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We discuss the conditions under which chiral symmetries become exact at asymptotic momenta, utilizing the
homogeneous Callan-Symanzik equations so that momenta are not restricted to the deep Euclidean domain as
others have done previously. In particular, we consider as our prototype the chiral SU(2)(3 SU(2) cr model of
Gell-Mann and Levy without fermions, where we allow for both spontaneous symmetry breaking and explicit
breaking of the symmetry via a term in the Lagrangian linear in the cr field. To check our general results, we
calculate to two-loop order in perturbation theory the coefficients of the homogeneous Callan-Symanzik
equations along with the interesting amplitudes of the theory and finally show that under suitable conditions
the symmetry-broken theory and the symmetry-conserved theory both approach the same massless, symmetric
theory as the momenta become asymptotic.

I. INTRODUCTION

There have been numerous attempts to explore
the implications of exact chiral invariance at as-
ymptotic m6menta. Hara' shows that if one as-
sumes exact SU(2)S SU(2) symmetry at high energy
and large momentum transfer, then for nucleon-
nucleon scattering the Goldberger-Grisaru-
MacDowell-Wong (GGMW)' helicity amplitudes are
related as follows:

p p. —p p, p, dp. =Ii
0

(1.2)

where I', is the pion decay amplitude. And, under
the additional assumption that the matrix elements
of the currents act at high momenta as if the cur-
rents were free 1' fields, he further derives a
second sum rule:

f pv(p') pg(p') jdp'—= o.
0

Others who have looked at such problems are Sa-
kurai, Akiba and Kang, Hsu, e and Nambu. '

To provide a field-theoretic basis for such in-
vestigations, Lee and Weisberger' have employed
the renormalization group in the more recent form
of the inhomogeneous Callan-Symanzik equations'
to show that at large spacelike momenta (the deep
Euclidean domain) spontaneous symmetry breaking

y, /y, = O(s '),
so'-f,

tps = Q5+ (s —2m' )Q».Pl g

Weinberg' assumes exact SU(2)SSU(2) to derive
sum rules for the spectral functions of the propa-
gators of the vector and axial-vector currents:

and explicit symmetry breaking due to a term in
the Lagrangian linear in the scalar field(s) both
disappear under suitable conditions.

In our investigations we use the homogeneous
form of the Callan-Symanzik equations which were
first applied to fermion field theories by steinberg'
and subsequently to scalar field theories by Cal-
lan." This formulation of the renormalization-
group equations has the advantage of giving simple
solutions without restricting momenta to the deep
Euclidean domain and of explicitly showing how

mass parameters behave asymptotically; thus, we
are able to study a wider variety of processes
asymptotically.

As a prototype for the various chiral groups, we
study the chiral SU(2)8SU(2) o model of Gell-Mann
and Levy" (excluding fermions for simplicity) and
allow for both spontaneous symmetry breaking and
explicit breaking of the symmetry via a term in the
Lagrangian linear in the a field. Using the homo-
geneous Callan-Symanzik equations with their
treatment of masses as simply additional coupling
constants, we both prove in general and demon-
strate explicitly to two-loop order that, under suit-
able conditions for certain anomalous dimensions
of the theory, in the asymptotic limit the syn;me-
try-broken and symmetry-conserved theories both
approach the same massless, symmetric theory.

In the next section we present the essential fea-
tures of the SU(2)CRSU(2) o model and the renor-
malization program and then discuss our general
results for asymptotic symmetries. In Sec. III we
demonstrate our results to two-loop order by first
calculating both the Callan-Symanzik coefficients
and the relevant one-particle-irreducible (1PI)
amplitudes and then by discussing the asymptotic
limit of these amplitudes. Finally, in Sec. IV we
offer some concluding remarks.
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II. THE a MODEL IN THE ASYMPTOTIC LIMIT

In this section we apply the machinery which the
homogeneous Callan-Symanzik equations afford to
our prototype theory, the chiral SU(2)SU(2) o
model of Gell-Mann and Levy, "where we omit
fermions in order to simplify later calculations.

