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In this article a nonperturbative approach to quantum chromodynam'ics in the confinement phase is
developed. The principal idea is to assume confinement, rather than attempting to prove it, and then to
examine the consequences of the resulting quantum field theory. We implement confinement by assuming that
the gauge field propagator becomes infrared singular like q

' at small momenta. The consequences of this
confinement Ansatz are explored for the quark propagator, ghost propagator, and quark-gluon proper vertex.
Slavnov-Taylor-Ward identities are used to fix the low-momentum behavior of the Green's functions, so no
approximations are made in the Dyson equations. In both the covariant Landau gauge and the noncovariant
axial gauge we obtain diA'erential equations for the quark propagator which are solved. Vacuum y, invariance
is dynamically broken so the solutions satisfy partial conservation of axial-vector current, We also obtain the
solution for the quark propagator in the case in which the flavor symmetry is explicitly broken by a quark
mass term. Some implications of this approach, which is an expansion about the infrared behavior of the
amplitudes, for the bound-state problem are briefly discussed.

I. INTRODUCTION

In this article we will describe a nonperturbative
approach to quantum chromodynamics (QCD). Our
approach will be to assume confinement, rather
than attempting to prove it, and then to examine
the consistency of the resulting quantum fieM the-
ory.

QCD is the SU,(3) gauge field theory of strong
interactions in which a gauge group triplet of
colored quarks with N) 4 flavors interacts with a
color octet of gauge fields, A.;(x). The flavor
chiral symmetry of SU(N) x SU(N) can be explicitly
broken by a quark mass term while the SU, (3)
symmetry is to remain exact. This model, to
which we restrict our attention, has been de-
scribed in detail elsewhere' and is a strong candi-
date for a theory of the strong interaction.

QCD, if it is to describe the real world of the
observed hadrons, must undergo at least two
phase transitions from the free-field state of real
quarks and gluons. These phase transitions are
the PCAC (partial conservation of axial-vector
current) phase transition of the flavor symmetry
and the confinement phase transition of the color
symmetry. We discuss these in turn.

If one ignores the flavor breaking due to a quark
mass term the flavor symmetry of QCD is
SU(N) x SU(N) x U~(1) x U„(1). The PCAC phase is
one in which the chiral SU(N) x SU(N) symmetry is
dynamically broken to SU(N) in the vacuum. Then
the states are classified by the irreducible repre-
sentations of SU(N), and the Goldstone theorem
assures us of an (N' —1)-piet of massless pseudo-
scalar bosons. These massless Goldstone bosons
acquire mass if explicit flavor breaking is intro-
duced. An undesired alternate to this scheme is

to have no spontaneous dynamical breaking of the
chiral group. Then all states are parity-doubled.

The PCAC phase transition is relatively well
understood and has been studied in renormalizable
field theories in which the Goldstone states asso-
ciated with the dynamicaI. ly broken chiral symme-
try are fermion-antifermion bound states. ' We
assume that QCD is in the PCAC phase. This as-
sumption is easily implemented by assuming that
in the absence of explicit fl.avor breaking

so that the y, invariance of the quark propagator,
S(P), is broken. This condition is color gauge in-
variant if the ground state is gauge invariant.
Further, (1.1) is the necessary and sufficient con-
dition for the flavor axial-vector Ward identity

e" 'I"„(P,e) = S '(P e)r,k~'+ W,k~'S-'(P) (1 2)

to imply Goldstone states. Using (1.1) this Ward
identity implies

exhibiting the zero-mass boson pole. Here X' is
an SU(N) flavor matrix.

In the axial singlet channel corresponding to the
U„(1) symmetry the above Ward identity is known
to fail as q„-0 on account of the existence of
topological soiitons in QCD. ' In this channel. there
is an extra term in (1.2) arising from an effective
U„(1)-breaking interaction detM+ detM~, where M
is the flavor matrix M = q(1+ y, )q. So in this chan-
nel no Goldstone state is required as is desired
phenomenologic ally. '

An insistence of our approach to solving QCD is
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that the PCAC phase and the collective nature of
the low-lying mesons be respected. Evidently the
m, a Goldstone state, and the p, a dormant Gold-
stone state, are general features of a collective
model. ' The conflict between PCAC, which re-
quires a Nambu-Goldstone pion, and the quark-
model symmetry SU(2N), which places the pion in
a signer multiplet with the p, is avoided if both
the n and p transform like members of the
(Ã, N) 6 (f('I, Ã) representation of the flavor chiral
group e.g. such as

(Tip,-~'q, p', - 8,((fo,„A.'q) . (1.4)

This unusual representation content for the ground-
state vector mesons then implies that PCAC and
vector-meson dominance are unified consequences
of a dynamically broken chiral group.

