Reggeon inter-
actions are negligible at Fermilab energy. (We
are of course assuming that 2—- 2 couplings and all
higher-order Pomeron couplings are not large.)

We now turn to a different problem: the inter-
pretation of total cross sections extracted from
observation of extensive air showers. Workers in
this field usually use essentially the Glauber form-
ula

O'incl(p—‘ls‘i'r) = fdzb(l '—e_ONNT(b)) ) (3-6)

where T(b) is the optical thickness of a typical air
nucleus. In principle this method could result in a
serious underestimate of oy, because it omits the
effect of diffraction dissociation into heavy inter-
mediate states. However, we will see below that

at a typical energy of observation (10'° eV) this is
probably not the case. The error involved in ap-
plying the Glauber formula is not large compared
with other possible errors in the method. This
happens partly because nitrogen is quite a small
nucleus and partly because 7,/8 is so small. It is
also significant that it is the inelastic cross sec-
tion not the total cross section that is observed.
To examine this question we use the result

0 (D -Air) = f (1 —e=VED) | (3.7)

where U is as above [Eq. (3.5)]. Only a crude cal-
culation is necessary for our purpose, so we will
treat the typical air nucleus as a uniform sphere
of radius 3.2 F. We take A =0.1. Then a change
of », from its current maximum phenomenological
value (0.5 GeV~!) to 0 only changes the nuclear
opacity by 6%. If »,=0.25 GeV~! the change is
only 3%. At A =0.05 the corrections are somewhat
larger, but still less than 10%. Such corrections
can probably be ignored compared with, for ex-
ample, the statistical errors, uncertainty of pri-
mary flux, composition, etc.

Present observations'® see a rising o(NN) in the
10'® eV energy range, using only formula (3.6).
On the basis of the above estimate we think these
cross sections should be revised upwards but only
by a relatively unimportant amount.

Finally consider the hypothetical world of un-
limited-energy and unlimited-size nucleus. Then
U~ 26A/7fo~ 8. Even in this case the nucleus is es-
sentially black. This could be altered by renor-
malization effects in the Reggeon propagator but
because of the smallness of r, these should not be
relevant for practical observations.
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