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In this paper, we give a summary of our work on perturbative calculations of high-energy amplitudes in Yang-
Mills theory. Using the model of SU(2) with an isodoublet of Higgs bosons, we calculate the leading real part
and the leading imaginary part of the vector-meson —vector-meson scattering amplitude in the 2nd through
10th orders. We also calculate two sets of diagrams to all perturbative orders: the ladder diagrams and the
multi-meson-exchange diagrams. The leading terms of the amplitude of I = 1 (one unit of isospin exchanged)
come from the ladder diagrams only and are shown to add up to a. Regge-pole term corresponding to the
Reggeization of the vector meson. The above results are shown to generalize easily to other non-Abelian gauge
field theories. The extension to the process of fermion-fermion scattering is also straightforward, and we give a
proof that these amplitudes are asymptotically proportional to the corresponding ones in vector-meson —vector-
meson scattering. The 2nd- through 10th-order calculations show the following features: (i) All factors of lns
come from integration over longitudinal momenta. (ii) All divergent integrals over the transverse momenta
cancel. {This has been explicitly verified up to the 8th order only. ) The 2nd- through 10th-order results

suggest to us a recursion formula which determines to all perturbative orders the leading terms of the
scattering amplitudes. Summing up these leading terms, we found the following: (a) For the amplitude of I = 0
(no exchange of isospin), the sum of the leading terms exceeds the Froissart bound, representing a fixed
branch point at Jo = 1+ [{2ln2)/m']g' in the plane of the angular momentum. (b) For the amplitude of I = 2
(two units of isospin exchanged), the sum of leading terms at X = 0 has a branch point at J2 ——2a, (0) —1,

g where n, is the Regge trajectory on which the vector meson lies. (c) From (a) and (b) we have
oo & Jp & 1 & 0 1(0) & J,. The qualitative features of high-energy scattering in Yang-Mills theories are therefore
exactly the same as those in @ED. In particular, the violation of the Froissart bound by summing leading
terms in all these cases indicates the necessity of a calculational program to go beyond summing leading
terms.

I. INTRODUCTION

The study of scattering amplitudes in QED has
led to a physical picture for high-energy scatter-
ing. Some of the qualitative features are as fol-
lows:

(i) The leading terms of the e-e scattering
amplitude are given by the tower diagrams. They
are of the order of (e')(e'Ins)" and are imaginary,
with each factor of lns coming from the integration
over the phase space of the longitudinal momen-
tum of an e -e pair produced in the intermediate
state. This means that the energy dependence of
cross sections is a consequence of the creation of
pionization products.

(ii) The coefficients of (e')(e'Ins)" are in the
form of convergent integrals over the trans-
verse momenta and fractional longitudinal momen-
ta.

(iii) The sum of these leading terms exceeds
the Froissart bound, representing a fixed branch
cut at J = I+ Ilu'tr/32.

(iv) The photon pole does not Reggeize.
(v) The Froissart bound is restored by including

all multitower diagrams.
It may appear that (iii) and (iv) are related.

Specifically, the asymptotic amplitude of the dia-
gram involving the exchange of n photons is of

the order of s" " ' times logarithmic factors of
s, where o. is the singularity representing the
photon in the angular momentum plane. Because
of (iv), tt. for the photon is equal to unity, and the
one-tower amplitudes are therefore always pro-
portional to s multiplied by a factor of lns. Be-
cause of (i), the diagrams with n e+-e pairs
produced in the intermediate state yield an ampli-
tude s(lns)", violating the Forissart bound if n & 2.
(There is no cancellation among terms of different
n since all terms pt t = 0, since they are related
to the cross section of n-pair creation, are posi-
tive. )

Recently, Yang-Mills theories have gained in-
creasing promise as a model for strong interac-
tions. It is therefore of interest to study the be-
havior of high-energy amplitudes in this theory.
At first sight, these theories are as complicated
as they are rich. Take, for example, the model
of SU(2) theory with an isospin- —', Higgs boson. '
There are, in addition to the vector meson'W,
many particles in this theory: an isoscalar meson
Z, a triplet of Higgs ghosts, and a triplet of Fad-
dev-Popov ghosts. These particles interact and
there are many kinds of vertices, making pertur-
bative calculations very lengthy. Aside from such
technical complications, there is difficulty at a
more qualitative level. The vector meson has
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spin 1.. Thus all diagrams involving the exchange
of vector mesons give an amplitude of the order
of s multiplied by factors of lns in the high-energy
limit. On the other hand, since the vector meson
carries isospin, exchange of isospin can take
place in a scattering process. Now in the high-
energy limit, the amplitudes involving exchange
of isospin should be much smaller than s. Thus
we require spectacular cancellations among the
s(lns)" terms for amplitudes with isospin exchange.

The resolution of this difficulty was provided
by Grisaru, Schnitzer, and Tsao. s They found
evidence that the vector meson Reggeizes into a
moving trajectory. Our perturbative calculations
confirm their finding. Specifically, we find that
all the leading terms, of the order of g's(g'lns)",
are real and are of I =1 (one unit of isospin ex-
changed). These leading terms cancel one another
and add up to a Regge pole s ~ ' with o.,(t) &1 for
I;& 0.

What is the consequence of this Reggeization for
the amplitudes of I = 0 or I= 2'? The amplitude of
the counterpart of a tower diagram is not reduced
to s'"1 ' ' times a factor of lns, which is always
smaller than s as n, (0) & 1, and does not violate
the Froissart bound. One may hope, therefore,
that the sum of the leading terms no longer violates
the Froissart bound.

This hope is not realized. In essence, what
happens is that, as we sum over the perturbative
orders for the amplitude of I = 0 (no exchange of
isospin), the logarithmic factors are summed
into a positive power of s. This power more
than compensates for the Reggeization of the vec-
tor meson, and is contributed by the phase-space
region of very large transverse momenta. This
conclusion is in agreement with Fadin, Kuraev,
and Lipatov, 4 who used an entirely different ap-
proach. We also find that for a process of ex-
change of two units of isospin the logarithmic fac-
tors are summed into a negative power, giving an
amplitude of the order of s'"& ' ' at 3 = 0 (logarith-
mic factors of s not included). This means that
extensive cancellations among the leading terms
of the I= 2 amplitude occur.

The most important conclusion that comes out of
this study appears to be that summing leading
terms always violates s-channel unitarity, in Yang-
Mills theories as well as in QED. Indeed, the vac-
uum singularity in the angular momentum plane
in both theories is a fixed (not moving as t varies)
branch point to the right of J =1:

2 ln2J=1+, -g' in Yang-Mills theorym'

This indicates a need to extend the method of
summing leading terms. We have found such an
extension which will be discussed in a different
paper.

Since the calculations are quite complicated, we
shall restrict ourselves, in this paper, to a pres-
entation and a discussion of the results only. The
details of calculations will be given in the second
paper of this series.

II. PERTURBATIVE CALCULATIONS

In this section, we give a summary of the re-
sults of perturbative calculations. In order to be
specific, we shall deal with the SU(2) Yang-Mills
theory with an isospin- —, Higgs boson. (The Higgs
mechanism is invoked so that the vector mesons
become massive —hence the complication of infra-
red divergence is avoided. ) Extension to SU(n) is
trivial, as manipulations of the isospin factors
involve mainly the application of Jacobi's identity
and the triangle contraction, which hold for SU(n)
as well as SU(2). A brief discussion of this ex-
tension will be given in Appendix A.

In the approximation of summing leading terms,
the helicities of the incident particles, measured
in the c.m. system, are unchanged throughout the
scattering process. We shall therefore address
ourselves to the amplitude of non-helicity-flip
only. For W-W scattering, we express the non-
helicity-flip amplitude as

It~~ = [—,'5„85 |Q,+ 2(6„Os' —5 s58 )t",

+ a(&a, ~8s+ ~ns&8, --3I)ns &,s)G21 .
In (1), n, P, y, and 5 are the isospin indices of
the vector meson W as illustrated in Fig. 1. The
invariant amplitude t"„is chosen so that it repre-
sents the scattering process with the exchange of
n units of isospin between particle 1 and particle

We shall call it the amplitude of I =n. The
projection operator of the isospin is properly
normalized. There are three independent ampli-

11' 2 .= 1+ o.' in QED. FIG. 1. Schematic diagram of the elastic scattering
process.
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By (1), this invariance leads to

G„(s, t, u) = (-1)"G„(u, t, s) . (2)

In other words, under the transformation s —u,
G, and G, do not change, while G, changes sign.