By contrast little is known about the confinement
phase transition for the color gauge symmetry.
Confinement means all the physical states are
color singlets. In this model it means the physical
states are all bound states. Equivalently the clus-
ter property fails for matrix elements of color-
nonsinglet gauge- covariant operators. There is
no proof that confinement occurs in QCD.

Attempts have been made to see if perturbation
theory in the gauge coupling constant g would sig-
nal confinement. The hope was that the infrared
divergences of QCD would provide damping factors
for the emission of colored states from color-
singlet states. Soft- gluon emissions, for example,
do not obey a Poisson distribution as they do in
QED because of the gluon self-coupling. However,
there can be no signal of confinement, if it indeed
occurs, from perturbation theory for at least two
reasons.

First, the Kinoshita-Lee-Nauenberg theorem'
applies to QCD order by order in g. Hence ex-
clusive processes are free of infrared divergences
in perturbation theory. The infrared structure of
QCD amplitudes in perturbation theory is not qual-
itatively different from QED.

Second, if confinement occurs, so that there is
a mass gap, then the S matrix has an essential
singularity at the origin of the coupling-constant
plane (see Fig. 1). So the critical coupling is
g, =o. Perturbation theory has zero radius of con-

vergence and will never see the essential singu-
larity.

The argument for the essential singularity given
by Gross and Neveu follows from the observation
that confinement in 3+ 1 dimensions requires a
mass scale M but there is none in the Lagrangian.I is a renormalization-group invariant so

( + P(g)—M=0,
&F 8R

(1.5)

where (6(g) is the Callan-Symanzik function and g
is the gauge coupling defined at momenta P,.'= —P'.
Since M = Pf(g) it follows by solving (1.5) that

and the associated propagator

Dab(q) g „&(Cv d(0 ) 6a()
PV PV q2 q2

I= @exp —,— ~ Pe 0 ~0~0 ~

p(g') z" o

(1.6)

Since all masses in QCD exhibit the solution (1.6)
up to a multiplicative constant of integration, it
follows that the ratio of all bound-state masses are
determined independent of any parameters (for no
explicit flavor breaking of course).

While this elementary argument destroys the
possibility of ever seeing a signal of confinement
in perturbation theory, it also points to a distinc-
tion between (2+ 1)-dimensional QCD on one hand
and (1+ 1)- and (2+ 1)-dimensional QED on the
other. (1+1)-dimensional QED has confinement
for all values of the coupling as does (2+ 1)-dimen-
sional QED at least for small values of the coupling
in perturbation theory. Confinement does not en-
tail an essential singularity because the coupling
constant, which is not dimensionless, provides the
requisite mass scale. This suggests that the con-
finement mechanism of QCD could be qualitatively
different from what our experience in low dimen-
sions has taught us.

Our first problem even if we assume QCD con-
fines is to technically implement it. Consider the
value of the commutator for a gauge field A'„(x)
satisfying the gauge condition 8 A. '„=0,

C d xe ""5'~I' x~ 8 x2 g x g

FEG. l. Analytic properties in the coupling constant
in the confinement phase.

In perturbation theory one makes the perturbative
Ansatz F(~') -g' j&' or

(1.9)
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d(q') =g'(q')

for large q' where g(q') is the solution to

(1.12)

q' d, g(q') = p(g(q')), g( P) =g-
If a result such as (1.12) holds for all q' then we
obtain our confining Ansatz (1.10) from (1.12) pro-
viding p(g) --g/2, g- ~. In perturbation theory
p(g) = bog'+ ' ' ', &—,& 0. Nothing is known about
p(g) in the strong-coupling regime.

Perturbation theory in the coupling provides a

This Ansatz is then inserted into the regulated
Dyson equations and one may calculate the correc-
tions to the ansatz.

For QCD our primary assumption is to make the
alternate confining Ansatz' F(x') - p' ln( x'/p, '),

~ 00 or

d, (q') ~ p'/q', (1.10)

where p.
' is a mass characterizing the scale of

confinement. To actually define the integral equa-
tions in the infrared region we will introduce an
ana1.ytic regulation c -0'.

d(q'), , (u'/q')' '. (1.11)

If the propagator is more singular than (1.11) it is
not possible to control infrared divergences in the
Dyson equations. To control ultraviolet diver- *

gences one may use dimension. al regularization
with the prescription d q - d~ 'q, & &y &0.

Our confining Ansatz viola'tes the cluster pro-
perty since E(x'), -x'- ~, does not vanish.
Strocchi" hah shown that in a local field theory the
proof of the cluster property for QED fails for
QCD. Thus while the confining ansatz cannot be
true for QED it may be true for QCD.

It is tempting to justify the confining 3nsatz
(1.10) on the basis of the phenomenological success
of linearly rising potential models of bound quarks.
This would be so if there were a direct connection
between the potential and single-gluon exchange
since this corresponds to a linear potential. How-
ever, such a connection assumes the validity of
perturbation theory in the number of exchanged
gluons with the propagator given by the confining
Ansatz. It is easy to convince oneself that multi-
gluon exchanges become successively stronger in
the infrared region and any connection with a po-
tential must be with the sum of all possible ex-
changes.