Whenever we use Eq. (2.1) it is understood that
(o), =E and when using Eq. (2.6a) it is understood
that (o)0 =0. We refer to these two equivalent rep-
resentations of the Lagrangian as the u(unshifted)
and s (shifted) representations, respectively.
Along with Eq. (2.6a) we add the following auxiliary
relations:

A. o-model formalism

We take as our Lagrangian

2= —'9 o& "o+—'& 7'8~m+ —P(o'+v')

(i) c+F(f) ——|E'=0,
0

(2.6b)

——|(o'+7')'+co, (2.1)

where 0 is a scalar meson, m' are three pseudo-
scalar mesons, -P is the mass squared of the
meson fields leading to spontaneous symmetry
breakdown, and the term co, linear in the scalar
field, provides for explicit breaking of SU(2)
SSU(2) by Z.

Rotations in isotopic-spin space are given by

(2.2)

with the following conserved vector currents:

V„=m && &„m,

8PQ 0
(2.3)

J is partially invariant under the following trans-
formations:

v-v —Po',
(2.4)

with the following partially conserved axial-vector
currents (PCAC):

A„=me 0',

&'A, =cv (PCAC) .
(2.6)

The linear symmetry-breaking term and the
imaginary mass cause 0 to develop a vacuum ex-
pectation value, and hence we can write down a
shifted Lagrangian in the form

2 =-,'s„as "o+—,'s„m' 8 "n ——,'p, o ——,'p,v'

with Eq. (i) being valid only to tree order in per-
turbation theory. If c = 0 we get the usual Goldstone
result, namely $,=0, g, )0.

In studying the amplitudes of the theory, we limit
ourselves to the one-particle-irreducible (1PI) am-
plitudes, that is, amplitudes which include only
those Feynman diagrams which are connected and
cannot be separated into two parts by cutting a
single propagator. It is customary to multiply an
amplitude by each external particle's full (as op-
posed to free) inverse propagator. Also, except
for two-particle amplitudes, all momenta are
headed into the diagrams so that ZP, =0.

B. Callan-Symanzik equations for symmetric theory

Lee has shown how to renormalize the chiral
SU(2)SSU(2) o model in the presence of both spon-
taneous symmetry breaking and explicit breaking
of the symmetry by a term in the Lagrangian linear
in the 0 field. ' He has shown that the only

=- counterterms needed to render the symmetry-
broken theory finite are just those which renor-
malize the symmetry-conserved theory. The sym-
metric theory from which we calculate the counter-
terms is defined by the following Lagrangian yield-
ing finite amplitudes:

1+A j. +A2+ 6Z = ~ 08~0+— 8 m' 8 "P

1+C
y (o'+ v')

(o +77') ——,(cr'+7')2, (2.6a}
(o'+ n~—)—— . (a'+7')'.

where we have slightly altered the notation in this
equation so that the o from Eq. (2.1) we now call o'
with

(2.'7)

(2.8)

In the manner of Callan, "we consider Q in Eqs.
(2.1), (2.6), and (2.8) to be an external, space-
time-independent field providing mass for the
mesons. To renormalize the symmetric theory we
have the freedom to use any of the two- and four-
particle amplitudes. We use the 0 propagator:
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P(2IOyOIO) j[(1+Q)p2 z ] (2.8)

(where I'"'"x' a™2'denotes the 1PI amplitude for
n external o's and m, external ~'s and the sub-
script s refers to the symmetric theory) and the
0 vertex. To avoid infrared divergences and to
establish the connection with the zero-mass theory,
the counterterms 4, B, C, and D are determined
by the following renormalization conditions:

8 I (2,0,0,0)
S

8p $2~0
(t=M2

Symanzik equations:

8 8 3

8g
M +(((g)—+y, (g)y ——(n+gm)y(g)

k=1

8 8 A
g =M =-g™-M F1 go, —

y= —M- -- lg8 = —M lnF2 go~
1 8 1 A

8M (2.18)

8 P(2,0s0,0)
S
8

~$
p2 0
y=M 2

(2.1o) y~=M ln—=M lnF, g0, —&M ((((0 BM

p(2, 0fOf0)(p2 p y p) O

I'"""(P=O y=M')= 2g

In the manner of ballan we alternatively write the
Lagrangian~yielding finite amplitudes in the follow-
ing form:

g g W W gZ+aZ=-8 oa.o+ e & S~& y (o'+&2)
2 ~ 2 ~ 2

and all depend only upon the renormalized coupling
constant g.

