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When the effective potential of a quantum field theory has nonglobal minima, the question arises as to
whether they may correspond to the vacuum state. The conventional response is negative because of vacuum
instability and also on the basis of an analogy with many-body theory where the effective potential is
compared to the Helmholtz free energy for which certain convexity properties may be proved using Van
Hove’s theorem. In pursuing an alternative possibility, it is pointed out here that when a nonglobal minium of
the potential occurs, the field equations can sustain a pseudoparticlelike classical solution in four-dimensional
Euclidean space-time and a corresponding soliton solution in three-dimensional space. The existence of these
solutions is not inconsistent with Derrick’s theorem which assumes. that the vacuum is an absolute minimum.
The solutions are interpreted physically in Minkowski space as vacuum bubbles created by quantum tunneling
from the metastable vacuum to one of lower energy. Thus explicit calculations of the decay probability are
rendered feasible. A simple theory where the phenomenon occurs is the skewed Goldstone model, which is
studied in detail. Extension to Higgs-Kibble gauge theories is straightforward. As an example, in the Weinberg-
Salam theory the lower limit on the Higgs mass derived by Weinberg and Linde, and the limit derived by
Gildener and Weinberg for the modified version incorporating a dimensional transmutation mechanism, can be
significantly modified. For the original version of the theory, the lower limit is changed from 4.91 GeV to
about 3.5 GeV, for mixing angle 8, = 35°. For this new range of masses the vacuum is totally secure, for
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practical purposes, against spontaneous bubble formation by vacuum fluctuations.

I. INTRODUCTION: THE PROBLEM

In a quantum field theory, the vacuum state is
usually defined as that state of lowest energy or
that state which is annihilated by all particle de-
struction operators.® The identification of the
vacuum is an important step in finding the physical
predictions of the theory; for example, in a theory
with spontaneous breakdown of symmetry the sym-
metry properties of the vacuum are as significant
as those of the defining Lagrangian. In the present
paper, we study a situation where the normal pro-
cedure to locate the vacuum leads to ambiguities.

A convenient device for finding the vacuum state
is to calculate the effective potential V(¢) which is
the generating functional for one-particle ir-
reducible Green’s functions with vanishing ex-
ternal momenta. The ground state of the theory
corresponds to a minimum of V(¢). In the tree
approximation to a theory with a real scalar field
¢ the Lagrangian density is

£=30,00,0- V() . (1)

The quantum corrections from loop diagrams
may be calculated from

VziSlPl(pu.:O) ’ (2)

where the subscript 1PI denotes that only the con-
tributions of one-particle-irreducible diagrams to
the S matrix are included.

It can be proved (see Symanzik, Ref. 2) that V(¢)
is the expectation value of the energy density in a
state for which the expectation value of the field is
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¢

If there is only one nondegenerate minimum, no
ambiguity exists. Also, if there is no minimum,
the energy is unbounded below and no theory ex-
ists. .

There may be degenerate vacuums, leading to
spontaneous symmetry breaking. In this case, if
the degeneracy is not accidental but the result of
a symmetry, the choice of vacuum is arbitrary;
physical predictions do not depend on this choice.
If the broken symmetry is continuous (and in the
absence of local gauge invariance, discussed
later) there will be Goldstone bosons. In the U(1)
Goldstone model® the Lagrangian density (m?< 0)

£=0,0%0,6 ~m6%6 - ¢ (P01, (3)
9=—m= (b1 +i,) @)
\/—2—‘ 1 2

is invariant under

¢p—ete . ()
In the tree approximation the effective potential is

V(g, p¥)=m?¢* ¢+ 5 (9*0), (6)
with minima when

|o[2= - 3m2/x=|x]? . (1)

The choice of phase of x is arbitrary. Taking yx to
be real and shifting the fields to
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¢1 = ¢],.+ \/_2- X » (8)
¢, = ¢2, s 9
then

£=3(3,0{0, 67 +2m*¢{*) + 29, ¢33, ¢;
X by 3m*
—VZ ZE G0+ 0f) - 5 (9124 O+
(10)

so ¢! has real mass (~2m?)'/2 and ¢,’ is the
massless Goldstone boson. Goldstone® also con-
sidered the case of a real scalar (m%<0)

£= 40,00, - m*¢) - 57 . 1)
Shifting the field to
p=¢'+x, x=(-6m*/ N/, (12)
£=3(0,070,0"+ 2m2¢%) - 1 1" = oy 64+

(13)

The reflection symmetry ¢ - - ¢ is lost. The
potential has minima at ¢=+x, and we may
arbitrarily choose +x as the vacuum state.

