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Transverse-momentum distribution from the Bloch-Nordsieck method
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The transverse-momentum distribution is studied using the Bloch-Nordsieck method, An approximate analytic
form for the above distribution is found, which maintains the normalization as well as reproduces the exact
result for the average (squared) transverse momentum, (k~ ). For large k„our proposed approximation
gives an exponential damping in k~ which is independent of the coupling constant. The discontinuous nature
of the four-momentum distribution is examined to make comparison with perturbation theory.

INTRODUCTION

In this paper we present an approximation to
the transverse-momentum distribution predicted
by the Bloch-Nordsieck' theorem for radiation
due to soft-photon emission. We have looked at
suchadistribution for an arbitrary value of the
coupling constant to see whether the sum to all
orders introduces some functional dependence
which can upually be neglected in QED. Our ap-
proximation to the distribution function exhibits
the usual power law but also an exponential cutoff
which is independent of the coupling constant and
has a logarithmic. dependence from the energy.
This behavior shows interesting analogies with
the phenomenological p~ distribution of strong
inclusive reactions at high energies, ' a result not
altogether surprising since it is already known'4
that the energy distribution of soft-photon &mis-
sion produces a Regge-type behavior of QED cross
sections. It thus seems that the Block-Nordsieck
theorem in some cases can predict similar func-
tional dependences for QED cross sections and
strong inclusive distributions. The reason why
strong inclusive cross sections might offer a
better ground of comparison with QED than, say,
elastic processes lies in the fact that a QED reac-
tion is always an inclusive one. One is thus as-
sured of comparing a functional behavior in the
same number of invariants, that is to say to
study the same type of process, i.e. , scattering
of on-shell particles accompanied by an energy-
momentum loss. There is also another point in
favor of soft-photon emission as a test behavior
of some inclusive processes: Any feature in QED
for which a given order calculation in e is ade-
quate can hardly be expected to be found in strong
interactions, where the coupling constant is not
small and where the perturbative method breaks
down. For a comparison we must then turn to
those QED phenomena which require calculation
to all orders in u. Soft-photon emission is one
such phenomenon and the Bloch-Nordsieck method
is the nonperturbative tool which deals with it.

Soft-photon emission is discussed extensively in
the literature, ""both within the framework of
perturbation theory as well as via a nonperturba-
tive approach like the one provided by the Bloch-
Nordsieck method. For the reasons stated in the
Introduction, the latter approach is the one on
which we shall focus our attention. We follow the
notation of Ref. 9 and we start by considering the
probability distribution for emission of an infinite
number of real soft photons, which one assumes
to have been emitted independently from each
other from a classical source. The Bloch-Nord-
sieck theorem used in conjunction with energy-
momentum conservation leads to

4
d4I (Z) =d4SC e'» "-"'*"

(2m)'
l

where K is the four-momentum of the emitted
radiation and

E
h(x, E) = d'n(k)(1 —e '" '"),

0
(2)

where d'n(k) is the average number of real photons
emitted in a momentum interval d'k and the inte-
gration is over all directions. E is the maximum
frequency allowed for single-photon emission in
a given process. Following Ref. 9 we can write

d' n(k) = P —f(n)dQ„,
dk

where P is the spectrum and f(n) the angular dis-
tribution for single-photon emission. The function
f(n) is normalized to 1, i.e. ,

In Sec. I the main features of the Bloch-Nordsieck
method are recalled and our approximation is
presented.

In Sec. II we study the behavior of our approxi-
mation for small and large values of the trans-
verse-momentum loss and compare it with first-
order QED calculations.

In Sec. III we discuss the discontinuous nature
of the exact distribution.