The key to the above procedure is being able to
multiplicatively renormalize the bare mass (t(0 (by
a factor E2 which does not depend upon either Q
or $0). Ordinarily one would not be able to include
diagrams for the self-energy such as

S2-
2

&P2(O +7, (2) ——
~

gO(a'+((2)2, (2.11)

g =F1 g0

gor (2.12)

where the zero subscripts denote unrenormalized
quantities and

because in perturbation expansions one is not nor-
mally allowed to contract fields inside normal-
ordering signs, a restriction which leads to a non-
multiplicative renormalization of the mass. How-
ever, if we adopt Callan's approach of treating Q
as an external field, we can "legally" include dia-
grams of the form

F(z. M)O

Z (n, m &) g (n+Q
& 1m&)/ 2I

S(p]2ptg 2M) SO(pgtg02$0g6 ash) &

we can immediately write

p M I (ntm])8

8M

x I'
S(P~g, /2M)

g0& ~02 h fiXed
(2.14)

which implies the homogeneous form of the Callan-

with A being the cutoff used in calculating the unre-
normalized amplitudes. Then upon noting that the
renormalized amplitudes I"(n™~'can be written in
terms of the unrenormalized ones I", &' via

where the wavy-line insertions of the g field onto
zero-mass propagators sum up to give an integral
involving one massive propagator minus an integral
involving one massless propagator. Further, the
counterterm D allows us to forget altogether the
normal ordering and hence to forget about sub-
tracting the second term in E(l. (2.18) because such
terms can be automatically subtracted by properly
defining D; thus, summing P insertions on a zero
mass propagator from zero to infinity gives a sin-
gle propagator of mass (t(, and we are led to a
theory with a multiplicative mass renormalization.
In Lee's work on the renormalization of the a mod-
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el, he found that normal ordering leads to an in-
consistent renormalization procedure. " So, Callan
has in a sense anticipated Lee's problem by allow-
ing us to throw out normal ordering altogether in
the renormalization-group formalism.

In app1ying the homogeneous Callan-Symanzik
equation [Eq. (2.15}]to the study of the high-energy
behavior of the theory, it is useful to write down

its general solution:

1 (n&m~)(I(P + y M)

3
I c-(n+g ))).)Z (n, )))))(P g(y) ~(I(} ~

3
( X ~/

x exp — n+ m, , Y(g(&'))

(2.19)

with

that this zero-mass limit of the theory exists, such
as in the study of high-energy fixed-angle hadronic
scattering processes.

C. Callan-Symanzik equations for broken-symmetry theory

What we have done in first renormalizing the
symmetric theory is what Lee refers to as an in-
termediate renormalization of the broken-symme-
try theory, "because when we pass to the broken-
symmetry situation, the theory is already made
finite by the symmetric theory's counterterms;
however, to complete the renormalization pl'ocess,
we have to fix propagator poles at the physical o
and m masses, and we get the conventional field
normalizations (which we do not worry about in our
discussion) by multiplying the fields, coupling con-
stant, and amplitudes by factors of finite ~z, and
v'z, , as in the following:

(2.20)

g ip ~ x

(O~~z, rl(x) m(P))=
2

(2.21)

So that as X-~, g gets driven to an ultraviolet
fixed point go for P(g, ) = 0, and P(&) - 0 as long as
y(go) & 2. And since the theory with (I') = 0 is the
massless theory, we conclude that as long as
2& y(g, ), the asymptotic behavior of the massive,
symmetric theory is without approximation that of
the massless, symmetric theory. We thus require

where II(x) is the pion field.
When we pass to the broken-symmetry theory de-

fined by Eqs. (2.1) and (2.6), we must use
5g=terms+ —,CP(a'+f') instead of 5Z=terms
--C2p(o' +'))Tbecause our theory now involves an
imaginary mass. Also, it is simpler to calculate
the amplitudes I'~"™i'in the s representation, and
the Lagrangian with its counterterms leading to
finite amplitudes is

&+ &2= ~~o&"o+ &„v s"v —2p'o' —~p'v'- (c'+%')1+A „1+A ~ „~ ~, 1, 2 gE0'

——(o'+ 7')' (o'+ v'—) +——P(o'+7') — (c'+ m') (v'+f')'—— (2.22)

where

(2.23)

owing to coupling-constant renormalizations inside P, and P, which are defined by Eq. (2.6b}.
The Callan-Symanzik equation for the broken-symmetry theory is easily derived by paralleling the deri-

vation for the symmetric theory. We get

(2.24)

where (())„@„andE are to be viewed as functions
of g, p, c, and M' as defined by Eq. (2.6b) [with
higher-order radiative corrections to relation (i)].