It follows from (2) that in any given perturba-
tive. order the imaginary parts of the leading terms
of G, and G, are of a factor lns larger than their
real parts. Indeed, under the transformation
s —u, we have, in the limit s-~,

s -s, ln(se ' ) —lns. (3)

Thus, from (2) and (3) the leading terms of G, and

G, in the (2n+ 2)th order are proportional to

(n —1)7[
a[in"s —In"(se ")j-san i ln" 's + ln" 's ,2

which means that the imaginary part dominates
over the real part by a factor 1ns. Similarly,
the leading term of G, in the (2n+ 2)th order is
proportional to

nz7rs[ls"s+ls'(ss '"]]-2s ls"s — ls" 's),
which says that the real part of the leading term
of G, is larger than its imaginary part by a factor
lns.

' The non-helicity-flip amplitude for fermion-
fermion scattering is written as

3tl~q=2 'm '(E, ~[2] ~ 7'E,), (6)

where m is the mass of the fermion and T ' are
the Pauli matrices (for isospin) of the fermion.
The amplitude %ff involves I'

p and +y correspond-
ing to I= 0 and I = 1, respectively, because the
fermion is an isodoublet. The leading terms of
E, (E,) in all perturbation orders are equal to
those of, G, (G,) multiplied by a constant. These
constants of proportionality are given explicitly
by (19) and (20) below. A proof of this proportion-
ality is given in Appendix A.

tudes in (1) because a vector meson is of I =1, and
particles 1 and 1' can form a state of I = 0, 1, or
2 in the t channel.

The amplitude K~~ is invariant under the trans-
formation of particle 1—particle 1', or, more
explicitly

Q ~Ps 8u.
FIG. 2. The one-meson-exchange diagram for S'-W

scattering —the only 2nd-order diagram contributing to
the leading terms. For fermion-fermion scattering, the
two horizontal lines should be replaced by fermion lines.

is the one illustrated in Fig. 2. It gives

y (2) 1G (2) 2 2s
2 2 2 g2 y2 (7)

y (2) G (2) G (2) 0 (8)

In the above, & is the mass of W and 6' = -t is the
momentum transfer squared. The superscripts
denote the perturbative order. Equation (7) repre-
sents the contribution of the W pole. Since the
vector meson is of E=1, the diagram in Fig. 1
does not contribute to E„G„and G,. Note that
the amplitude in (7) is proportional to s has a
pole at t=~', attesting to the fact that the vector
meson is of J = 1 and is a physical particle.

The equations above for the G functions hold

only if both incident W mesons are of transverse
polarization. If one or both of the incident W

mesons are of longitudinal polarization (of helicity
zero) the calculations are slightly more compli-
cated as there is more than one contributing dia-
gram in the Feynman gauge used throughout our
calculations. The result, however, is simple:
For each of such W mesons, a factor of ~ should
be multiplied by the expressions for G. In fact,
this is true for not only the leading terms of the
2nd order, but also those of arbitrary orders.
With this understanding, we shall, from now on,
address ourselves to W mesons of transverse
polarizations only.

B. 4th order

In the 4th order, there are two diagrams con-
tributing to the g4s lns terms of the scattering
amplitude. They are the box diagram and the
crossed box diagram illustrated in Fig. 3. The

A. 2nd order

The 2nd-order amplitude is simple. Let us
first assume that the helicities of the incoming
vector mesons are either +1 or -1 (transverse
polarization). Then the only contributing diagram

(a) (b)
FIG. 3. The two-Ineson-exchange diagrams —the only

4th-order diagrams contributing to the leading terms.
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calculation of the amplitude corresponding to the
crossed box diagram of Fig. 3(b) is straightfor-
ward. Aside from the isospin factors, it is

2g's Ins i(Z), (9

where

(10)

FIG. 4. The relation between the I-spin factors asso-
ciated with three Feynman diagrams. The relation is a
result of the Jacobi identity, and is true for any gauge
theory of SU(n).

ReE" -—'ReG"
1 2 1

2 2s
, [-Insg'(ZP+ &')I (Z)] . (12)

As before, the superscripts in (12) denote the
perturbative orders. The imaginary parts of E,'
and G ~4' are related to their real parts by (5).
It is interesting to observe from (12) and (7) that
the 2nd-order and the 4th-order amplitudes of
I=1 alternate in sign. We shall see that, upon
summing over all perturbative orders, the leading
terms of Ey and Gy form a Regge-pole term. This
Regge pole is located to the left of J =1 because
of this alternation in sign.

As is seen from (9) and (11), the imaginary
parts of the scattering amplitudes come from

We note that, because the crossed box diagram
has no unitarity cuts in the s channel, (9) is real.
The contribution of the box diagram illustrated in
Fig. 3(a) is obtained from (9) by setting s- -s,
l.e r

-2g's ln(-s) I(Z),

where, according to (3), ln(-s) is interpreted as
ln(se '"). We note that the imaginary part of (11)
is positive, as it should be. Note also that the
real part of (11), of the order of g'sins, is equal
to the negative of (9), while the imaginary part
of (11), of the order of g's, is smaller than the
real part by a factor of lns.

Unlike the case in @ED, we do not add the ampli-
tudes (9) and (11) together. This is because there
are, in addition, isospin factors associated with
the amplitudes. As far as the real part of the
scattering amplitude is concerned, this is rela-
tively easy to take care of. Since the real parts
in (9) and (11) are equal and opposite, the sum of
the real parts of the scattering amplitude is equal
to the real parts of (11) times the difference of
the isospin factors associated with Fig. 3(a) and
Fig. 3(b). Because of Jacobi's identity, this dif-
ference is equal to the isospin fact of another
diagram, which, in turn, is equal to the isospin
factor associated with Fig. 2. This is schematic-
ally illustrated in Fig. 4 and Fig. 5. Thus we ob-
tain the leading terms for the real pari of the scat-
tering amplitude to be

diagram 3(a) only, and are of the order of s. After
calculating the isospin factor of diagram 3(a), we
can obtain the imaginary parts of E,', E,
G,4, and G,' . Although these expressions are
reasonabjy simple, we shall not give them here.
Instead, we shall list all of the 4th-through 10th-
order results in Sec. IIE.

Finally, we mention that there are other 4th-
order diagrams, but they do not contribute to the
leading terms of either the real parts or the im-
aginary parts of the amplitudes.

C. 6th order

For 8'-8' scattering, there are 19 6th-order
diagrams which contribute to the leading terms of
sg'(g' lns)' and isg'(g' lns). Six of them are illu-
strated in Fig. 6. All other diagrams can be ob-
tained from these six diagrams either by making
reflections with respect to a vertical line or a
horizontal line passing through the center of the
diagram, or by interchanging particle 1 with
particle 1' (see Fig. 1 for notation. ) We therefore
need to calculate only the six diagrams in Fig. 6.
The diagrams related to them by vertical or hori-
zontal reflections give identical amplitudes. Thus
we can take care of these related diagrams by
multiplying the number of such diagrams by the
amplitudes of the corresponding diagrams in Fig.
6. The diagrams related to the diagrams in Fig. 6

by interchanging particle 1 with particle 1' can
also be taken care of easily, as will be discussed
later in this subsection.

There are two technical complications in 6th-
order calculations:

(i) Individual diagrams can give amplitudes as
large as s'. Specifically, diagrams 6(a) and 6(f),
and the diagrams obtained from 6(a) by particle
1 particle 1', contain s' terms individually.