I. THE SOFT-PHOTON MOMENTUM DISTRIBUTION
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f(n)dQ„= 1 .

In the soft-photon approximation the factor P of
E(1. (3) is independent of the photon's fre(luency p .

and is an invariant function of the momenta of the
emitting pa.rticles. Both P as well as f(n) are cal-
culated using a classical electron current

where e is the electron's charge, p,. 's are the
momenta of the emitting particles, k" is the
single-photon momentum (k&k" =0), and c, =+1
(-1) for the destruction of a negative (positive)
particle. For creation the signs are reversed.
With this definition of the current, one has

d= —f d n e(n, )n (i(n, —()je(n)j" (n)e(n')

and

dP((d) =)3 — for (d &E,dc' (d

cv E (4)

where E is the cutoff energy for single photons.
Note that E represents the limit beyond which the
single emitted photon cannot be considered soft

f(n) = ——k'j„(k)j)'*(k) .
2

From E(I. (1) it seems hopeless to obtain an
exact, close-form expression for the four-mo-
mentum distribution. However, one can integrate
it in d'K and obtain the well-known power law for
the energy radiated, i.e. ,

o', (t) = 1 0(t)/—4,

where"

p(t) = lim p(s, I, u),
8/m2 +'o

~ tfiXed

(6)

and ()i (t) is the photon's trajectory Rel. ation (6)
implies that soft-photon emission, long thought of
as a nuisance, is responsible for producing in
QED a Regge behavior typical of strong interac-
tions. The trajectory thus obtained is obviously
not a linearly rising one, the nature of interac-
tion being different, but. the functional behavior is
the same.

The question now arises as to whether other
functional features of strong interaction distri-
butions are also to be found from soft-photon emis-
sion. We therefore decided to study the predic-
tions of E(I. (1) for the transverse-momentum dis-
tribution. Integrating E(I. (1) in d(d) and dK„we
have

anymore. However, owing to the smallness of
P, the distribution function is not too sensitive"'
to it and E may be taken as the c.m. energy (as is
usual), as long as (d/E is kept small. E(luation
(4) is generally used to calculate the radiative cor-
rection factor to QED processes, but it also plays
an interesting role when studied as the inclusive
energy distribution in a reaction such as

A. '+A. A'+A +X.
It was shown4 that the di-triple Regge limit of the
cross section for process (5) suggests the relation-
ship

O'P(K ) = d~dK ' ' =d'Z ' e '

Using

(x, = )i0;e„; )x= )ddx„) =d J dec„f(d) dk
(1 ei)e(nd xd ))

k j

we now scale out the photon's cutoff energy E by
writing x =xd E (with x a two-dimensional vector)
so that

d'K
d'P(K. ) =

where

e-i(Kd fE) 'x-8z(x) (7)(2)()'

-i{ng x) dyd(x)= f dn„f(n) J (X-e ').
0

(8)

i

Inspection of E(ls. (7) and (8) shows that, unlike
the energy case, there seems to be no region in
which distribution (7) can be solved exactly. Ear-
lier attempts had to be limited to first order in the

P expansion, thus simply recovering the single-
photon limit. Instead, we have searched for a
suitable approximation for the function g(x) and
then tried to integrate. By a suitable approxima-
tion we mean a function which at least bears the
same large- and small-x behavior. For a process
of type (5), one has

Ã(x) ~ 2 dil„f(n)ln[(n~ x)'] ~ 21n(~'),)x)-

d(x) - —,
' f de)„f(d)(n, x)',
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where we have made use of the normalization

J f(n)dQ„= 1, and of the fact that g(x) =g(-x) in
the c.m. frame of process (5). For such processes
and in the c.m. frame, there is an equal probabil-
ity that a photon be emitted forward or backward
so that f(n) = f(-n). It can be shown that the asym-
metric case, i.e. , f(n)& f(-n), introduces only
minor modifications in the final result. Bearing
in mind the behavior given by (9), we propose
the following approximate expression for g(x):

which allows the following expression for the
approximated distribution function:

P(2~) ' d'K K
r(1+p/2) 2E'A 2EVA

KJ
X1 8/2 (14)

where X, &/2 is the modified Bessel function of the
third kind which admits the integral representation

d(x)=-')n 1+-,' f d() f(d)(n „x)'
1

(10)
m gx ( )= — "(f' —1))' "'df,

r(i(, + -', ) 2

where the function f(n) has to be written in the
center-of-mass frame of the incoming emitting
particles and is of course a function of the momen-
ta of all the initial and final particles. However,
it should be noted that owing to the normalization,
f(n) does not depend any more on a, the fine-
structure constant. Inserting expression (10) into
Eq. (7) we obtain the approximate expression

d'P(K ) =
A2g e-i(K, /E) x
(2m)'

x ]+2 + dQ~ ng x
" -8/2

In order to perform the angular integration we
make one more approximation. Since the integral
in Eq. (10) does 'not show any dramatic dependence
upon the direction of x, we shall approximate it
with its average value; i.e. , we shall put

dQ„f(n) (nd x)'