The only difference between the Callan-Symanzik
equations for the symmetry-broken and symmetry-
conserved theories is that the symmetry-broken
theory has an extra term y,cBI'"'"~)/Sc. But upon
closer scrutiny one realizes that y, (g) is calculated
from a symmetric-theory counterterm. Lee has

whereas for the fields we have

o,=~so. (2.26)

Hence extending the program leading up to the sym-

pointed out that the relationship between the renor-
malized c and the unrenormalized c, is"

1
co=~ c) (2.25)
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metric theory's Callan-Symanzik equation, we have

y, (g) =M ln —=-M lnZ=y(g),
2 BM

(2.27)

so that the broken-symmetry theory does not have
a new coefficient after all. The other coefficients,
P(g), y~(g), and y(g), have the same values as for
the symmetric theory.

I'"'0"O'=—F= (o), (in the u representation for the
theory} satisfies a homogeneous Callan-Symanzik
equation which is not quite the same as those for
the other amplitudes I'("™&'.To see this, note that
Eq. (2.24} for the other I'"'"«' is derived from the
following relationship between the renormalized
and unrenormalized amplitudes:

r(""&(P„g,y, M, c)

g (% &
« t«N «)/„2P(tl, m «)(P g y 6~2 /i c )

(2.28)

However, v and c, are related by Eq (2.26) so
that F = (o), and F,= (o,), are related by

F, =WZF. (2 .29)

Consequently, the same line of reasoning leading
to Eq. (2.24) when applied to F gives

8 8 ~ 8
+P(g) —+y (g)P —+y,(g)c —+y(g) F =0,

BM eg «' ep ' Bc

(2.30)

so that the last terms on the left-hand side of Eqs.
(2.24) and (2.30) differ by a minus sign. We can
further exploit Eq. (2.30). Remembering that in
the expressions for I'"' &' in the s representation,
E is not considered an independent parameter but
depends upon g, (t&, c, and M via its implicit equa-
tion [Eq. (2.6b), relation (i)] plus radiative correc-
tions, we can rewrite the Callan-Symanzik equa-
tions for I'"' ~' as follows:

8 „, 8 . 8 8 . 8I(" «& M +p(g) —+y (g)y —+y (g)c —FeF eM eg «ey ' (&c

8 8 A 8 p, 8
+ M +p(g) —+y,p —+y,(g)c —— n+ gm«y(g) I'n™) =0 (2 31)

(&M sg e(t&
' (&c = - «(«~

Then, upon defining

]. 8 8 m 8 ~ 8
yz = —M + P(g) —+ y«, (g)(t& —+ y, (g)c —F, (2.32)

Eq. (2.30}tells us

y~(g)= y(g)= -y.(g)- (2.33}

Hence, as long as 1'"'"«' depends upon c only through F, we can consider F an independent parameter and

rewrite Eq. (2.24) as follows:

8 8 . 8 . 8
M + p(g) —+y~(g)(t& +y~(g)F —— n+ p m«y(g) I'("'"«)(p/, g, (t&, M, F) =0, (2.34)

which is analogous to what Lee and Weisberger
found for the inhomogeneous Callan-Symanzik equa-
tions. ' Since more often than not it is more con-
venient to use the s representation in calculating
amplitudes, we find that Eq. (2.34) is the more
palatable form of the homogeneous Callan-Syman-
zik equations. Thus F enters the Callan-Symanzik
solutions as a momentum-dependent effective
mass parameter.