Recent perturbative studies by Cornwall" and
Frenkel, Meuldermans, Mohammad, and Taylor"
have attempted to go beyond perturbation theory.
It is worth remarking on. the connection of their
work with ours. They find that to O(g') the per-
turbative Ansatz (1.9), d~(q') =g' is replaced by

natural approximation scheme by truncating the
number of gluon exchanges. For our ansatz this
is not possible and one must consider the sum of
all such exchanges. A problem is to find a non-
perturb3tive approximation scheme appropriate
for the confinement pha. e.. What we will do is to
examine only the region ~p'/p, '

~& e ' so a suitable
small parameter will turn out to be E, the infrared
regulator. The important observation that makes
this approach viable is that the small-momentum
region is controlled by the Ward identities. The
usual criticism that the Ward identities are not
respected will not apply to our approach. No such
control is easily achieved for finite momenta. For
large momenta we have control of the amplitudes
in terms of a self-consistent application of pertur-
bation theory and asymptotic freedom. " The inter-
polation between the infrared region, which we
will study here, and the ultraviolet region specified
by asymptotic freedom is the terra incognita of
QC D.

In this article we examine the quark and ghost
propagators in. the Landau gauge and the quark
propagator in the axial gauge for which ghost com-
plic3tions are absent. Our result will be to estab-
lish and solve differential equations for the quark
propagator. The solution has the PCAC property
(1.1) and has no quark pole. The quark self-energy
is infinite as e-0. In the axial gauge the quark
propagator is obtained in complete generality.
While free of ghost problems, it is noncovariant.
We also give a solution for the quark propagator
for the case that the flavor symmetry is broken
by a mass term.

What is notexamined in. this article are the gluon
self-couplings and the Dyson equations for the
gluon Green's functions. The self-consistency of
the confining Annal~ for the gluon propagator is
3n important and unsolved problem in our ap-
proach.

The results given here generalize the results
given in a previous paper of mine. " The intent of
that more phenomenologically oriented work was
to give a derivation of the Gorkov equations for
QCD for the gap fluctuations of confined quarks
and antiquarks. " The mesons were flavored bi-
local excitations of the color-singlet condensate.
A nonlinear gap equation (the nonlinear Gorkov
equation) for the meson excitations was obtained.
In principle, the meson spectrum is obtained from
this equation. If one linearizes the integral equa-
tion the resulting eigenvalue problem yields a pheno-
menologically reasonable low- lying meson spectrum
which respects PCAC. Further, meson scattering
amplitudes, in the duality diagram 3pproximation,
were finite in the infrared E-0 limit. One found
a simple dynamics for confinement in the color-
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singlet scattering processes in which the quarks,
while fundamental for the dynamical scattering
processes, never appeared as physical states.
The discontinuity across quark lines in the duality
diagram vanished. Further, the amplitude for
meson -q+q vanishes as & - 0 as is required for
the consistency of the confining Ansatz.

II. THE DYSON EQUATIONS

The Dyson equations are proved in perturbation
theory. We assume that they are valid even if per-
turbation theory is not.

We will only consider the Dyson equations for un-
renormalized Green's functions. QCD is renorma-
lizable. This means that a well-defined finite set
of subtractions on the unrenormalized amplitudes
renders finite those amplitudes that have ultra-
violet divergences in perturbation theory. The
ultraviolet divergences can be regulated by di-
mensional regularization in 4 —y dimensions. The
usual renormalization prescription is to specify
the renormalized amplitudes at some fixed mo-
mentum so one can construct them from the sub-
tracted unrenormalized amplitudes.

It is not known how to implement the renormali-
zation program outside of perturbation theory.
Since our Ansatz is inherently nonperturbative
(like confinement) we do not attempt to renormalize
our solutions for the amplitudes, Presumably this
can be done by the usual subtractive procedure,
but a nonperturbative proof that this yields ultra-
violet-finite amplitudes is lacking. We suppose
that the infrared behavior of QCD is effectively de-
coupled from the ultraviolet region for which a
renormalization prescription is essential.

It shouldalso be remarked that the usual integral
representations for the Dyson equation that we
will use for the quark and ghost propagators have
overlapping divergences in perturbation theory.
Representations free of overlapping divergences
for QCD have been constructed by Baker and Lee."
As we ignore the ultraviolet behavior completely
we assume that the usual integral representations
suffice to extract the correct infrared behavior.
With these caveats we proceed to the examination
of some of the simpler Dyson equations.