I

d(x)--,'In 1+—,'x'f d() f(d)n„
so that

27r

dd, ) d()„f(d)(n X)', (11)
0

which allows us to write

=1= d2+ K~ (16)

and we find that the normalization is fully pre-
served by our approximation. We can then pro-
ceed to calculate (Kd'). Using the normalization
condition on d'P(Kd) we have

(«. ) f d n(«) («:) f« *de=(« )=. .

Rez&0, Rep, & —z. (15)

In order to put forward Eq. (14) as a viable approx-
imation to the exact d'P(K, ) we must make sure
that our expression satisfies two importang con-
straints. These constraints are (i) that d'P(Kd) be
normalized to 1, (ii) that the average transverse
momentum (K ') be the one predicted by the exact
distribution (7). We are going to show that both
constraints are indeed satisfied. Notice that the
satisfaction of the normalization constraint will
not offer any check on the scaling variable K~/
EvA. In other words, the normalization cannot
predict the quantity with which K~ scales. How-
ever, it will be a ckeck on the use of the function
g, ~». The second constraint, on the other hand,
'will provide a check on the scale, and hence a
check of approximation (ll) on the angular integra-
tion.

Using the integral representation for the X func-
tion it is actually easy to check that

d'E
d'P(K, ) =

A2
-&(K /s) x

(2v)'

y (1 A 2) 8/2 (12)

Inserting Eq. (16) into the above leads to

2I 8/2
&K ') =

(p/
)AE' x'dxx'" 'x, ()g, (~)

where A is now a constant in x and is given by = 2JSA&2 (17)

A= —' dQ nn '

dEid'P(K. ) =
(

xdr Kix
(I+Ax')"" ' E

We can thus proceed with the angular integration
in Eq. (12) and we get

where we have made use of the integral represen-
tation for the X function, Eq. (15). Equation (17)
gives the average K~2 as calculated through our
approximated distribution function. We shall
presently show that such a value is exactly the
same which one obtains using the exact d'P(K )
given by Eq. (7). One has, in fact,
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(Z, '),„„,= Z, 'd'f (K.)

dA2""~-Bg(X) + 2 "~ ~-i(k /Z) ~ x

(211)' J

d xQ2 -8g(x)~(2) d2~ -iK~' x
(211)' i.

where 2'~ is the Laplace operator in the (two-
dimensional) x space. Since for processes of type
(5) g(x) is an even function of x, grsdg(x = 0) = 0,
and one therefore gets, after an integration by
parts and carrying out the integration over de~,

(K ') =Ps'2'g(x=o)

=dd'-' 1 dfl„f(d)g

or, using definition (13),

(Z, '),„„,= 2''A.
Thus, whatever the merits of our representation,
we are at least assured that it preserves the nor-
malization and predicts the same average (Kd.') as
the exact distribution.

Before proceeding to study the small- and high-
Ed limits of d'P(K ), we shall calculate the quan-
tity E2A which appears to set the scale of such
limits. We want to examine the dependence of A
on the kinematic variables. The quantity A speci-
fies also what we mean by K~, sinceA, unlike

P, is not a relativistic invariant. Once a certain

frame has been chosen for its calculation, K is
defined in that frame. Let us consider the reaction

A=4

we use the definition of f(n) previously given in
terms of the classical currents. Notice that there
is a difference in the currents according to whether
the process is

A +A' A +A++X (18)

01"

A +A -A +A +X.
The current will thus be written as

(19)

(k) Pill P2U P3U P4U
(2n)' p, k p, k p, k p, k

where the upper sign refers to process (18) and
the lower sign to process (19).