FIG. 5. The relation (triangle contraction) between
the I-spin factors associated with two Feynman diagrams.
This relation can be made to hold for SU(n) by appro-
priate definition of the coupling constant.
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(b) {c)

However, these s' terms cancel as they are sum-
med. We observe that diagram 6(f) is obtained
from diagram 6(a) by fusing the middle rung. As
a general rhle, s' term~ancel as we add the
fused diagram to the original one. It is therefore
simpler if we first add the amplitudes of the fused
diagrams to those of the original diagram, before
we make asymptotic calculations. It is to be noted
that there are three original diagrams which lead
to the same fused diagram, corresponding to the
three ways for a four-particle vertex to become

'I

[g' ln(se '")j'
4 (-)„

[g'ln(se ")]' (g'ins)'
( ( ) )

(-~') I'(~)

(d) (e) (~)

FIG 6. Examples of contributing sixth-order diagrams.
The wavy line in (e) denotes the scalar meson Z which
is an isoscalar.

"unfused. " The Feynman rule for a four-particle
vertex also contains three terms and we should
associate each of these terms with the correspond-
ing original diagrams. This is discussed more
fully in Appendix B.

(ii) After eliminating the s' terms as described
above, the diagrams in Fig. 6 give leading terms
of the order of g's(g'ins)' and ig's(g'1ns). The co-
efficients of these terms are expressed in terms
of integrals over the transverse momenta. Many
of these integrals are divergent. However, as
we add up the contributions from all diagrams of
the 6tI' order, ali divergent integrals cancel one
another and the resulting expression is convergent.
This cancellation occurs in all channels (I= 0, 1,2).
Indeed, it occurs for other gauge field theories
and is a consequence of Jacobi's identity. This is
explicitly demonstrated in Appendix A.

We list the results below. The amplitude of
diagram 6(a) plus the corresponding contribution
of 6(f) is

g's, [(3+'+ 2Z') I'(Z) -4I(Z)K] .

(13a)
Diagrams 6(b), 6(c), and 6(d), and 6(e), together
with the diagrams obtained from them by hori-
zontal or vertical reflections, give the amplitudes
(13b)-(13e), respectively:

(13b)

(13d)

[g' ln(se '")]' (g' lns)'
4

', = d.'q, ~ (13e)

(2m)'(j~'+ A.') '

We observe that

(14)

In the above, I(Z) is the integral given by (10) and
K is a logarithmically divergent integral given by

Under this interchange, we see from (3) that (13c)
and (13e) do not change. Together with the factor
(-l)~ from the transformation ot —P, we see that,
after adding the contributions of diagrams of par-
ticle 1 particle 1', (13c) and (13e) become pro-
portional to

in'(se ' ) —ln's= -2in lns —s'. 1+( 1)', (16)

Thus the amplitudes given in (13c) and (13e) are
actually of the order of ig's lns, and are imagi-
nary. The reason we choose to write these equa-
tions in the present form is that this makes it easy
to deduce from (13a)—(13e) the asymptotic ampli-
tudes for diagrams obtained from those in Fig. 6
by the transformation of particle 1 particle 1'.

which vanishes for I=1, while (13a), (13b), and
(13d) become proportional to

s [in'(se ') —(-1)~ln's] . (17)

We shall present the calculation of the 6th-order
amplitude in Appendix 8 and shall list the final re-
sult' in subsection E. Here we shall only empha-
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size the following points:
(i) The divergent integral K appears for dia-

grams 6(a), 6(b), and 6(c) (and the diagrams ob-
tained from them by reflections or by particle
1-particle 1'). Since the isospin factors of these
three diagrams are related by Jaeobi's identity,
it is easy to prove that in the sum of all 6th-order
diagrams, the divergent integrals K cancel. In
fact, this cancellation occurs for all gauge groups.

(ii) It is of interest to observe that there are two
kinds of diagrams: the ones which contribute both
convergent integrals and divergent integrals to the
coefficients of g's(g' lns)' and ig's(g' lns), and the
ones which contribute only divergent integrals. '
Diagrams 6(b) and 6(c) are of the second kind, and
their contribution to the amplitude is merely to
cancel out the divergent integrals from the other
diagrams.

(iii) Because of (16), the diagrams of the first
kind which contribute to the amplitude of I=1 are
ladder diagrams. The leading terms for the ampli-
tudes of I=O and I=2 come from a larger set of
diagrams and are of the order of ig's(g'lns).

D. 8th order

The qualitative features of the 6th-order ampli-
tude discussed above are believed to be present for
amplitudes of arbitrary orders. We have explicitly

verified this for the 8th-order amplitude. '
There are 34 independent diagrams which contri-

bute to the leading terms of the 8th-order ampli-
tude. They are illustrated in Fig. 7. To these di-
agrams we must add their horizontal and vertical
mirror images, the diagrams obtained from them
by making the transformation of particle 1 par-
ticle 1', and the diagrams obtained from all of the
aforementioned by fusing internal lines, or re-
placing one or more internal lines by lines of Z
mesons or Faddev-Popov and Higgs ghosts.

Even listing the leading terms from each of the
diagrams is too lengthy to do here. We shall
therefore refer the reader who is interested in the
details of calculations to paper II of this series.
The final result is simple, and is listed in sub-
section E. Here we shall be content with the fol-
lowing remarks:

(i) Up to the 8th order, the amplitude of 1= 1
Reggeizes. We shall show in Sec. IIF that this is
true to all perturbative orders.

(ii) In the final result, ~ly the following combi-
nations of 4' and A.

' appear:

(3'+—'X ) (3'+ X') and (b'+ 2X'). (18)

Furthermore, the first and the last combinations
appear exclusively in the. amplitudes of I= 0 and
I= 2, respectively.

(iii) All divergent integrals over the transverse
momenta cancel.

(iv) Qf the 34 diagrams illustrated in Fig. 7, only
the first five are of the first kind and contribute
convergent integrals to the coefficients of
g's(g'lns)' and ig's(g' lns)'. Since the separation
of convergent integrals from divergent integrals
is well defined, ' a much quicker way to obtain the
final result is to calculate only these five dia-
grams, and extract the convergent integrals from
them. Since we are unable to prove as yet that the
divergent integrals cancel in all perturbative or-
ders, we do not claim that this method is mathe-
matically rigorous. However, we will have to re-
sort to it for the calculation of the 10th-order am-
plitude, which is much too difficult to handle other-
wise.

E. 10th order

FIG. 7. The independent diagrams which contribute
to the 8th-order amplitude.

As mentioned above, we shall assume that in the
10th order all divergent integrals over the trans-
verse momenta cancel. Thus we shall calculate
only those diagrams which contribute convergent
integrals to the coefficients of g's(g'lns)4 and
ig's(g' lns)'.

It is corivenient to represent these multiple in-
tegrals over the transverse momenta by diagrams
which we shall call transverse-momentum dia-
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grams. These diagrams bave vertices arranged in
different vertical positions. There are hvo exter-
nal lines above the highest vertex (representing
particles 1 and 1') and two external lines below the
lowest vertex (representing particles 2 and 2').
We shall call the lines converging on a vertex
from below (above) as incoming (outgoing) lines,
and the sum of momenta carried by the incoming
lines the total momentum of the vertex. The total
momenta of the highest or the lowest vertex are
always 4. The rules for obtaining the integral cor-

.responding to such a diagram are as follows:
(a) For each of the internal lines of these dia-

grams, there is a propagation factor ~(q '+ X~) ',
where q, is the transverse momentum carried by
the line.

(b) At each vertex, the transverse momentum is
conserved, with the phase-space factor d'q~/(2v)'.

(c) For each horizontal bar on a vertex, there is
a factor (p~'+ X'), where p, is the total momentum
flow of the vertex.

We give a simple example: The integral I(h), d
defined by (10), is represented by the transverse-
momentum diagram in Fig. 8.

We give in Table I a list of the transverse-mo-
mentum diagrams appearing in the 10th-order cal-
culations. At the right of each of these diagrams,
we list the independent Feynman diagrams which
contribute to it. It is understood that all Feynman
diagrams related to the ones in Table I by horizon-
tal or vertical reflections, by making the trans-
formation of particle 1 particle 1', by fusing one
or more internal lines, or by replacing one or
more internal lines by lines of Z mesons or Fad-
deev-Popov ghosts alsobe taken into account. The
only exception is the last diagram in row 7 of Ta-
ble I. Among the Feynman diagrams of this kind,
the only contributing diagram is the one listed
(the line joining the cross represents a Z meson. )

We give the summary of the 4th- through 10th-
order results in Table II. Only Go and G, are
listed. The 2nd- through 10th-order leading terms
for the amplitude G, (or E,) form the first five
terms, of the- perturbation expansion of a Regge-
pole term which will be given in the next subsec-
tion. The asymptotic forms for the functions EI
and GI are always related by a constant multiple.
Specifically,

FIG. 8. The transverse-momentum diagram repre-
senting the integral I{6)defined by {6).