A. The quark propagator

The Dyson equation for the quark propagator
S(P) =i/P —Z(P) is given in Fig. 2 or

FIG. 3. Ghost Dyson equation.

gV '
P V q2 q2 0 q4

(2.2)

is the general form of the gauge field propagator
consistent with the Slavnov identity iq"q"D'„„(q)

Ago 5 The coupling constant has been included
in d(q', n). Here n is a gauge parameter cor-
responding to a gauge-fixing term (S„A;)'/2n.

We will assume our ansatz, for definiteness, in
the Landau gauge a=0:

(2.3)

Substituting this and (2.2) into (2.1), letting e-0,
and taking the limit symmetrically, q2-0, q„q„/
q'-g, „/4, the integral diverges like e ' and

Z(P) = . r„(P, 0)
Z y.

(2.4)+ terms less singular in &.
I

Here m'=Cz3))'p'/4(2w)' and Cz=-' is the Casimir
invariant for the triplet of fermions, (A.'/2)(V/2)
= C~.

In what follows we denote with a bar amplitudes
which are finite as &-0. We will find that I' (p)
= eI'„(p, 0) and Z(p) = Z(p)/c so that as e-0 the
quark self-energy Z(p) diverges relative to the
kinetic energy P' as is expected in the confinement
phase. This is the case for momenta ~p'/m'~
«e '. For momenta

~
p'/m'~ » c ' the quark pro-

pagator is given by asymptotic freedom, that is,
I/P up to logarithms. From (2.4) one has as &-0

z(p) ™I'„(p)z'(p)y„,
~

p'/m'
~

« ~ ' (2.5)

as the infrared content of the quark Dyson equa-
tion.

4

z() ) f=(2, r„((,q)s (( —q)r. .-' ~'a„'„(~).
(2 1)

Here the proper vertex is I'„'(p, q) =-il'„(p, q) &
X'

with the color matrix ~ A.
' obeying [-,

'
A.', &1']= iC'"

x —,
' g' with C' ' a Lie coefficient, and

Zb)
P P P-

FIG. 2. Quark Dyson equation.

B. The ghost propagator

The ghost propagator also obeys an elementary
Dyson equation and can be, analyzed in a similar
fashion (see Fig. 3). The ghost propagator is
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FIG. 4. Ghost-gluon vertex.

T „ (k, p, ~) o

FIG. 5. Triple-gluon vertex.

(2.6)

and the Dyson equation

d4q5' k'b(k') = -i 4
G'" (k, q)G' (k —q)(2n' 4

xC"~(k q) D»(q).
Here

G',"(k,q) = C"'G, (k, q) = C'"k"G„„(k,q)

(2.7)

(2 6)

needs to know the proper vertex functions for gauge
fields of zero momentum. Such information can be
provided by the Slavnov- Taylor-Ward identities. "

For I"„(P,, P) we can obtain an elementary identity
provided that b(0), the ghost self-energy at k' = 0,
exists. From the ghost Dyson equation (2.10) we
see that b(0) exists providing that the vertex satis-
fies

is the ghost-gluon vertex (Fig. 4) (G»=g» in per-
turbation theory). Defining (3.1)

G (k, 0) =k„A(k') (2.9)

and the gauge field Casimir invariant 2, ~C"'C"~
= C26'» and using the Ansatz (2.3), one obtains from
the integral (2.7) as e-0

b(k') = ' ~, ik'/m'i «C' (2.10)ek'(1+ b(k'))

This is the infrared content of the ghost Dyson
equation, a result that is useful in, our analysis of
the Ward identities.

III. SLAVNOV-TAYLOR-WARD IDENTITIES S

In order to solve the Dyson equations (2.5) and
. (2.10) for the quark and ghost propagators one

where R(0) exists as e-0. We assume this is so.
One might hope to verify such an. assumption, or
at least check its consistency from the Ward iden-
tities for the ghost-gauge field vertex G'„"(k, q)
since G'"(k, 0) = C'"k„A(k'). Such formal Ward
indentities for the ghost field vertices have been
obtained by Joglekar and Lee." However, these
identities involve the matrix elements of composite
operators of ghost and gauge fields and we have
found that no useful information can be obtained.
The ghost-gauge fieid vertex also makes its ap-
pearance in the Ward identity for the triple gauge
field vertex T„"„'(k,p, x) = C'»'T„„(k,p, r) (see Fig.
5). The identity is

[1+b(k')] k" T„„(k,P, x) = G"»(k+ P, P)d '(—(k+P)') [(P k)+'g (P+k)» (P+ k) ]

+ G "(k+p, p)d'(p')(p'a p'p")— (3.2)

B(0,p) = 0. (3.4)

where (k+P)"G"»(k+P, P) =G» (k+P, P). However,
unless one has independent information on T„„no
useful result for G~ can be found. ' Such an as-
sumption as (3.1) on the ghost coupling is unneces-
sary in the axial gauge which we subsequently dis-
cuss in Sec. VI.