Suppose now that we destroy all symmetry by
skewing the potential to

£=%au¢au¢ - V(¢) 5 (14)
V(g)=tmt - £ 04 7 4, (15)

with m2< 0, 0< 6/|m|<« A< 1. The minima are
now at [V =(-=m?3/a)/2]
o8 =+v+6/21 (16)
o)

V(gpE =—£—v4$§ V3, 17)

as indicated in Fig. 1. We shall refer to this
theory as the skewed Goldstone model.
The essential physics of the problem addressed

V(¢)

FIG. 1. Effective potential for skewed Goldstone
model.

in this paper is all contained in the skewed Gold-
stone model. The question is: As soon as 6 #0,
does the metastable minimum cease to be an ac-
ceptable choice for the vacuum? In other words,
must the physical vacuum be an absolute minimum
of V(¢p)?

Once the skewed Goldstone model can be under-
stood, more complicated and interesting models
such as the Higgs model,* the ¢ model,? the O(V)
¢* model® for N — =, the Weinberg-Salam model,”
quantum chromodynamics(?),® etc. may be con-
sidered. In the present paper we shall study in
detail only the skewed Goldstone model and the
Weinberg-Salam model.

In Sec. II we discuss the conventional dogma con-
cerning the problem. In Sec. II we introduce an
alternative possibility. The skewed Goldstone
model and the Weinberg-Salam theory are treated
as examples in, respectively, Secs. IV and V. Sec-
tion VI briefly considers nonspontaneous vacuum
bubbles and finally Sec. VII gives some discussion.

II. CONVENTIONAL WISDOM

It is common to assume that the vacuum must
correspond to an absolute minimum of the energy
density. The reason for this assumption is pre-
sumably that the vacuum is taken to be absolutely
stable. But if the decay lifetime of the unstable
vacuum is sufficiently long, then a nonglobal mini-
mum is an equally good candidate for the vacuum.

The effective potential is often compared to the
Helmholtz free energy (4) of statistical mechanics.
Consider, for example, the Van der Waals equa-
tion of state for a liquid-gas system. The isotherm
for this equation does not satisfy the convexity
property dP/dV =0 that follows from Van Hove’s
theorem.® By requiring that the free energy be
minimized as we vary the pressure P and that the
Van Hove inequality be respected, one arrives at
the Maxwell construction of a straight-line (con-
stant P) segment with equal areas above and below
the straight line. For the straight section, the
equilibrium situation is a mixture of the liquid
and gas phases.

The analogy requires that we add to V(¢) a term
with a Lagrange multiplier (or external source)

r=v-Jo¢, (18)
whereupon
6T
J=— %6 (19)
Now the 1PI Green’s function is
&r _ od _ .,
it =MZ2=0 (20)

for no tachyons; thus T should be convex down-
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wards. In comparison to the liquid-gas system
T,J, ¢ correspond to A, P, V, respectively.

If we apply this analogy to the skewed Goldstone
model, then the region between the two minima
may be a result of the bad approximation and we
should draw a straight-line segment (constant J,
equal areas in J-¢) tangential to the calculated
V-¢ curve. With this construction, the nonglobal
minimum is excluded from the potential curve
since it is argued that a lower-energy state is
available as a mixture of the two possible phases
of the system. ’

The trouble with such arguments is that they are
circular to the extent that they presuppose that the
vacuum state is in precise equilibrium. In the
statistical-mechanics analogy, the nonglobal mini-
mum corresponds to a superheated liquid which is
metastable but which may have a long lifetime.
Thus for the field-theory case it is essential to
evaluate a lifetime before accepting arguments
based on equilibrium situations.

Before prbceeding to this, in Sec. II below, it
is appropriate to mention certain interesting
papers on vacuum instability.

The first is by Lee and Wick,'® who consider a
local finite-volume excitation of an abnormal de-
generate or nondegenerate (higher energy density)
vacuum. For example, if there is a scalar field
strongly coupled to nucleons, then an abnormal
nuclear state may occur for high nuclear density
in, say, a high-energy collision between two heavy
nuclei. This work assumes that the physical vac-
uum is an absolute minimum.