TABLE I, A list of transverse-momentum diagrams
appearing in the 10th-order amplitude. At the right of
each of these diagrams are the independent Feynman
diagrams which contribute to it. All vertices in the
Feynman diagrams are three-line vertices.

Transverse
m ornenturn

6 lagl ONS
Feynman diagrams

I

l !

grams in Table I represent fermions.
(ii) For W-W scattering, the top and the bottom

lines in the Feynman diagrams in Table I repre-
sent vector mesons. In this case, two of the dia-
grams in Table I may be topologically equivalent.
For example, the second and the fourth Feynman
diagrams in the last row of Table I become the
same after redrawing. This is illustrated in Fig.
9 (more examples are given in Fig. 10). However,
in our calculations of asymptotic terms, we may
treat them as distinct ones provided that we always
assign the large incident momenta to pass through
the top and the bottom lines.

(iii) There are other Feynman diagrams which
contribute to the fourth row of Table I, with the
sum of their contribution equal to zero. There are
also transverse-momentum diagrams which appear
in the leading terms of individual Feynman dia-
grams but do not appear in the final answer. (The
sum of the contribution from these Feynman dia-

(19)

1P —G

We conclude this subsection with the following
remarks:

(i) For fermion-fermion scattering, the top and
the bottom horizontal lines in the Feynman dia-

XX
i
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TABLE II. A summary of the 2nd- through 10th-order amplitudes. In this table, a = 2Q + z X and & =& + 2& .
vertice:a in the Feynman diagrams are three-line vertices.

in g4s

——aGI

8 p bG2
I

2
im gas fns a -2a $ b —4b

2

{Zns)
l7Tg S

~0 (Zns)
I Wag S

3l

+4a -zaa -ra
III

2

a —6a +4a +4

24. -4. |p-s.
III

-4.
I

+6a + 2a

b -8b + Sb +Sb

b —
l 2 b + l 6b + l6

+t6b —SbcI) —161$ -81I'2

-24b -8b

grams vanishes. ) All of them are listed in Table
III.

F. The ladder diagrams and the amplitude of I= 1

We shall give, in this subsection, the sum of
leading terms of the scattering amplitudes given by
the ladder diagrams. As in the 10th-order calcu-
lation, we shall extract from these diagrams only
the convergent integrals for the coefficients of
gms(gm lns)" and ig s(g~lns)" '. After we have cal-
culated all of these leading terms, we sum them
over n.

For the amplitudes of I=1, the result is
44S0GI l6FL g (] + s lit'N0)

0 3 0 ~2 5~2 (23)

this Regge trajectory is negative. This is a conse-
quence of crossing symmetry, as was discussed in
Sec. I [see Eq. (2)].

The ladder diagrams are the only diagrams which
contribute convergent integrals to the coefficients
of the leading terms of F, and G, . Thus (21) gives
the complete answer for the leading terms of I",
and 6, to all perturbative orders.

It is also possible to calculate the contribution
of the ladder diagrams to the convergent part of
the leading terms of G0, E„and G2. We get

2
2G s ~(1 —e" ~) (21)

where

n, =1-g'(a'+ x2) f(Z) (22)

with I(Z) given by (10). In the physical region of
s-channel scatters. ng, 0.,&1. We also note from
(22) that, at f=X2, we have n, =1. Furthermore,
from (21) we see that F, and G, have poles at f = A.'.
Thus (21) represents the contribution of the Reg-
geized R' meson. Note also that the signature of

Trans verse
momentum

diag rolYls
Feynmon diagrams

M "'XX

TABLE III ~ A list of transverse-momentum diagrams
together with, at the right of each of them, the Feynman
diagrams which contribute to them with the sum of con-
tributions equal to zero. All vertices in the Feynman
diagrams are three-line vertices.

3 4 5 6

M

XX

X l.

X

FIG. 9. An example of two equivalent diagrams for
W-8" scattering. All vertices are three-line vertices.
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2GL P se2(1+ &-fsaa)
2 Q2 2'

where

no= 1 -g (2ZP+ ~X )I(d)

(24)

n, = 1+ g '(n, '+ 2A.') I(h), (26)

G. The multi-8'-exchange amplitudes

We define the n-8'-exchange diagrams to be the
diagrams in which n W mesons are emitted by one
of the incident particles and all of them are ab-
sorbed-by the other incident particle. They are
unambiguously defined for fermion-fermion scat-
tering. Some examples of 5-W'-exchange diagrams
for fermion-fermion'scattering can be found in the
fourth row of Table I, with the top and the bottom
horizontal lines representing the fermions. For
W-8" scattering at high energies, we calculate the
same diagrams with the restriction that the large

with I(n) given by (10). Unlike (21), (23), snd (24)
do not include all of the leading terms of the ampli-
tudes G„E„and G, . This is because the ladder
diagrams are not the only diagrams which contri-
bute to the 1.eading terms of these amplitudes.
Thus we use superscripts (I for ladder) for the
amplitudes in (23) and (24) to distinguish them
from the complete answer.

It is noted that in the physical region of s-chan-
nel scattering

e2&ao.

This is contrary to what we expect. However, as
we have mentioned, (23) and (24) are not the com-
plete answer. We shall see in Sec. IH that as the
contribution of all other diagrams is included the
situation is reversed. This is a demonstration of
the kind of erroneous conclusion one can reach if
one selects a particular set of diagrams as a mod-
el for high-energy scattering.

I, -I~+I, -I~, (28)

where I, is the isospin factor associated with dia-
gram 11(a), and similarly for I~, I„and I„. The
isospin factor in (28) can be easily calculated in a
diagrammatic way by the use of Jacobi's identity.
This is illustrated in Fig. 13.

The contributing diagrams of 5-W exchange can
be obtained from the diagrams in Fig. 11 in the
following way. For diagram 11(a), find the line
representing the first meson emitted by the inci-
dent particle 2, which is the one joining vertex 5
and vertex 2. Assign a new vertex on the top hor-
izontal line adjacent to vertex 2 (either at the right
or at the left) and draw a line all the way to the
right joining it with particle 2'. The resulting dia-
grams are contributing 5-S'-exchange diagrams.
This is illustrated in Fig. 14. Do this for all other
diagrams in Fig. 11, and make reQections of all of
the resulting diagrams with respect to a vertical
line passing through the center of the diagram. We
get all contributing 5-8'-exchange diagrams. More
generally, we can obtain the contributing (n+ 1)-W-
exchange diagrams from the contributing n-8'-ex-
change diagrams in the same way.

incident momenta go through the top and the bot-
tom lines. ' This set of diagrams is the counter'-
part of the set of multi-photon-exchange diagrams
in QED, and has the characteristic of being the
only set whose individual diagrams do not yield
divergent transverse-momentum integrals.

It is best to begin the discussion with the 8th-
order multi-8"-exchange amplitudes. In this or-
der, there are four contributing diagrams, which
are illustrated in Fig. 11. Aside from the isospin
factors, the amplitudes from these four diagrams
are all proportional to

~s
(-4) [in~s —in~(se ")]x (integral of Fig. 12)4t

(2V)

with the ratio of 1:-1:1:-1. Thus the sum of
these four amplitudes is equal to (2V) times the
isospin factor

FIG. 10. More examples of equivalent diagrams for W-W scattering. All vertices are three-line vertices.
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I 2 3 4
particle I particie I

particle particle 2'

5 6 7 8

(a) (b)

FIG. 12. The transverse-momentum diagram for
4-W exchange.

infinity to zero. Thus (29) gives a Regge singular-
ity at 8= ~. Indeed, the integral in (29) is diver-
gent if

(c) (cI)

FIG. 11. The contributing 4-8'-exchange diagrams.