The quark Slavnov-Taylor" identity is

ik»I'„(P, k) [1+b (k') ] = [1—B(k,P)]S '( P + k)

-S '(P)[l B(k,P)], (-3 3)

where B(k,P) is defined in Fig. 6. In the Landau
gauge Taylor" has shown that

1.

Using this result and differentiating (3.3) with re-
spect to k», assuming regular behavior, k Sb(k')/
sk~-0, k»sl'»/sk»-0 as k„-0 one obtains, in the
Lan.dau gauge, the identity

E) (k, p)

FIG. 6. Definition of B(k,p) in the quark vertex Ward
identity.
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X +ski

(bj
FIG. 7. Ghost-quark scattering kernel.

il', (p, o)(1+b(0)) =
k=0

'~(k') (c,/c, )
~k'(1+ b(k'))

S,(p) (,P)
k=0

= —,
' iS(P)k"r „(p,O)b(k') .

Consequently from (3.6) we obtain

(3.8)

aB(k, p)
, k=o

aB(,)(k, p) (3.6)

d4l
&(k, p)= iX~ -S(P+l)D „(l)I"„(P+l,l)

x X'G';"(k —l, —l)G"'(k —l),

(3.7)

This is still not a useful form since the term
aB(k, P)/ak ~k=0 appears. However, this can be
computed in terms of I', (p, 0) and S(p), as we now
show.

In the integral representation for B(k,P) shown in
Fig. 6 the ghost-quark scattering kernel appears.
This kernel has a skeleton expansion the first term
of which, B&»(k,P), is shown in Fig 7. Th.e fea-
ture that permits a computation of the derivative
of B(k,p) at k =0 is that all other contributions to
the kernel contribute to B(k,P) terms of O(k') and
higher (in the Landau gauge). For example, the
diagram shown in Fig. 7(b) can be explicitly written
down. U'sing our Ansatz for the gluon propagator
only, the zero-momentum part in the gluon lines
contributes and hence each ghost-gluon vertex con-
tributes a factor k . So the diagram is of O(k').
These factors of k„are not canceled by ghost pro-
pagntor poles if we use the ghost Dyson equation
(2.10) and make the assumption that b(k') is regu-
lar. This argument is valid term by term in the
skeleton expansion. Consequently the regularity
of b(k') '

implies

aB(k, p) giS (p)I'„(p, o)b(0)
k=0

(3.9)

IV. DIFFERENTIAL EQUATIONS FOR THE QUARK
PROPAGATOR

Denoting

-is(P)/&=S(P) =-Z '(P) =A(P')P+B(P ),
F, (P) = «„(P,o),

S,(p) = ar( p+ k)/ak„ i, ,
=&(p')x„+ (&'(p')P+B'(P')) 2P,

(p) = aS-'(p+k)/ak„~„„
We assume 5'(P) has an inverse so that

g„'(p)p(p)+ g-'(p)R„(p) = 0.

(4.1)

(4.2)

The quark Dyson equation (2.5) and Ward identity
(3.10) read

~'(p)=- 'F. (p)s(pb. (4.3)

and

and substituting this into (3.5) we have the final
form of the Ward identity

(1,—,b)r„(P, o) = "'(„P'"
k-"0

—a bs(P)I, (P, O)S '(P), b =b(0).

(3.10)

The parameter b cannot be determined by this
method If b =.0 we recover from(3. 10) the stand-
ard QED-type Wa. rd identity.

which in the e-0 limit becomes, using (2.2),
(2.3), (2, 8), (2.9), and (2.10),

(I+!b)1', (P) = S„'(P) —.'bS(p) T„(—p)s-'(p) .

(4.4)
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it follows from (4.4) that

(I+b)p'~, (p) =O'S "(P) (4.6)

A special case is if 1+b = 0. Then (4.6) implies

p"S„'(p)=0 (1+b=0)

or using (4.2) p"S„{p)=0 or

(4.7)

These are a system of first-order differential
equations for F(P) and T'„(P) which are param-
etrized in terms of b. The algebraic problem of
finding the differential equations for S(p), that is,
for the functions A(P'), B(P'), is not difficult.
In order to satisfy PCAC (1.1) we must have
[S '(P), y,],«» B(P') «

The algebraic problem is simplified by noting
that P"1 (P), y"I', (P), I' (P)y" all have Dirac struc-
ture nP+ P so they commute with S(P) and S '(P).
Using this,

[y"~„(p),S{ )]=[~„(p)y',S(P)]=[P"~,(p) S(P)] =0

(4.5)

more transparent version of the same equations in
Ref. 14. The vertex function I' (p) is easily ob-
tained from (4.13) and (4.10).