D. Asymptotic solutions

To study the asymptotic behavior of the broken-
symmetry theory, we write down the general solu-
tion to Eq. (2.34):

I'(" «&(Xp g y F M)

&
4 (w E «ym )Zl («nf m«)(P g(y) y(y) F(y)

&(exp — n+ g m«, y(g(&'))
i=1 1

(2.35}

~ —,~ g(~) = p(g(~)), g(1) =g

X —
&

P(A) = -[2 —y (g(A))]P(&), P(1) = (t& (2.36)

X —F(X) = —[1—y (g(X))]F(&(), F(l) =F.
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Had we been interested in how c behaves asymptot-
ically, we would have solved Eq. (2.24) giving

~
~~ c(~) =-[3—&.(gP))]c(~), o(I) =o (2 3'I)

From the above we see that, w'ithout approxima-
tion, the conditions for the broken-symmetry theo-
ry to approach the massless, symmetric theory
at asymptotic momenta, or ~-~, are as follows:

(i) P has a zero at g, so that g(&) -g„
(ii) j~(g,)&2 so that $(&)-0, and

(iii) yz(g, ) & 1 so that F(&)-0 .

In addition, conditions (ii) and (iii) in conjunction
with the implicit equation for E in terms of g, P,
c and M' [cf. Eq. (2.6b), relation (i) plus radiative
corrections] are sufficient to ensure that order
by order c(&)-0 as &-~; however, we also see
from Eq. (2.37) that o(&)-0 is ensured immediate-
ly to all orders if j,(g,) &3.

To conclude this section, we compare the two
quite different broken-symmetry theories Z' and

defined by

1+A 1+A ~ „1+C 2 ~, D, ~2 g+82'+Is'= — 8 os'o+ S 7r ~ 8"v a p(a'+n') ——(
'o+'v) — (o'+~m)'+co'=2 ~

'
2 ~

"
2

' '-2 -4. (2.38)

where the counterterms are still those from the
symmetric theory and 2 has no spontaneous sym-
metry breaking (but only explicit breaking of the
symmetry) since the mass is real and positive. In
light of the above discussion, we note that even
though for finite momenta the worlds described by
2' and g look quite different, they converge to
the same massless, symmetric theory in the as-
ymptotic limit.

III. VERIFICATION OF RESULTS TO TWO-LOOP ORDER

As mentioned earlier, to renormalize the sym-
metric theory we can use any of the two- and four-
particle amplitudes. To calculate the wave-func-
tion renormalization and the mass counterterms
we use the 0 propagator I',"'"""shown. in Eq.
(2.9). The diagrams contributing to Z, are shown
in Fig. 1. To calculate the coupling-constant coun-
terterm we use I",~"'""(P,), where the contribut-
ing diagrams are shown in Fig. 2. Subject to the
renormalization conditions shown in Eq. (2.10),
the counterterms to two-loop order are calculated
to be the following:

In this section we verify the results obtained in
Sec. II to two-loop order in perturbation theory.
We work to this order since for such scalar theo-
ries as we are dealing with, some underlying
features (such as anomalous field dimensions) do
not arise until two-loop order. Owing to limita-
tions in space in writing down the expressions and

diagrams of selected amplitudes, we give only the
one-loop-order terms. To see the calculations in
their full, rather lengthy two-loop-order detail,
we refer the reader to Ref. 14. Further, we have
checked in detail that all the appropriate one-,
two-, three-, and four-particle amplitudes of the
massive symmetric, massless symmetric, and
broken-symmetry theories indeed do satisfy their
respective Callan-Symanzik equations.

To regulate diagrams with no overlapping diver-
gences, we simply cut the momentum integrations
off at large A; however, for diagrams with over-
lapping divergences, we have to be a bit more
careful, so we use Pauli-pillars regularization
on each propagator via"

1 1
p —Q+EE p —A +26

2g' A8 =1+A =1 —
3(32~), ln I, ,

8=, ln —,—1

gA'
D — ~ +D~,

1+ ~\

Ig

-iCg

+
2

+ --X——
—iD

lg

+ two —loop —order contributions

(3.2)

[p' —xP —(1 —x)A'+ ie]' '~ ~
FIG. 1. Diagrams contributing to Z~. 0 lines are

dashed and pion lines are solid.