The sum of 5-8'-exchange amplitudes is propor-
tional to a transverse-momentum integral repre-
sented by the transverse-momentum diagram in
the fourth row of Table I, with the isospin factor
represented by the diagram illustrated in Fig. 15.
For the next higher order we simply add to the
transverse-momentum diagram a line joining the
vertex at the top and the vertex at the bottom and
to the isospin diagram in Fig. 15 a horizontal rung.

Summing the n-W-exchange amplitudes over n
for W-5' scattering, we get, for I= 0 in the I; chan-
nel,

Again, the amplitudes of 2-8' exchange and 3-8'
exchange are the only ones not correctly incorpo-
rated in (30).

We note that the exponent of s in (29) is a func-
tion of the impact parameter x,. As ix i

ranges
from zero to infinity, this exponent ranges from

g&$ d&/ e ~~ &llf (ylx l)s&+~2~ &&0&&NJ~ &

'1r J.

(29)

For n —4 the amplitude of n-8' exchange is equal
to the term proportional to g'" in (29). However,
the amplitudes of 2-8' exchange and 3-W exchange
are not correctly given by the g and g' terms in
(29).

For the multi-W-exchange amplitude of I= 2, we
have

4 — 4s d2x 8 i~ %&K (A. ix i)s (g /cP Eo(x8il)
p

(30)

As we shall see, the amplitude of I=0 in the t
channel has a branch point at

2 lnJ=1+ 2 g2

not at J= ~, when all leading terms are taken into
account. The result of summing the multi-8'-ex-
change diagrams is again misleading.

It is trivial to obtain the multi-W amplitude for
fermion-fermion scattering, or for the gauge the-
ory of SU(n). This is because the diagrammatic
representation of the isospin factor, such as the
one given in Fig. 15 for 5-W exchange, is derived
by applying Jacobi's identity, and therefore holds
for all the cases mentioned above. Thus, for any
such extension, all we need to do is to calculate
algebraically the isospin factor represented by
these diagrams for the case under consideration.

III. LEADING TERMS TO ALL PERTURBATIVE ORDERS

In Table II, we have given the leading terms of
the scattering amplitudes of I =0 and I =2 in the
4th through 10th orders. In this section, we shall
use these results to deduce a recursion formula
satisfied by the leading terms of consecutive orders
of these amplitudes. More precisely, we shall
use part of the 4th through-10th-order results to
establish the recursion formula. The rest of the
results serve as consistency checks.

A. Separable diagrams and factorization

We first note from Table II that there are two

kinds of transverse-momentum diagrams: separa-
ble ones and nonseparable ones. A separable dia-
gram is one which can be separated into two de-
tached diagrams by cutting one of its vertices. All
other transverse-momentum diagrams are non-

FIG. 13. Diagrammatic calculation of the isospin factor of (28}. Each diagram here represents the isospin factor
associated with it.
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separable. We list all nonseparable transverse
diagrams of 4th through 10th order in Fig. 16.

We next observe that the coefficient associated
with a separable transverse-momentum diagram
is factorized into a product of the coefficients
associated with its nonseparable parts. For exam-
ple, consider -8aGp in Table II. The coefficient
associated with the two-line bubble in the second
row of Table II is (-a), while the coefficient asso-
ciated with a series of n two-line bubbles is (-a}",
where m=2, 3, or 4. As another example, the
coefficient associated with a three-line bubble (the
2nd diagram in the third row of Table II) is (-2a),
while the coefficient associated with a series of
two three-line bubbles (the 3rd diagram in the fifth
row of Table II} is (—2a)'. In using this rule of
factorization, we must remember that a separable
transverse-momentum diagram can be constructed
from its nonseparable parts in various ways. An
example is given in Fig. IV. Thus the coefficient
associated with the transverse-momentum diagram
in Fig. I V is

2(-a)(-2a) =4a'.

Because of factorization, the leading terms are
completely determined if the coefficients asso-
ciated with the nonseparable transverse-momentum
diagrams are known. Furthermore, the asymptotic
form of the scattering amplitude is simply ex-
pressed in terms of these coefficients. Let us set
the asymptotic form of G~(s, n. '}as

(g'].ns "
G, (s n, ') =b,i vg's g '

A. "'(6') (3la)
n=p

where

4 2
(31b)Z'+4k. ' a +2k.

then A„'I'(6') is the leading term of order 2(n+2)
listed in Table II. As we can see from Table II,
4„"'(b.'}contains terms represented by separable
diagrams as well as terms represented by non-
separable diagrams. Let us further designate the
sum of the latter as a„'I'(n, ').

For the purpose of relating the asymptotic form
of the scattering amplitude in terms of a„'I'(b, '), it
is somewhat earier to deal with the Mellin trans-

form of (31). We set

G~($ &'}—= dss ' ~G, (s, h'}
1

It is obvious that if

Gz(s, 6') -s
then G, (),n') has a pole at

& =(~-1).

(32}

More generally, the asymptotic form of GI(s, n, ')
can be easily deduced from the location and the
nature of the singularity of GI in the complex $

plane. From (31) and (32) we have

n+y

Gz($, n, ') -bzivgmg A&r&(~a) (33)

By making use of factorization, we can cast (33)
into

hi(g, 6')
Gl(g, n.m) =b~ivg '(,),

where

g2 ) &+&

& («') =g
~

&"'(&')I

(34)

(36)

B. The recursion formula

p(I)(z ) f fill(z q )

Equation (36) does not define f„"'(Z,q~) uniquely,
and we must seek guidance in the examples of our
previous results. From the 4th-order results, it
is most natural to define

(36)

In this subsection, we shall deduce the relation
between a„'I'(6') with a„'~', (b, '). It is obvious from
Table II that the transverse-momentum diaf. ,rams
associated with a„'~'(n. ') have one more closed loop
than those associated with a„"',(n, '). Thus, a, re
cursion formula between leading terms of succes-
sive orders must involve an integration over a
transverse momentum. Since a„"'(n,'}does not
depend on any loop momentum, let us define

l 2 3 4 23 4

5 6 ? 8

FIG. 14. The two contributing 5-W-exchange diagrams
obtained from diagram 11(a).

FIG. 15. The isospin factor of the sum of 5-W-ex-
change amplitudes is equal to the isospin factor of the
diagram illustrated here.
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FIG. 18. A diagrammatic representation for
foo (-Z, q1}/(2Z +—x }

FIG. 16. A list of nonseparable transverse-momen-
tum diagrams in the 4th-through 10th-order amplitudes.

satisfy these requirements are

d p
(p,f )(e) = (2„)', p, ((f„~,')f (e,'),

where

I2 2
q~ +~

(q.'+ ~')I.(q' —q.)'+ ~']

(Z-q,') +~2

I:(& —q. )'+ ~'] t(q' —q. )'+&']

(39a)

f (01(p q ) (2+2 +212)(q 2 +X2) 1

xI(Z —q, )'+A.'] ' (3'7a) and

(p, f)(q ) =p, ((L)f(q ),

(39b}

(40a)

f (2) (Q q ) (+2 + 2/2)(q 2 + P2) 1

xI(Z —(L)'+z'] ' (3Vb)

We represent f((ohio, q~-)/(2&2+-2'&2) diagrammati-
cally in Fig. 18. We note that q and 4 —q~ are the
momenta carried by the two lines in Fig. 18, re-
spectively. Thus it is natural to represent a gen-
eral term in f (2'(Z, q, ) by the diagram in Fig. 19.
Notice that the two groups of lines in the figure
carry momenta q~ and & —q~, respectively. Since
there are two equivalent ways of assigning q~ and
~-q~ to the two groups of lines, we must require
f(o'(Z, q~) to be unchanged under the transformation

+ —qx. (38)

As we concluded earlier, a recursion relation
between f (1' and f (1', must involve an integral
operation. Now since the coupling constant g' is
dimensionless, f (1' and f(1', are of the same di-
mension. Thus this integral operation must pre-
serve the dimension. Furthermore, it is obvious
from Table II that a denominator factor in the ker-
nel of this operation must be of the form of
(q(„2+&2), where q;~ is the momentum of a line,
while a numerator factor must be of the form of
(p( '+&2), where p;1 is the total momentum of a,

vertex. The two simplest integral operators which

where

p, (q ) =(q.'+&')r(q, )

+ I (& —q, )'+~']& (& —q, ), (40b)

f (o) (2P P )f (o) (41)

This recursion formula reproduces correctly all
of the other six nonseparable leading terms in
Table II.