There are two papers'! by Kobsarev, Okun, and
Zeldovich which point out that in a theory with
spontaneous breakdown the choice of vacuum state
(mentioned in Sec. I above) may be made randomly
at spacelike-separated points in the early uni-
verse. This implies a domain structure, and by
making a model for the motion of the domain walls
these authors suggest that this would lead to such
inhomogeneity of the universe that it would be in-
consistent with the observed isotropy (to within
0.1%) of the 2.7°K background radiation. We men-
tion the work of Kobsarev ef al. here not because
it is relevant to Secs. III through VI below but be-
cause we shall return briefly to a related question
at the end of this paper.

Finally, we must mention the important work on
vacuum instability by Voleshin, Kobsarev, and
Okun,'? which was complete except for the correct
handling of Lorentz invariance.

IIl. ANOTHER POSSIBILITY: VACUUM BUBBLES

Let us suppose hypothetically that the skewed
Goldstone Lagrangian describes the world and

that the universe, or at least a large domain con-
taining the Earth, is built upon the nonglobal mini-
mum as ground state. According to the statistical-
mechanics analogy discussed above in Sec. II, this
domain corresponds to a large finite volume of
superheated liquid whose boiling may be nucleated
somehow by, e.g., fluctuations, impurity, or a
cosmic ray, forming a bubble of gas. This bubble
has negative volume energy and positive surface-
tension energy; hence a bubble is spherical with a
critical radius above which it will survive and ex-
pand.

In the present case, we picture a vacuum bubble
with surface energy arising from the difficulty of
quantum tunneling through the potential barrier. If
this picture is correct then there exist correspond-
ing solutions to the classical field equations. It is
technically convenient to treat the quantum tun-
neling as a classical motion in imaginary time. 34
Therefore, given a Lagrangian

£= %au(baud) -V(¢), (21)

we seek solutions of the Euclidean equation of
motion

92 - dv :
(a—ﬁ+v2> ¢=—d;¢) . (22)
This equation is O(4) symmetric'® so that, intro-

ducing p?=x%+9%+ 2%+ t? and specializing to the
skewed Goldstone model, it becomes

82 3 9 _d
(5? + ey >¢(P) oy V(o) (23)
= ¢m? - ¢ + L¢?) (24)
for 0= p= = subject to the boundary conditions that
(0)~¢5 , , (25)
H(®) =g - (26)

Mathematically, this resembles a pseudoparticle'®
but the physics is quite different from in Ref. 16.
This solution corresponds at times #=+% to no
bubble, while at £=0 there is a static bubble in
unstable equilibrium. This static soliton solution
will solve the equation

(izg+33>¢(v)=%w¢), @7)

where 72 =x%+9%+ 2%,

The existence of such a solution is of interest in
connection with an impossibility theorem of Der-
rick.!” This theorem states that the time-indepen-
dent solutions of scalar field theory cannot exist
for space-time dimensionality d= (D+1)=3. The
proof of the theorem is very short and proceeds
by defining, in D space dimensions,
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=1 @@ or, (28)

12=dexV(¢) ) (29)

The energy E is the sum of these two integrals.
Suppose that ¢(x) is a static solution, then con-
sider the functions ¢(X\x). The corresponding en-
ergy E(1) and its derivative at A=1 are given by

EM\)=x2"Pp 4 2"Pp, | (30)
E’(1)=(2-D)I, - DI, . (31)

If ¢(x) is a solution, its energy must be stationary
and hence E’(1)=0. ButI, >0 and, if we assume
I,>0 (V=0 being the ground state), then the only
solution is I, =1, =0 corresponding to a constant ¢.

In the present case, it is no longer true that
I,=0 since the vacuum state (taken to be time-
independent) must be that for which V(¢)=0. Thus,
for the purposes of this theorem, we are not al-
lowed to add an arbitrary constant to V(¢). Both
the soliton solution of Eq. (27) and the pseudo-
particlelike solution of Egs. (23) and (24) (the lat-
ter may, of course, be regarded as a static solu-
tion in d=D+1=5 dimensions) evade Derrick’s
theorem because I,< 0. In fact, we may turn the
theorem around by stating that nontrivial static
solutions of scalar field theories are possible
only if the vacuum is a nonglobal minimum of
V(o).