ASYMPTOTIC CHIRAL IN VARIANCE 2985

(4, 0,0,0)
(p;) =

P), /Py P( Pg

X ig 4 g iB
/

/ /
/ /

Pa Pa P2 Po

(&)
i

(i,j)

Pi

/ (3)/
Ig ;19 +

(i, j)

Pj Pj

+ two —loop-order contributions

F&G. 2. Diagrams contributing to 1" ' ' ' . ZI;; &
means to sum over the three pairs {p&,p2), (p&, p2), and (p, p ).

where it is not necessary to know D, -g' to this
order; D is defined so that we simply drop all
terms in F,2' ' ' which vary as A . Substituting
these counterterms into Eq. (2.16) yields the fol-
lowing coefficients of the Callan-Symanzik equa-
tions to two-loop order:

2g (3.3)

ig' 1VPfi (410~ OrO)(P P) tg+S 88
+ two-loop-order contributions.

(3.5)

Ne define the massive, symmetric theory for
the purpose of calculating eounterterms and Cal-
lan-Symanzik coefficients. And before investigat-
ing whether the broken-symmetry amplitudes re-
duce to the massless, symmetric amplitudes, we
first define the massless, symmetric theory as
that corresponding to the following Lagrangian
plus counterterms:

A A

A

——(o'+'lr') —
4 ( '

lo) )+, 2(3.6)

where the carets refer to the massless theory.
This time, since P =0, we do not need the counter-
term C nor the anomalous mass dimension y4(g)
[since it is the product Qy4(g) which occurs in the
Callan- Symanzik equations]. Further, we only
need the following three renormalization condi-

g 20g~
8~2 3(32m2)2

The finite 0 propagator for the symmetric theory
1s

M2
—iT""' ' ' =P' —4+ 1ii —+1)162

+ two-loop-order contributions, (3.4)

and the 0' vertex at p, =0 is

tions:

Sf(2~ OiOiO)

Zp
BP . p2~

= iP'+ two-loop-order contributions,

(3)
l~(4 0,0,0)(P ) ig g P h ~ 0

3(322 ) (; ~)
M2

(3 8)
+ two-loop-order contributions, '

Foi2io ~ 0)(p ) 0

where Z &&'J& means to sum over p», p», and p,4.
Equation (3.8) defines what we mean by amplitudes
of the massless, symmetric theory. The Callan-
Symanzik coefficients i)(g) and y(g) are the same as
given in Eq. (3.3).

Having obtained theneeessary counterterms to
two-loop order, we now pass to the broken-sym-
metry theor'y and first calculate the implicit equa-
tion for I'"'"010'-=E= (a)0. We prefer to work in
the u representation:

F: ———= ——x
1c

1

w I

l(9+8) x

+ 1

-i{9+

/r+ ---m —m
-i(g+B)

+ two-loop-order contributions

FIG. 3. Diagrams contributing to 5'. Summation over
all pairs of I' attachments onto closed loops is under-
stood to have been taken.

F(2101010)(P2 0) 0 (3.V)
AF(4i0'0'0)(p 2 = —M2) = —Zgfj

A A

where P;,.=—P;+PJ. The counterterms A, 8, and D
are just equal to A. , 8, and D, respectively, as
shown in Eq. (3.2). The finite amplitudes of great-
est interest are
f1(2i010iO)(P2) F(0121010)(P2)
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(p2) =--
0

+iCW

1+ ~~ ~)(» ~~ +
-iD

Ig -igF -- -igF -ig F

+ two —loop-order contributions

FIG. 4. Diagrams for -i Z, (p2).

2+ 62= 8 os~@+ &„v ' &"v+ 2[(1+C)Q -D](o'+v') — 4! ( o+ n')' c+o. (3.9)

The diagrams contributing to F are shown in Fig. 3, where it is understood that we have already summed
over all pairs of E attachments onto the closed loops. Equation (2.6b), relation (i) gets modified to

M2 M2
c+pdIi —,i+ —in +in +two-loop. -order contributionsI

16m 2

1 —,1+—ln + 3 ln + two-loop-order contributions = 0. (3.10)
gF~ g I M „M
3! 8v' 4

Next we calculate several of the most interesting amplitudes for the broken-symmetry theory. As men-
tioned earlier, it is easier to use the s representation of the Lagrangian which is shown in Eq. (2.22), with
the counterterms given in Eq. (3.2) and p,' and tft,

' defined by Eq. (2.23).
The diagrams for -iZ,(P'), -iZ, (p'), 1'""""(p&),1 'o'4" "(p,.), and I'""'0"'(p,) are given in Figs. 4-8,

respectively. The summations over all topologically inequivalent momentum labelings are indicated, with
the numbers above the summation signs indicating the number of such inequivalent labelings.