In the general case 1+ b 4 0 a computation given
in the appendix gives the differential equations

2

P'{A'(P') )' —{B'(P'))'
rn2 1+b

+ A'(p'),
(4.14)

+ B'(P'){2A'(P')P'+ 4A(P'))

e have not succeeded in finding an analytic
solution to these equations in. the general case. A
few special cases can be noted. If B= 0, which
violates the PCAC condition (1.1), then (4.14) is a
linear system for A. with the general solution

1+b 1 4+3b(P) (P) . 4 3b 2(b l)
2p'A'(p')+A(p') = 0,
B'(p') =0 (1+b=0).

These equations have the general solution

2 x/2 B(p ) =ca(P)

(4.8)

(4.9)

(4.15)

with a, a, constant. A specific solution to (4.14) for
which B WO valid if b c0 (so the propagator has an
inverse) is

(1+b)' 1
A(P') =

{ b, =constant,

Z(p)=, ,'i p+c, (1+b=O)
p2)1/R

witht a, and c, constants. So for b+ 1 = 0 the
problem is solved and T' (p) can be obtained from
the other equations.

In what follows we assume that b+ 1 c0. Another
elementary case that can be solved exactly is if
b = 0 so the Ward identity is the same as for QED,

I'. (P) =~,(p) (b=o) (41o)

Using this in (4.3) and using (4.2)

B(p2) —c p2

1+bm'c, = (1+ 2b+ 3b') = constant.

(4.16)

%e see that for covariant gauges the complica. —

tions due to ghosts can be considerable. Not only
are we required to make an additional assumption
for the ghost vertex (3.1), but granting this as-
sumption the differential equations are rather com-
plicated in the general case. These problems are
averted in the axial gauge.

or

&'(P)=- m'~ .{P)S(p)y„
=m'~ '(P)~„(P)y „

1 2 2 ~ 2

2 ~ =~(p')+O'A'(P'),

B'{p')=0 (b=0),

which ha, s the general solution"

A(P') = —', + 4, , B(P') = c. ,
a, 1

8(P)=(—*,+ 4,) gr'+c, (b=o).

(4.11)

(4.12)

(4.13)

V. SOLUTION FOR BROKEN FLAVOR SYMMETRY

Z(p) =m, —m'I'„(p)Z '(p)y (5.1)

So far we have assumed the absence of flavor
SU(N) symmetry breaking. We now suppose that
flavor symmetry is explicitly broken in the La-
grangian by a quark mass term. Then the pseudo-
scalar Goldstone bosons acquire mass. The Dyson
equation (2.1) has an inhomogeneous term m,
which, without loss of generality, can be assumed
diagonal in flavor space. This inhomogeneous
term also modifies the infrared Dyson. equation
(2.5) according to

with a, and c, constants. Equations (4.12) are a 0 0~
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The solution for the quark propagator in this ex-
plicitl„: broken symmetry can also be given in
terms of elementary functions in the case that
b = 0 so the Ward identity is simply

r„(p)=S-'„(p) (b=o). (5.2)

The Ward identity for the color symmetry is un-
affected by flavor breaking. With -2 '(p) =S(p')
=A(P')P+B(P'), (5.2) and (5.1) imply

1 =. m'(4A(p') + 2p'A'(p')) —m B(p'),
0 = 2m'B'(P') —m3A(P2),

(5.3a)

(5.3b)

B(p') = + — +ym, I (z)
1 m2 2

m m z m

z =(m 'p'/m')' '
Pm, 'Z, (z)

(5.4)

where y and p are arbitrary constants of integra-
tion and I„and K„are modified Bessel functions of
the first and third kind. In the limit of symmetry
restoration m, -0, if ycO and ~P ~

& ~ we recover
the symmetric solution (4.13) given previously.

VI. THE QUARK PROPAGATOR IN THE AXIAL GAUGE

Attempts to study QCD in a manifestly covariant
gauge are necessarily plagued by ghosts. Follow-
ing Kummer and others" we will adopt the axial
gauge with a gauge-fixing term C'A'„n„with n„a
constant non-null vector and C' a trivial field.
While the resulting Ward identities are simple
because the ghosts are absent, one loses manifest
covariance.

The general structure of the gauge field propa-
gator in the axial gauge n„A'„= 0 is

a systemof first-order equations which are soluble.
Differentiating (5.3a) and substituting (5.3b) into

the result, one obtains a second-order equation
for A. This equation is of a modified type of
Bessel's equation and has a solution given by mod-
ified Bessel functions. By integrating (5.3b) one
can obtain J3 from A. One can check that a specific
linear combination of the modified Bessel functions
actually solves the first order equations.

We simply state the results for the general solu-
tion to (5.3).