Returning to the vacuum bubble in Euclidean
space, Eqgs. (23)-(26), its classical action gives
the logarithm of the probability for tunneling
through the potential barrier to form a bubble
with the equilibrium radius. This is the square
of the amplitude, since the action for — ©<¢< 4+
is double the action for — < ¢< 0 because of the
symmetry ¢-—¢. The pseudoparticle corresponds
at {=—  to the unstable vacuum in which a bubble
grows to its equilibrium radius at =0, then
shrinks and disappears for - - <. Once the equi-
librium bubble is formed, it is classically un-
stable in Minkowski space; we do not pursue the
ensuing vacuum disaster here; the dynamics of
the vacuum bubbles requires explicit evaluation of
¢(p) and will be discussed elsewhere.

In what follows, we shall make the approximation
(to be justified a posteriori) that the bubble radius
is large compared to its surface thickness. In this
approximation we may write the bubble action A
as a sum of a (negative) volume and a (positive)
surface contribution for Euclidean radius p=R,

A(R)=%m2R%+27%R®S , (32)

which is stationary for the value R,=3S/¢€ with
value :

2 \e€3

For this radius the energy of the three-dimen-
sional bubble vanishes: '

E=-%1R,3¢+47R,2S (34)
=0. (35)

In Eq. (32) € and S are the volume and surface en-
ergy densities, respectively.

The probable number N of vacuum bubbles
formed in space-time volume V can now be esti-
mated in the leading exponential approximation as

AWQ=—2Wﬂ<£$. (33)

N=<£—i—> exp(-A4,,) . (36)

Here L is a characteristic length of the theory; its
value is computable in next order in % of the ex-
ponent. For the present, we shall use the estimate
L=R,.

To obtain an upper limit for N, we use the
largest value one can reasonably contemplate,
V=10'" F*, which is that volume corresponding
to the age of the universe, 10 yr. The relevant
domain volume may be much smaller, but our
general conclusions will not be at all sensitive to
the precise value of V, fortunately.

Finally, the criterion that the nonglobal mini-
mum be a viable candidate for the physical vacuum
will be that N be exceedingly small: N <1,

IV. SKEWED GOLDSTONE MODEL

As a simple theory where the phenomenon oc-
curs, we return to the model already mentioned
in the Introduction. The classical potential is
(0<6/|m|«<r«<1)

V(@)=tm?e? - 5 ¢4 7 6 37)

Let us suppose hypothetically (we consider a more
realistic example in the next section) that this is
the theory of the world and that the universe, or
at least the domain of which we are a part, is
built upon the nonglobal minimum at ¢=¢,. We
wish to calculate the probability that there is a
spontaneous vacuum-bubble formation leading to
collapse into the lower-energy state available
when ¢ = ¢g .

The volume energy density € of a bubble is given
by

€=V(¢5) - V(g3) (38)
= % 51}3 . (39)

The surface energy density S can be looked at in
two quite different ways. This quantity is the en-
ergy per unit area of the surface of the 3-sphere;
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for an area element d%o the action associated with
expansion for time df is (Sd20)di. The same quan-
tity also represents the action per unit hyperarea
of the surface of the 4-sphere in Euclidean space;
thus exp(-S) gives the tunneling probability through
the potential barrier. Since 6 is very small we
may thus evaulate S as

S= f " ap {20 V() - V) (40)
2T [ aplimrgre ingteo0] (1)

=2vV2x v3/3 . (42)
The equilibrum bubble radius is
R_=3S/€=3V2X 5 . 43)

The probable number of vacuum bubbles forming
in space-time volume V is therefore

Vot A%
N=mexp(—367r2—532->. (44)

First we can check that this expression has sen-

sible limits: as 6 -0, N—0 as we expect for de-
generate vacuums (Derrick’s theorem!” now applies
and no vacuum-bubble pseudoparticles occur).

The point is that for any V we may make N arbi-
trarily small by making 6 small. Thus N< 1 may
be satisfied and the nonglobal minimum is equally
as good a candidate for the vacuum state as the
global minimum.

Our interpretation thus differs from the conven-
tional one discussed in Sec. II where there would
be an abrupt difference between 6=0 and 6#0. In
the present picture there is a smooth change since,
even for 6#0 but sufficiently small, one can
choose either minimum as vacuum, and the re-
sulting physical predictions will depend on this
choice, at order 5.