The finite amplitudes calculated from Figs. 4-8 are the following (where as before p, /- p,.+p,.):
M gdid M' E2 M' 1 M2

(i) -i I'"""'"(P')= P' —P, + ~', ln + 1 + ', ln + 1 + , ln —+—ln
32m Qp 32m p 32m p 3 (b

gpF2 I p2 g p2 t. / 3

dain ' 1 ——z(1-z) 1 ——z(i -g) +two-loop-order contributions;
327T ~o

(3.11)

—
i g~(pa) =

+!CQ
X

-iD

I I

-Ig
1+ -!gF~!gF

+ two —loo p order- contr ibutions

FIG. 5. Diagrams for -i Z, (P2).
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--i (4,0,0,0 )

(p; ) =
/

X ig + @-(B
/ / II

/ /
pp Pg Pg pg

p'
/'

+ 6 g -lg,~;Il
(I j)

Pj

Pi /
($)

+ -" g -)gg k-(g

/

Pj

r p,

(6) . &-igF
+ g -(g ~.-

(i, j) 4-IgF

Pj

PI
'-igF

g IgF

Pj

p -IgF -IgF pji

(p) p I

- IgF

+ 1

27

IQF pk

+ t wo - loop ordei-contributions
ik

pj -igF -igF p

FIG. 6. Diagrams for I' 0'0~0~(p&). Numbers in parentheses indicate the number of inequivalent momentum labelings.

M'
( 5g+ M' & 2+8' M'

(ii) -i&'""""(p')=p'—y, + ', ln +1 ~+
"', ln +1 ~+, ln

3(32)(') y. &
3(32~') y, & 9(32m')

dz n 1+ — +two-loop-order contributions;
(f p

(3.12)

(3) z - 2 2 ')I z/3-
(iii) I' '"(4" (po),) = ig -, -ln ', +sin ~', + dzln 1- " z(1-z) 1- " z(l-z)

~

y2 (6)

where

+ two-loop-order contributions, (3.13)

. ((' [(l+p,)'- p, (+i&][(/-p~)'- t, ()i+](le'- p, (+i&)

arising from the diagram shown in Fig. 9(a), and

(3.14)

, i 0 . "dl 1'
q l . vr' (2' @,+is)[(E+p-,)' @,+R][(L+-p, +p)'-y, +ei][(l-p„)'-@, +~i]

(3.15)

arising from the diagram shown in Fig. 9(b), with the superscripts denoting external lines, the subscripts
denoting internal lines, an& both the C's and D's being ultraviolet convergent;

(0 s 0 0) ~ iZ e
(3) (1 . 2 It p 2 11

(iv) I'"'"""(p,)=-ig-, ln ', +llln ', +-', ~ dzln 1- " z(l-z) ~
1 "z(l-z-)

where

2i+F2 (6) 2agE' ', i
9(32,) Q [ ~(P, ~Pq)+ ,'C'r(P, ~P,)] 31(-32~,)

QD'
(4,g) ((k)gl

+ two-loop-order contributions, (3.16)
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(0,4,0,0)
(P;}

Pp

Pz Pi

Pa Pa Pe

+ )8 (, )I, j

P)

(b)+-
(i,j)

Pj

P
I

~ -igF

~~ -igF

Pj

(6}+—
8)

(I k)

pi -igF -igF pk

4E JE

P -igF -igF P lj

+ two-loop order-contributions

FIG. 7. Diagrams for I' 0 4 0
(p )

m' (l' —p.+i~)[(l+p,)' —p, +is][(l-p,.)'-p, +i~] (3.1V)

arising from the diagram shown in Fig. 10(a), interchanging o and v on the internal lines gives C„and

"d4/ 1

j l ~ v' (l' y, +i&)[(l+p,.)' —p, +i@][(l+p,. +pq)' —p, +le][(l-p„)' —p, +i&]
~

~ ~ ~ ~ (3.18)

arising from the diagram shown in Fig. 10(b);

{),2, 0,0)
~P&

'
P& P&~

Pa

+ & —— -ig
18 p,

Pp.