A(P') =, , 2+ ym2 I ( 2)z+Pm2~K, (z)
1 . 2

m 'P' m'

This satisfies the gauge condition n„D'„'„(q)=0. The
confinement Ansatz which respects this gauge
condition is

2 1. 6

,D23 (q) 523g r
~q

(6.2)

Using this ansatz in the quark Dyson equation
(2.1) one finds using (6.2) the infrared content for
the propagator 2 '(P, n) =-Z(P, n) which is n„de-
pendent,

8 '(P, n) =-m 12„(P,n)8(P, n)y„g„„r.

In this gauge the Ward identity is simply

T'„(p, n) =8 '/(p, n),

(6.3)

(6.4)

We set n'=-1 without loss of generality.
Substituting (6.4) into (6.3) and using (4.2) one

finds

1
, =~„(p,n)r, a„'„ (6.6)

where

B„(p,n) =A(x, y)y +D(x, y)py„

+(A,(»y)/+B, (x y)+C„(x,y)H

+ D, (x,y)QP) 2iP„+ G(P, n)n„, (6.7)

where A„=dA/dx and G(p, n)n will not contribute
to (6.6). Substituting (6.7) into (6.6) implies

1, = 2xA„(x,y)+ 3A(x, y) -2C„(x,y)ym'

-4y'A„(x, y),
O=B„(x,y)+yD„(x, y),
0 = 2xD„(x,y) + 3D(x, y) -2yB„(x,y)

4y2D„(x, y), —

0= C„(x,y)+yA„(x, y) .

(6.8)

The general solution to these equations is not dif-
ficult to find. It is

+
'

(x y2)3/2 +
3 2

where the quark propagator has the Dirac decom-
position

S(p, n) =A(x, y)p+B(x, y)+ C(x, y)g+D(x, y) n/p',

P 3 3 P

(6 5)

iD„'t(q) = 5'" [a(q2, q n)P, „+b(q', q n)g r„],
cf n„+gn n g

/g =g —n nyn

(6.1)

P, (y)D( ty) I %3 2/2
'L& —7 )

B(x,y) = yD(x, y)+ P.(y),-
C(,y)= yA(, y)+ p, (y),

(6.9)
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P
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FIG. 8. Bethe-Salpeter equation for flavored mesons.

with P, (y) arbitrary functions of y =P n alone.
No physical amplitude can depend on y =P n since

it is gauge dependent. So there should be no loss
of generality for gauge- invariant physical ampli-
tudes if we specify P, (y). Choosing 'P, (y) =P,(y)
=0, P,(y) =y/3M', P,(y) =Ps= constant the quark
propagator takes the simple form

(6.10)

which is an entire function. Up to unimportant con-
stants this is the same propagator used in Ref. 14.

The axial gauge, we conclude, leads to simple
results upon application. This indicates that the
ghost field complications encountered previously
may be only superficial manifestations of an in-
convenient gauge choice.

VII. REMARKS ON THE BOUND-STATE PROBLEM

Our purpose in constructing the quark propaga-
tor and the proper vertex is that these amplitudes
enter the bound-state problem. A major problem
is gauge field theory is to find a gauge-invariant
approximation to the bound-state problem since
one holds no hope for an exact solution. A gauge-
invariant approximation to the bound-state prob-
lem is not known.

In our previous work'4 we examine the bound

states as gap fluctuations in analogy with a sim-
ilar development in superconductivity theory. The
Dyson, equation for the quark propagator in the
presence of sources was considered in the approxi-
mation of ignoring the influence of sources on the
gauge field propagator and the proper vertex func-
tion as they entered the Dyson equation. This ap-
proximation, since it treats the propagator and
vertex differently, violates the Ward identities for
Green's functions in the presence of sources. Then
using the confining ansatz a nonlinear integral
equation for the gap fluctuations resulted. This is
the nonlinear Gorkov equation. The integral equa-
tion respects PCAC and in a linear approximation
yields a reasonable spectrum of low-lying mesons.
This development suggests that as far as meson
phenomenology is concerned the nonlinear Gorkov
equation can offer a viable approach.

If one wishes to go beyond this phenomenological
approach one is led to consider the exact Bethe-
Salpeter (BS) equation for the bound-state meson
amplitude B(P',P). For color-singlet, flavor-
nonsinglet amplitudes B(p', p) the exact BS equa-
tion is shown in Fig. 8. Flavor-singlet mesons re-
quire special treatment since pairs, etc. Of gluons
in color-singlet states can. contribute to the direct-
channel process. The skeleton expansion of the
two-particle irreducible kernel% is indicated in
Fig. 9.