We now turn to a more physically interesting
case, the Weinberg-Salam model of weak interac-
tions.

V. WEINBERG-SALAM MODEL!®

The Weinberg-Salam (WS) model’ is the simplest
unification of weak and electromagnetic interac-
tions which is renormalizable. Since there has
recently been some work'® on the question of under
what conditions the asymmetric vacuum is stable,
it is amusing to apply the present considerations
to this case.

With a single complex doublet of Higgs fields, it
is customary to induce the spontaneous breaking of
SU(2) ®U(1) by putting quadratic and quartic terms

into the Lagrangian so that the classical potential
reads

V(p)=13 u2¢* = rg* . (45)

The vacuum value of ¢ is related to Fermi’s con-
stant G by

(p)=v=(2G)1/2=248 GeV . (46)

In the tree approximation v =(u?/2x)*/2, and it
appears that one can make the Higgs mass arbi-
trarily small by reducing . However, if A~e¢*
(e=gauge coupling constant) then the gauge vector
loop competes with the ¢* term and significantly
alters the form of V(¢). Scalar and fermion loops
are negligible by comparison. Including the vector
loop gives!®

2
V(p)=% 1u2¢% - Ap*+ B¢t ln Pl 4"
where
_ 3 ,/2+secf,
B=%1 ( sinf,, ) (48)
=9,7%x1075 (49)

for the empirical mixing angle 6,,=35°.
The Higgs mass is given by

my®=V"(0)=4Bv?+8v3(B - 1) . (50)

The difference in energy density between the sym-
metric (¢ =0) and asymmetric (¢ =v) minima of

V(o) is
€=V () -v(0)=-(B-2p*. (51)

If B>, therefore, the asymmetric vacuum is ab-
solutely stable; this implies, by Eq. (50), a lower
limit on the Higgs mass

My =myp=(4Bv2)/2=4.91 GeV . (52)

This bound has been advocated recently by Wein-
berg.!® In a modified version of the model, where
the ¢® term is disallowed because all masses are
generated by the Coleman—-E. Weinberg dimen-
sional transmutation mechanism,? Gildener and

S. Weinberg? find that the lower bound is increased
by a factor V2 to givem =T GeV.

If vacuum instability is allowed, then these
bounds are significantly altered.

We shall treat the potential, Eq. (47), as though
it were the classical potential and again keep only
the leading exponential of the tunneling probability;
this is presumably justified because for small cou-
plings the corrections are also small. We should
clearly warn the reader that this reasoning, al-
though plausible, has not been proved and must be
verified or refuted by a subsequent, more com-
plete treatment of quantum corrections.
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The surface energy density S of the vacunm
bubble is given by

s=f do{2[V(e) - €]}z . (53)

Putting ¢*=xv? and v =0M?/m g, where oM>
=m g2 —my?, this may be rewritten

S=v3V2B I(7) , (54)
[ 147)
I(7) f o dx[ (1+7)

—(+27)x+xlnx —v/2x]* /2 |

(55)
with the lower limit x,(») satisfying the trans-
cendental equation

(1+7) = (1+37)x, +x, Inx, — 7/2x,=0 . (56)

In terms of I(r) the equilibrium bubble radius is
given by

R, =24V2B vI(r)/(6m?). . (57)

If this is evaluated in fermis (F) and S is in F~3,
the probable number of bubbles in the backward
light cone is

164 2
N=(%—> exp(— % R,,,3s> . (58)
m

The results of evaluating I(7) numerically, and
the corresponding values of R,, and N, are given
for several values of the Higgs mass m, in Table
I.

With these results at hand, we conclude that N
<« 1 for values of the Higgs mass down to about
3.5 GeV. For the mass range 4.91>m;>3.5 GeV,
the vacuum is unstable but is, for practical pur-
poses, totally secure against spontaneous bubble
formation.

Concerning the approximation that the bubble
radius is large compared to its surface thickness,
this corresponds roughly to the requirement that
myR, > 1. This is reasonable down to m,=3.6

TABLE I. The results of evaluating I(») numerically,
and the corresponding values of R,, and N for several
values of the Higgs mass my.

my I(») R, N

4.91 GeV 0.21 o 0

4.0 GeV 0.064 0.13 F ~10~80,000
3.6 GeV 0.041 0.060 F ~107365
3.5 GeV 0.034 0.047 F ~107%9
3.45 GeV 0.032 0.043 F ~10*20
3.4 GeV 0.030 0.039 F ~10*8
3.0 GeV 0.017 0.018 F ~10*16¢

GeV, but below this mass the estimates given in
Table I would become more accurate if the equa-
tion .