Similarly, for I =2 the recursion formula is

fo" =-(P, +P2)f2' (42)

We may also obtain the recursion formula for
I =1:

where I(q1) is defined by (10) and diagrammatical-
ly represented by Fig. 8. Equations (39) and (40)
are diagrammatically illustrated in Figs. 20 and
21. Each operation is a Sum of two operations so
that if f is invariant under the transformation (38),
soisp f, i =1,2.

The simplest operator involved in the recursion
formula is a linear combination of P, and I'2. It is
easy to determine, by using two of the nonsepara-
ble leading terms in Table II, that the recursion
formula for I =0 is

qg -. .. 6 qg

FIG. 17. Two equivalent transverse-momentum dia-
grams.

rn lines rn' lines

FIG. 19. A diagrammatic representation of a general
term in f„(d,q~).
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P)

~ ~ ~ ~ ~ ~

+
6-q~

qj
q m)

q&

f (1) (P P )f (1)

It is easily verified that

Thus we have

f„"'=0, n-1.

(43}

(44)

FIG. 20. Diagrammatic representation of the opera-
tor P&. A horizontal bar on a vertex represents a fac-
tor (p~ +X ), where p~ is the total momentum of the
vertex. If there is only one outgoing line at a vertex,
the horizontal bar and the outgoing line annihilate each
other.

P2

FIG. 21. Diagrammatic representation of the opera-
tor P2.

ancl

f (0) (2P P )2f (0& (46)

f(2& ( P P)nf (2)

Thus (35) and (36) give

(4V)

terms. A glance at Table II is sufficient to con-
vince us that the way to achieve this goal is not to
grind out these complicated expressions of very
high orders. Let us, instead, observe that the
recursion relation gives

Together with (34), (35), and (36), (45) means that
the leading terms of G, add up to a Regge-pole
term.

The solutions of (41}and (42), with the initial
condition (3V), satisfy the corresponding integral
equations given by Fadin, Kuraev, and Lipatov. '
Since the solution of the integral equation given by
these authors is not unique, our recursion relation
serves the function of selecting the correct answer
from these nonunique solutions.

and

1
(2.) g g(2, P,)

x f(0)(g q )

d2
h {8 62 =g'

(2&()3 g+ g'(P, +P, )

X f(2&(Z q )

(48)

(49)

C. The spectrum of the operators

From the recursion formulas given in the pre-
ceding subsection, it is possible to obtain the lead-
ing terms of any pertu"bative order. Our goal,
however, is to calculate the sum of these leading

The kernel P)(q1, q1), defined by {39b}, is not in-
variant under the transformation q —q'. Thus P,
is not a symmetric operator. For the purpose of
the following discussion, it is convenient to sym-
metrize it. Let us set

and

P(I)
Pq ) ((q

2 + )(2)[(P q )2 /+2]}1/f2(I)(P q )

(q,"~')[(~—q,)"~'] ' pQ(qi, q, ) = ~,. ~.)[(- -, }, ~,] P(qi, qi)

1 ( ( '2
A,2)[(Z q }3 A.'] 1(' (q 2+)(')[(& —q')'+~'] '"I

(q. —q'}'+~' E (q.'+) ')[(& —q')'+~'] (q" +) ')[(& —q.)'+~'] i
'

(50)

(51)

Then Q(q1, q~) is invariant under q1- q1, and the operator 0, defined by

2

(QP)(q. ) = 2,:Q(q. , q')P(q'),

is symmetric. Equations (48} and (49) can then be written as

(52}

and

0( 0 l
(2&))3 ((qq' 2 g2)[(~ ~)2 ~)(2]}l/2 g g2(2q P ) 0 &q1 (53)

2& t (2&()3 ((~ 2 g2)[(~ }2 +)(2]}ll2 ( ~ 2(q ~P ) 0 (54)
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with

qj. q~ d q~ + qi 2 q~ d qj.

(55)

q.~ d2q

where f is a trial function. At Z =0,

We note from (50) and (37) that E,"'(q~) is invariant
under the transformation q~ —& —q~.

From (53), we see that for h, (),b, ') the location
of the leading singularity in the $ plane is equal to
g' times the largest eigenvalue of the eigenfunc-
tions of (2Q P,-} which are even under the trans-
formation q~ —Z —q~. (There is, however, an
important clarification which we shall make later. )
And from (54), we see that for b, ((,&') the loca-
tion of the leading singularity is equal to the nega-
tive of g' times the smaEEest eigenvalue of the
eigenfunctions of (Q +P) which are even under the
transformation q & —q .

We shall treat only the simple case of 4 =0 here.
In this case, it is easy to find the smallest eigen-
value of Q+P, and we shall do it first. Let us
therefore try to find the minimum of

We now turn our attention to the largest eigen-
value of 2Q P-, at Z=0. Let us write down expli-
citly the eigenequation of this operator:

4 (qJ.)
P4 (qJ. )

(2 )3 (~ ~l
)2 g2

—2(qi'+~'}I (q }4(q.), (59)

c,(q~') "~+c,(q~') "&, 0&Re&„Re&,&1 (60)

where c, and ~, are constants and q, and q, satisfy
the equation

P = 2.-f4(n)+.0(1 n)+2-yl.
1

(6

In (61), y =0.57721 is Euler's constant and p
is the logarithmic derivative of the I' function;

It is straightforward to show that for

21n2
g2

the two roots of Eq. (61}are complex and are equal
to

(62)

where P and Q(q~} are the eigenvalue and the eigen-
function, respectively, for 2Q -P, . We shall show

. in Appendix C that the asymptotic form of rf&(q~) as
Iq.l-" is

(56) 2+&Py (63)

which is a function of (q~ —q'). The eigenvalues
and the eigenfunctions of the operator Q can there-
fore be obtained by a Fourier transform. We
easily find that the spectrum of Q is (0, ~). [In-
deed, the eigenvalues of Q are given by K, (Ab)/w,
with 0-b &, where II", is the modified Bessel
function. ] Thus the first integral in (55) is non-
negative. Next, we find from (40b) that P(q~) at
4 =0 has a minimum value

2~'I (0) (57)

which occurs at qj =0. Thus the minimum value
of (55) is (57), which is achieved by using a func-
tion f (q~} localized at q~ =0. Specifically we may
consider the function

1
f(q )= —, ~, lq. l«

$ =2m, (0) —2, (56)

which is the location of the singularity due to the
exchange of two Regge poles a, .

= 0, otherwise

and take the limit e-0. In this limit, the first
integral of (55) is zero and the second integral of
(55) is equal to (57). By (22), we can express (57)
in terms of o., (0). Thus we find that the leading
singularity of h2($, 4') occurs at

where P is a real number. For

21n2
w2

(64)

both roots of (61) are real and one of them is
smaller than 2. This means that if an eigenvalue
of (59) is larger than (21n2)/w' the asymptotic
form (60) is larger than (q~') ', and the corre-
sponding eigenfunction is not normalizable. Such
eigenfunctions and eigenvalues do not enter when

(2Q P,) operat-es on the square integrab-le func-
tion fo'0'(q~). (See Appendix C for more discussion
on this point. ) Thus the largest eigenvalue involved
cannot be larger than (21n2)/w'.

On the other hand, by choosing f(q ) to be the
square-integrable function (q~'+&'} " ', it is pos-
sible to show, after some algebra, that

(fl(2Q —P, )l f) 21n2

(flf&
which means that the largest eigenvalue involved
cannot be smaller than (21n2)/w'. Therefore this
eigenvalue must be equal to (21n2)/w'. Since
lim, ,f = (q~'+&') '~' is not square-integrable,
this eigenvalue belongs to the continuous spectrum.
Thus the leading singularity of ho($, 4') is located
at

( =g'(2 ln2) /w'

or, in terms of 4,
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8= 1+g'(2 In2)/v' (65)

D. Summary

In summary, we have found, by summing the
leading terms in the Yang-Mills theory of SU(2)
with an isodoublet of Higgs bosons, the following
singularities in the angular momentum plane:

(i) A fixed branch point at 4, = I +g'(21n')/p' for
the amplitude of no isosyin exchange.