Now consider the kernel if we make the confining
Ansatz for the gluon propagator. From our pre-
vious work we note that the combination I'„(P)S(P)
= T'„(p)S'(p), which is ubiquitous in the BS equa-
tion, is finite as e-0. Con.sidering only the in-
frared singular part of the integrations in the BS
equation and the kernel the first two terms of
the kernel shown in Fig. 9- give the BS equation as
g~ p.

fp&

0 +

~ ~ 0

FIG. 9. Skeleton expansion for the kernel.
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FIG. 1.0. (a) Meson-quark decay. (b) Color-singlet scattering in the duality diagram approximation.

m2
B(P',P) = I', (P')S (P')B(P', P)S(P)1'„(P)

2 2

+c r„P'8 P'r'„P'8P' S P', P 8P P„P8 P r„P + ~ ~ ~,

where c is a numerical constant;
It is clear that the truncation of the skeleton ex-

pansion is an inconsistent procedure since the
powers of & on each side of the equation cannot
match. Evidently one must first sum the most in-
frared singular parts in the skeleton expansion and
then take &-0. The actual summation of the series
may be tractable if one considers only the most
singular terms. '

This computation will not be
undertaken here. We suggest that the result of this
procedure mill. be to effectively replace the gluon
propagator of the lowest-order kernel d(q')/q'
with ed(q')/q . Then the powers of e match and one
obtains an eigenvalue problem for B(P',P).

What this exercise shows is that truncation in

gluon exchanges is not a consistent approximation
if the gluon propagator is as singular as our
Ansatz. This lesson is also made clear if one
considers the Dyson equation for the proper ver-
tex I'„(p',p). Truncation of the skeleton expansion
for the kernel in this Dyson equation also gives
a result inconsistent (in powers of e ') with our
result obtained from an analysis of the exact Ward
identity.

There are a few additional remarks on the
bound-state problem which can be made that in-
dicate the consistency of the confinement Ansatz.
In Ref. 14 we noted that the bound-state ampli-
tude B(p', p)-Z*(p', P), defined in (14), was of
O(e '). Consequently, since the quark propagator
is of O(e) the amplitude for meson -q+ q decay
given by S(P')B(P',P)S(P) -O(e) vanishes in the
infrared limit &- 0, consistent with confinement
[see Fig. 10(a)]. However, if one considers any
meson (color singlet) scattering amplitude in the

duality diagram approximation as shown in Fig.
10(b) all the factors of e ' in the wave function
cancel exactly against factors of & in the quark pro-
pagators to produce a nontrivial scattering ampli-
tude. This is an elementary intimation of the con-
finement mechanism in the bound-state sector.

A further result regarding gluon emissions is
also easily obtained. Suppose color-singlet ampli-
tudes are finite as &-0. This is true in the duality
diagram approximation; here we assume it is
generally true. Then we consider a representa-
tion of the color-singlet amplitude T(P, ) by ex-
plicitly exhibiting a gluon-loop integration as shown
in Fig. 11. Hence

d4
T(P;) =

(g ). &,(q)T, (q, P;),

where T'„'„(q,p;) = P T„„(q,p;) is the amplitude for
emitting a pair of virtual gluons in a color-singlet
state. Using our ansatz one obtains as &-0

with c a numerical constant. If the color-singlet
amplitude T(P;) is finite T,„(O,P;) must be of O(g)

FIG. 11. Color-gluon emission amplitude.
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as &-0 if it does not vanish identically. Hence
the amplitude for soft-gluon pair emissions van-
ishes in the infrared limit. This is also the case
for any finite number of gluon emissions from a
color- singlet system. This result again supports
the consistency of our approach.
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with P=AP+B. For I'„P„we use (4.6) or

P"I,=P"S„'/(1+b) .

If we multiply (4.4) on the right by Sy„ then

(1+—,
'

b) I „Iy„=8„'Sy —z'b FI'„y, ,

(A3)

(A4)

APPENDIX

Here we give a derivation of the differential
equations (4.14). Substituting (4.4) into (4.3) and

using (4.2) we have

(1+ 2b)/m' = F„y + ~ bR'I'„y„. (Al)

writing SI',y, = I'„8' + jS, I'„],y» and using (4.3)
and [p, T'„],y = I'„[7,y „],(A1) becomes
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Investigacion de Estudios Avanzados, Mexico. I
a1.so thank Professor M. A. B. Beg for discussions
about confinement in field theory and Professor J.
Bernstein for discussions about Ward identities
in QCD.

and using Fy„=—y 8 + [S,y„],= -y„s+ 2 (Ap„+ By„)
(A4) implies

-I'„y F+ (1+ a b) 2I'„(AP„+By„) = -8 'S„y„.
(A5)

Upon using (A3) we find from (A5)

2+b
(S-(2+b)B)I'„y„=S 'S,y„+ AP"S, '.

(A6)

Multiplying (A2) bye —(2+b)B and using (A6) and
(A3) implies

(AP —(1+b)B)m ' —(AP —B)S'„y„b P„P„,
bA

(A7)
m- =S„y„+,'bSI, [S,y „—],

=Z„y + bS(AI'„P +BI'„y„) (A2)
where F =Ay„+2P, (A'P'+B'). Equation (A7) di--

rectly gives the differential equations (4.14). .
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