The computation of A is rather long and the
result is

A (P,)+A'(P, ) -A (P,)+A'(P, )+X,
where the p, 's are the momenta of four charged
particles of equal masses. For small M„' (soft-
photon approximation) we are dealing with an
almost elastic reaction. We work in the c.m. frame
and fix the z axis along the incoming-particle di-
rection, defining the x-z plane as the scattering
plane. To calculate

m' 1 t & s 3t s t(s+ 2m') s "' Ws+ (s —4m')"'
s —4m' 2 s —4m' ~s —4m' s+ 4m' s —4m' (s —4m')' s —4m' ~s —(s —4m')'f'

j t(s+ 2m') 2m'
s —4m2 ' s -4m2

2m' 2t+ 2m' 6m't v s + (s —4m')'f' &

~s (s —4m')"' s —4m' (s —4m')' ~s —(s —4m')"' ]
2m' t(4m' -- t)"'+ v -t

~ t (4m'-t)"' (4m' —t)"'-~
s —2m' ~s+ (s —4m')"' 2m' u (4m' u)' ' + ~—u

~s(s —4m')' ' ~s- (s -4m')' ' ~u(4 mu)' ' (4m' —u)' ' —g-u

where the (w) sign refers to processes (1.8) and (19) as specified above, and we have put

=(p, p.)', t=(p, -p.)', u=(p, -p, )' p = '

The above expression for A slmpluies considerably ln the extreme relatlvlstlc llmlt. Neglecting terms of

order m'/s and m'/u, one gets

s t 2m 2 2t s
2+—— 1+— ln 2 + ——+ 1+—ln

S tPl S S s m'
m2/u. m2/s 0 S S 2m —t (4m' —t) + 4-t1/2 Q

1 — ln + ln, —ln —,
q-t (4m' - t)'" (4m' - t)"' -g-t . m' m'
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The terms which are liable to change sign are actually negligible in the high-energy, small-scattering-
angle limit and we obtain

E'A ~ 8 (-t)s large, t small

ln(s/m') —2 m'
2m' —t (4m' —t)'/'+ 4 -t 4

t (4m 2 t)) /2 (4m 2 t)1/2

In the above expression we have taken E to be the
c.m. energy in analogy to what had been done with
the energy dependence in Eq. (4). For very small
angles, the t dependence in E'A. completely dis-
appears and one has

s(E'A)"' ~, m -', ln
s large & t /m small

which gives a K~ scale proportional to the mass
of the emitting particles and roughly of the same
order of magnitude.

Even if t/m' is not small (but still t/s«1),
(E'A)'/' does not change very much as can be seen
from the above. In general we can say that both
the t and s dependences are slower than logarith-
mic and that the scale is roughly set by m for
small t values. The last occurrence is quite im-
portant as it gives a physical meaning to the limit
K~/EWA —~. In fact, if the scale had turned out
to be of the order of E [as is the case for the
energy variable in Eq. (4)], the limit K~»E would
not have been of interest in a soft-photon approxi-
mation where the momentum loss is assumed to
be small relative to the momenta of the emitting
particles.

II. LIMITING VALUES OF de(Kq )

We are now ready to study the small- and large-
K& limits of the approximation, using the known
behaviors of the X function:

i/2
Xi-8/2 (&).

For small values of the arguments K~/EWA, we
get from Eq, (14) an isotropic distribution with the
typical power-law behavior of soft-photon emis-
sion, i.e.,

)
P d K„Ki I'(1 —P/2)

'ri«s~~ 2z K,' 2EWA r(1+p/2) '

The aforementioned difficulties in integrating Eq.
(7) to all orders in P prevent an actual check of
this limit. However, the behavior appears reason-
able and it is correct to first order in p for very
forward scattering, where EWA —m and K~«m.