(ii) A moving Regge pole J', = n, (Z) given by (22)
for the amplitude with the exchange of one unit of
iso spin.

(iii) A Regge branch yoint located at 7, =2n, (0) —1
at & =0 for the amplitude with the exchange of two
units of isospin.

It is interesting to observe that

)Jo & Jy & J2 (66)

This is consistent with the experimental fact that
in the high-energy limit the amylitude with the ex-
change of quantum numbers is much smaller than
the amylitude with no exchange of quantum num-
bers. It is impressive that (66) is an output, in-
stead of an input, of the theory. In fact, the way
(66) comes out is quite spectacular: It requires
extensive cancellations among terms of all pertur-
bation orders Indeed, (.66) is not true if we re-
strict ourselves to a yarticular set of Feynman
diagrams such as the ladder diagrams or the mul-
ti-S"-exchange diagrams. There are, in addition,
many physical features which are realized in the
model of Yang-Mills theory: the relationship be-
tween the energy deyendence of the cross sections
and the creation of yionization products, the ap-
yroximate conservation of helicity, and the rela-
tively small values of the real parts of the. scatter-
ing amplitudes. All of these indicate that the Yang-
Mills theories are promising models for the high-
energy scattering of hadrons.

There is only one undesirable feature in our re-
sult: that the amplitude with no exchange of iso-

and is a, branch point.
The above argument, made for 4=0, can be ex-

tended to nonzero &. Since the argument above is
based on the behavior of the eigenfunction as
~q, ~

-~, and since the asymptotic behaviors of the
kernel Q(q„q,') or the function P, (q, ) for large val-
ues of momenta are independent of &, Eq. (65) is
valid for all finite &.

By (34), abranchyoint of h, ((, &') is also a
branch point of Gz(g, &'). The function G~(g, &')
has, in addition, poles at

h, ($, &') =1.
We are unable to determirie the location of these
yoles.

spin violates the Froissart bound. This is by no
means a weakness of Yang-Mills theories. Rather,
it once again shows us that, just as in QED, the
method of summing leading terms is not adequate
to deal with the vacuum singularity. In a separate
payer, we shall discuss a new method to deal with
this situation.

A -=(SX'+ 2&')P(&) 4I(&)K, -
B=4I(&)K, -
D =-X f (&),

(A2)

(AS)

(A4)

Equations (13a) (13e) have included the contribu-
tions of Feynman diagrams illustrated in Fig. 6,
and their horizontal and vertical mirror images.
(To obtain the scattering amplitude, we must mul-

APPENDIX A

The amylitude corresponding to a Feynman dia-
gram in the gauge theory of SU(2) is equal to a
space-time integral multiylied by an isospin factor.
In the high-energy limit, the space-time integral
is best evaluated by the method of longitudinal-
momentum integration. In this appendix, we dis-
cuss a simple method —the diagrammatic method-
to deal with the isospin factor.

I.et us first define the isospin factor associated
with a Feynman diagram. It is the factor obtained
by using the rules given in the second column of
Appendix B. In this apyendix, we shall diagram-
matically represent it by the Feynman diagram it
is associated with. One of the beauties of the Yang-
Mills theory as a model for high-energy scattering
is that we do not need to calculate algebraically the
isospin factor for each Feynman diagram. For the
purpose of calculating the sum of amplitudes of a
certain order, it is much easier to sum up the
amplitudes in a diagrammatic way. Furthermore,
many regularities of the amplitudes become evident
only if we use the diagrammatic method. An ex-
ample is the yroyortionality between E~ and G~
given explicitly in (19) and (20). This proportion-
ality does not, in general, hold for the amylitude
of a single diagram, but is true for the sum of all
diagr ams.

We shall demonstrate these points by carrying
out explicitly all the steps involved in dealing with
the isosyin factor of the 6th order. Referring to
(13), we shall define

(I I) 2 [g' In(s e ")]' (g' lm)
(Al)=—gg
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—A —— + —8 ~ — + —D — = —A —— + —(B+D)

= —A + —(B+D)
I I

2 2 rk

I= —(A+e+D)
2

FEG. 22. Diagrammatic calculation of the coefficient of (1,1). The first step involves the use of the triangle contrac-
tion in Fig. 5. The second step involves the use of Jacobi's identity, and the third step involves the use of the triangle
contraction. Manipulations involving the Z meson must be modified, if the group is SU(n), if the Higgs bosons are not
isodoublets.

r.(P'+~)~.(P'+~) "~, (2P)"'ff 1 ~+ (A6)

where n is the number of fermion-fermion-8' ver-
tices, and the numerator factors associated with
the 8' line carrying a large p, are approximately
(2P,)". Next we turn to the isospin factor. In the
case of 5=1, the isospin factor of the sum of amp-
litudes is always proprotional to the one in the final
answer of Fig. 22. This leads to the porportional-

tiply these expressions by their respective isospin
factors. ) We must also take care of the diagrams
obtained from the ones mentioned above by the
transformation of particle 1—particle 1'. [The
space-time integrals for these latter diagrams
can be obtained from (13a} (13e) with the aid of
(3).] We shall add up all these terms diagram:-
matically.

We shall make use of the two identities illustra-
ted in Figs. 4 and 5. Here we emphasize one point.
Both identities remain valid if the horizontal line
is a fermion line or if the gauge group of the field
is SU(n).

The coefficient of [1,1] is calculated in Fig. 22,
and the coefficient of [1,—1] is calculated in Fig.
23. All the steps involved remain true if the top
and (or) the bottom horizontal lines represent
fermions. In order to obtain the 6th order terms
of I', and G„we need to calculate, only the isospin
factors appearing in the final answer. It is ob=

vious, even without such a calculation, that the
divergent integrals cancel out in the final answer.
This is true for 8"-8"scattering and fermion-fer-
mion scattering. It is also true for any Yang-Mills
theory of SU(n)."

We are now ready to prove the constant propor-
tionality between I', and G„ i=0, 1. First of all,
in the high-energy limit, the space-time integral
associated with the Feynman diagram always
changes by a factor of (2m) ' as one of the incident
8' mesons is replaced by a fermion. This is be-
cause the numerator factors associated with the
fermion line carrying a large P, are approximately

ity between F, and G, given by (20). For the case
of I= 0, the isospin factors in the final answer
involve only the ones represented by diagrams
with exactly two vertices on the top (or bottom)
horizontal line, which, according to the second
column in the table of Appendix B, give the isospin
factor

1—' —for the fermion
2 2 (A7)

(ie,)(i@~) for the W meson. (A8)

The Feynman rules for the Yang-Mills theory of
SU(2) with an isodoublet of Higgs bosons have
been given explicitly by 't Hooft and Veltman. ' We
shall list those rules in the Feynman gauge where
there are no k 0„ terms in the propagator for the
Yang-Mills field. We have broken up all of the
four-line vertices into sums of terms such that
each of them has the same isospin factor as a
second-order diagram with two three-line vertices.
The isospin factor is normalized such that the
relation illustrated in Fig. 5 is satisfied. We list
the Feynman rules in Table IV below.

APPENDIX C

In this appendix, we study the eigenvalue Eq. (59}.
We begin by determining the asymptotic form of the
eigenfunction of (59). I et us take the limit q,'- ~
in (59) and replace p(q, ) by (q,') ". Then the first
term in the right side of (59) becomes

In the above, a and b are the isospin indices of the
5' meson emitted at the vertices and the matrix
element of e, is

(6 ))) =6 )

To obtain E, and G„we calculate the trace of
(A7) and (A8) with proper normalizations in con-
sistency with (1) and (6). In this way, we obtain
(19).