Pp

+ ———-4 igFl
6

p 1

Pa

Pz

1+ 9 p

.,Wg

&~igF
P3

-Ig+ 27 P

Pa

+ two —loop- order contributions

FIG. 8. Diagrams for I' ' ' '
(p&, p2, p3).
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igF ig2F 7 (I), 51" '"'"""'~'f' f'-- 3 -3(32. ) 3'"M 3'"M:
il

p
2

p,
2 5/3

+ ' dzin 1 — ' z(1-z) 1 — ' z(1-z)
&0

E2 2 2/3x"' 1- g -~' z(1-z)
j=l ~ 2

&;(p„p3) —
27 32, G;(i)„p3)+ two-loop-order contributions, (3.19)

where the C's are defined above although here the superscripts do not refer to external lines.
We have checked explicitly that all the above amplitudes satisfy to two-loop order their respective Cal-

lan-Symanzik equations shown in Eq. (2.34) and hence must scale as shown in Eqs. (2.35) and (2.36) for as-
ymptotic momenta. Thus, we anticipate the summati. on to all orders in perturbation theory and assume
that p(g) has a zero at g, so that g(X) -g, as X-~. Also we assume that y0(g0) & 2 and yz(g0) & 1 so that
P(X)-0 and F(X)-0 as X-~. The result is that for asymptotic momenta, the amplitudes shown in Eqs.
(3.11)-(3.19) simplify to the following:

{ X~I I

(~) (ii) 1 (2 ~ 0 ~ 0 ~ 0)(){2p2) ~ Z {0 2 0 0) ($2p2) ~ ){2exp 2 y(g(){ ))
g» oo g» oo

x (ip +two-loop-order contributions), (3.20)
""Ch'

(iii), (iv) r(4 ""0)(){p,) ~ r "'"' (){{{),.) ~ exp 4, y(g(){ ))g» oo g» oo

42g 2 (3) p
2

-ig, — ', V' ln — (~ +two-loop-order contributions
3 32m') ~ M

(f,j)
(3.21)

(V) P(l 2 ~ 0 ~ 0)(){p ) 0 (3.22)

so that apart from overall scale factors we are
led to the massless, symmetric theory defined by
Eq. (3.8).

IV. CONCLUSION

We have made a field-theoretic application of the
homogeneous Callan-Symanzik equations to theo-

ries with chiral symmetry breaking, using the
SU(2) SU(2) v model as a prototype. General
conditions were derived under which such symme-
tries become exact for asymptotic momenta, and
these results were verified to two-loop order in
perturbation theory by (a) calculating counter-
terms and Callan-Symanzik coefficients from the

Pj
r

pi

W p, Pj

(0)

p
I

e.,
p k

P(

f+p;

p
~ J L J

E+p~+p
Pj

J ~

g+p +p.

(b)
FIG. 9. Diagrams corresponding to (a) Ct~ (p;, p ) and

(b) &2(]') )

FIG. 10. Diagrams corresponding to (a) C~ (p&, p,.) and

(b) gP(i k)
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symmetric theory, (b) demonstrating that these
are the only counterterms and independent coef-
ficients necessary for the broken-symmetry the-
ory, (c) checking that the one-, two , t-hree-, and
four-particle amplitudes satisfy their respective
homogeneous Callan-Symanzik equations, and
finally (d) showing explicitly that the asymptotic
energy realm looks like the massless, symmetric
theory.

The moral to be learned is that if the strongly
interacting particles are viewed as fundamental
fields, then at asymptotic momenta, all mass

parameters scale to zero; consequently, all sem-
blances of chiral symmetry breaking vanish. How-

ever, what happens to chiral symmetry breaking
for hadrons viewed as bound states is quite a dif-
ferent story, and we shall discuss this problem
in a subsequent paper.
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