2 3 9 o
<W+ 5%) d(P)=V"() (59)
= ¢p(m? - 4xd®+ 2B ¢?
+4B¢?1In¢?/v?) (60)

is solved exactly, but the new lower limit on my
will not be significantly altered thereby.

VI. VACUUM CATASTROPHE: HIGGS MASS

So far, we have considered only spontaneous
bubble formation through vacuum fluctuations. As
an alternative, we may consider triggering the
process in, say, an ultrahigh-energy collision of
two elementary particles; but a reliable calcula-
tion of the relevant probability is exceedingly diffi-
cult. Let us take the Weinberg-Salam model as a
concrete example. For m,~4.9 GeV the local
maximum of V(¢) is

Vmax= %Bv‘lfz(l ‘fz) (61)
where
1-7242f2Inf2=0 . (62)

Solving these equations gives f=0.534 and V_,,

=4 x10* GeV*. Thus if this energy density is ex-
ceeded in some space-time volume, the potential
barrier disappears and there is a possible classi-
cal path to the lower-energy minimum. The diffi-
culty is what volume to use. If we take 1F* then,
although V_,. is not attained yet in artificially in-
duced collisions (e.g., CERN ISR), it does occur
in cosmic-ray collisions since cosmic rays up to
10 GeV have been observed. Thus vacuum in-
stability might be ruled out this way.

Once a vacuum bubble is formed, with zero en-
ergy at the equilibrium radius relative to the un-
stable vacuum, it may now gain further energy by
expansion which will rapidly approach the speed
of light. The dynamics of the vacuum bubbles may
be studied by solving, for example, Egs. (24) and
(60) for the skew Goldstone model and the Wein-
berg-Salam model, respectively.

Returning to the Higgs mass of the WS model,
the present situation may be summarized as fol-
lows. :

my>T GeV supports gauge field theory ideas
T>my>4.91 GeV bare mass u#0

or vacuum instability
4.91>m;>3.5 GeV vacuum instability.

3.5 GeV>m, ?
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Of course, we should bear in mind that Higgs
bosons may not exist and that the symmetry-
breaking mechanism may be dynamical in origin.

VII. SUMMARY

We have queried the usual dogma that the vac-
uum state in quantum field theory must be an ab-
solute minimum of the effective potential.

When the vacuum corresponds to a nonglobal
minimum, the classical field equations in Euclide-
an space-time 00 ¢ = — V’(¢) possess vacuum-bubble
pseudoparticle solutions. The solutions seem
mathematically interesting both because they evade
Derrick’s theorem and because they are simpler
examples of pseudoparticles than the non-Abelian—
gauge pseudoparticles'®!% (characterized by wind-
ing number).

The physical interpretation of these solutions in
Minkowski space is that they represent tunneling
from the metastable vacuum, and quantitative esti-
mates of the vacuum-vacuum transition are made
possible. There are consequences for the Higgs
mass in gauge theories. A similar analysis can
be made for other field theories; to cite just one
example, in the O(N) model of Refs. 6,22, the
analysis is changed in an important way if we al-
low that the vacuum may be a nonglobal minimum.

It is not clear, at least to the author, whether
the vacuum-bubble analysis given here or the dis-
cussion given above in Sec. II, based on the many-
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body-theory analogy, is the more compelling. But
it does seem that the statistical-mechanics analogy
is to some extent circular in that it assumes equi-
librium situations and thus precludes the consider-
ation of instability. As a further argument in our
favor, we should say that for small coupling con-
stants it seems improbable that the classical ap-
proximation to V(¢) should be so much in error as
would be implied by the straight-line construction
indicated in Sec. II.

Once one accepts vacuum instability and the re-
lated phase transitions, one is soon led to consider
the cosmological ramifications. One would, of
course, like to know by what mechanism our par-
ticular vacuum was selected during the early uni-
verse. There is also difficulty raised in Ref. 11
about the likely formation of phase domains in
space-time, although there exists no observational
evidence that the universe is anything but a single
domain. It would be interesting if the vacuum-
bubble methods can shed any light on these pro-
found questions which are beyond the scope of the
present article.
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