APPENDIX B
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TABLE IV. The first five rows of the first column represent, respectively, the fermion propagator, the vector-
meson propagator, the FP ghost propagator, the Z propagator, and the four-propagator. For every closed FP ghost
loop, we have an extra factor —1. It is to be noted that there is freedom in choosing the isospin factor and the space-
time factor for a. vertex, as long as their product coincides with that defined in Bef. 2. For the purpose of comparing
8'-8' scattering with f-f scattering, it is convenient to change the signs of both factors of the f-f-W vertex, if the vec-
tor meson lies at the left of the arrow on the fermion line.

Diagram Isospin factor Time- space factor
—(g+ M)

k -M +)e

Diagram

ya

Isospin factor Time-space factor

0 b

k

0 b

0 b

Sab

Sab

Sab

k2 y2 +,
—

I

k2 —g2 + I4

—
I

k2 —@2+ ie
—

I

k2 $2+ IC

p,2=4cr 8

ib
S,b

g (-20K)

g (-6crX)

g 2

p. a

I
+a

2

i, J'
r I ~' each i '+edbi

cy d8

2
g ~g gpg ys gg 3 gpyi

cy

k +bP i 6
abc

g [gya(q kIp gap (k p)

+gpy ~p-qi, ]

/C
/

Sab Scd
2I

9 2 ggP

aa
k 9+b

aa r c

k p~~ b

abc

I & abc

gpg

I—
g
—(p-q) g

ia gb
/

/--r-~
/c id

Sac Sbd

I

g 2 ggP

g (-g)

k
9ib

gc
a P'

ib

Sab

i Gabe
l

g ——k
2

S,b g2 (-g)

g (-g)

S,b

(Cl)

f"d -,), ~
' gdxx" '(1 —x)" 1(1- g)I"(g q+—1) ' gdxx"+ '(1 —x)"

(xg,'+ X')" I'(q) (k&)t& &

d'q,' ' gdxx" '(1 —x)-"
(i")"I.(q, —j')'+ &'1 q (m'+ ~')"

vrhere x is a Feynman yarameter introduced to facilitate the integration over q, . The asymytotic form of
the right side of (Cl) as j,'- ~ is best obtained by making a Mellin transform:

I(&-~) 1(I-n) 'I(~ n+)

I (g) r(q) (g+ q —I)'(X')""-' (C2)

In the neighborhood of g =1 —g, the right side of
(C2) is approximately

» —
& „„ I R(n)+0(I —n)+2r+»'1.

(C3)

The location and nature of the singularity of the
MeQin transform of a function are related to the
asymptotic form of the function as q '- ~. Speci-
fically, (C3) means that the right side of (C1) is
asymptotically
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1

I(q, ) =
8&l' a, x(l —x)q, '+ &(.

'

1 ln(q„'/X')
4 2 ~2 (C5)

From (C4), (G 5), and (59), we conclude that &7

must be a root of (61).
We are unable to solve (59) in closed form. In

order to gain some understanding of this equation,
we shall solve it in the limit p»1. Let us first
carry out the angular integration in (59) and get

&p'p(p')
2»', [(p+ p'+ &(.')' —4 pp']»'

2

~; (q') "-» [g(&7)+ 0(I —n)+ 2y](q, ')-". (G4)

The asymptotic form of I(q, ) is also easily obtained,
from (10) and Feynman parametrization:

where the argument of the logarithm is chosen to
be (p+ X')/X' instead of p/A. ' so that the logarithmic
function would not blow up at p = 0. Set

or

,-ln, = Pt,p+ A.

27r'

p = X'(e"—1),

(C8)

(C9)

where

y=2~'p; (C10)

then (C7) becomes

e&' & 'dt i
y (tI )

[(e"' —e"")' 2+(e" '+ e"') —I ]&» '(1+t)~(~)-

(C 11)

where

—2(p+ &)')I(p)g(p),

p =—qi ~

(C6) We shall next make an approximation for the kernel
of (Cll). In the limit y» 1, the kernel is approxi-
mately equal to

In the limit P -~, the second term in the right
side of (C6) is small compared to the left side of
(G6), unless p» 1. In the limit p»1, the asymp-
totic form (C5) holds for I. Thus we may approx-
imate (C6) as

(C7)

(C 12)

Equation (C12) does not hold in the neighborhood of
t'=t. More precisely, (C12) holds only if y~t —t'~

Indeed, at t'=t, the kernel is equal to —2'e"~2,
which is an exponentially large number. Thus we
must also investigate the contribution of the neigh-
borhood of t'= t. In this neighborhood the kernel
.is ayyroximately equal to

1 1
{[e~«-&'& 1]~+28-~&'[I y e~«-&'&]].&/2 [y (t t')'y 4e- &]&&2 '

1
ylt- t'I (G14)

We may further approximate the right side of (C13) e-"1"' e-"2"
(t) =

~1 ~2

where

(C 18)

provided that

(C 15)

(-,
' —1/2&T'p)"—',

n. = .'. (-.' I/2"ti)-'". -
(C19)

(C 20)

I dt'
e(t)

~t t ~

=to(t).
,),-yPI 2 yl t —t'I

Substituting (C12) and (G16) into (Cll), we get

(C16)

dt'e-""-"y(t') + dt'y(t') . (C17)

Thus the contribution of the neighborhood of t' =t
to the integral in (Cll) is

(q,'+ &(.') "'
~l

(q, '+ &(.') "2

n2
(C21)

These two values g, and g2 are precisely the two
roots of (61) in the limit P» 1. Comparing (60)
and (C20) we find that

By (C18) and (C9), the eigenfunction given by (C18)
is equal to a constant times

The solution of (C17) is
1 1

(C22)
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2A —+ +2 B ~+ +2 + —D —+ +E +

= —A —+ + —8 ~+ — — + —0 —+ +E

= —(A+8) —+ + —D —+ + E
I

2 2

= —(A+B) —+ +—D —+I I

2 2

+ — + + — +

—(A+8-E) ~ + + —(0+E) —+I I

2 2 j

FIG. 23. Diagrammatic calculation of the coefficient of (1,-1). The first step involves redrawing the diagrams. The
second and the third steps involve the use of Jacobi's identity and the triangle contraction. Manipulations involving the
Z meson must be modified if the group is SU(n) or if the Higgs bosons are not isodoublets.

We have therefore shown that the eigenequation
(59) has a solution for arbitrarily large eigenval-
ues P. However, it is iniportant to realize that
some of the eigenvalues may not be relevant for
our purpose. Indeed, for the purpose of studying
the analytic property of h, ($, LP) as a function of
g, we need, according to (48), to express f,"'(q )
as a linear superposition of the eigenfunctions of
(2P, P,). Th--us we need to include only those
eigenfunctions of (2P, —P,) which form a complete
set. I.et us, therefore, go back to (C17). Setting

~=7ty ~ ='Y~ (C 23)

V(~) = e'"4(~),
we transform (C17) into

(C 24)

(C 25)

The kernel in (C25) is the approximation of the
kernel of (59) for P» 1. The change of variable
(C24) is for the purpose of symmetrizing the ker-
nel. By (C18) and (C24), the eigenfunction of (C25)
ls

Z(~/~-~&)' 8&i/~-n&&'

y(7) =-
nl '02

From (C19) and (C20), we find that the eigenfunc-
tions of (C26) with

0&P& —
~

2
7r'

(C27)

are oscillatory and form a complete and orthogonal
set of functions which can be used as a basis for
the representation of any squar e-integrable func-
tion defined for 0 ~ v —~. The eigenfunctions for
P&2/g' or P&0 blow up exponentially as 7-~, and
are not needed in the representation of a square-
integrable function.

Equation (C27) gives the relevant spectrum for
the kernel e ' ' ' which approximates the kernel
of (59) only if P»1. The interval defined by (C27)
does not satisfy P»1. Thus, in order to select
the relevant spectrum of (59), we must use (61)
instead of (C19) and (C20), since the latter approx-
imate the roots of (61) only if P» 1. It is then
straightforward to show that (-,' —q,) and (-,' —q, )
are purely imaginary only if P is in the region de-
fined by (62). When p is outSide of this region, the
corresponding function Q(q, ), after it is multiplied
by e'~' as in (C24), blows up as q, -~. [Remem-
ber, according to (C 8) and (C23), that e'~' is pro-
portional to (q,')' '. ] Thus we believe that these
eigenvalues are not relevant for the purpose of
spectral decomposition.
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