The only difference of this approximation with
the usually expected power law lies in the fact
that K~ scales with 2EvArathe. r than just the cut-
off energy E, as is the case for the frequency dis-
tribution

We now turn to the large-K~ limit of our approxi-
mation, where we hope to encounter some inter-
esting features. We obtain from Eq. (14)

~ &+»/2
d'P Ki) ,» zw~ 2/w r)1+))/2)K, * M&A )

X ~-K~/ i~A

We find that for large K~/Ev A the distribution
exhibits an exponential cutoff linear in Kj, in ad-
dition to a power law, which is, however, not the
same as the one in the low-K~ limit. The expon-
ential cutoff is independent of the coupling constant,
and we have already seen that in the small-t ap-
proximation it is independent of t Equat.ion (20)
thus shows an exponential damping of the trans-
verse-momentum distribution not unlike some
strong inclusive reaction distributions. The num-
erical value of the cutoff is of course not the one
observed there, but this is to be expected since A.

was calculated using a (classical) electromagnetic
current. However, it appears that just as in the
case of Regge behavior, the collective effect of
soft-photon emission contrives to produce a func-
tional behavior in the transverse-momentum vari-
able similar to the one observed experimentally
in strong inclusive processes. The statement that
the exponential cutoff is a multiphoton effect has
to be understood from a nonperturbative point of
view. At first glance, in fact, Eq. (20) shows the
cutoff to be present at any order in P, hence also
at first order. This behavior in P is hardly what
one usually calls a multiphoton effect and, what
seems even worse, one is led to say that our dis-
tribution does not recover the QED limit, where,
at first order in P, there is obviously no exponen-
tial damping. However, one should notice that
the approximation given by Eq. (14) is certainly
correct on the average since fd'P(K, ) = Jd2P(K, )
and JK~'d'P(K~) = jK~'d'P(K~) Having alread. y
seen that for very small K the two distributions
agree, we are led to believe that Eq. (14) cannot
be too far off from the exact distribution even for
K~& EWA. Now, because of the transversality of
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the radiation, soft photons are, on the average,
confined within a cone of angle m/E around the
emitting particle. This implies that in order to
reach high values of K~/EvA one needs more than
one photon. As K~/EVA increases, the exact dis-
tribution is no more of order P but P' (two-photon
threshold), P', etc. For small P, this means that
the distributions falls off extremely rapidly. What
our approximation does is to describe on the aver-
age the sharp decline in the distribution a one
moves from one range on K /EWA to a higher one
which requires one more photon. Our approxi-
mation is thus an analytic expression which
smoothly interpolates the exact discontinuous dis-
tribution. Since the discontinuities appear as
multiple-photon thresholds open up, the approxi-
mation is an average description of multiphoton
effects in a truly nonperturbative way. The dis-
continuous behavior of the distribution function
will be clarified in the next section with a specific
example.

From the above discussion, we therefore claim
that approximation (14) is to be a good description
of the exact distribution (7) both for small as well
as for large K~ values, with the caution that for
large E~ values the approximation is fully non-
perturbative and that its expansion in powers of
P does not admit order by order comparison with
the @ED treatment.

III. DISCONTINUOUS CHARACTER OF THE PROBABILITY

DISTRIBUTION
C

In our proposing Eq. (14) as a viable approxima-
tion, we must understand our failure in recovering
the perturbative result at first order in P for large
K~/EvA As we hav. e tried to convey in the preced-
ing section, this failure occurs because of the
discontinuous character of the distribution function.
To illustrate it, we have chosen to study the
energy distribution, since the latter is simpler
(only one positive-definite variable cu) and its
exact behavior in at least one region, ~& E, is
known. However, it is clear that the discontinui-
ties, if present in dP(&u), are also present in
d'P(K) and hence in d'P(K ), as the latter was ob-
tained from d'P(K) by integration.

The integral describing the energy distribution
ls

carry away, or the limit beyond which the soft-
photon treatment with a classical current is not
valid anymore. For any practical ealeulations a
solution of (21) for ~&E is more than adequate,
and it is the only physically acceptable one if E
has to be the c.m. energy of the reaction. How-
ever, w'hat we are interested in is to show that
dP(ur) as a function of ~/E is discontinuous. The
key to the argument lies in a difference-differential
equation obeyed by the function dP(~)/(d~/E) If.
we put x= ~/E, one has

dP((u) =d —II(x),

where

Taking a derivative with respect to x, we get

dII(x) p 1
( )

p
( 1)

dx x (22)

where we have made use of the fact that

-h(T /g)G~x) = — —8 82''

(23)

since n —1 &x —1 ~n. If the solution in the preced-
ing interval is known, Eq. (23) can be solved and
one has

Since the energy distribution must be zero for
co&0, we must have II(x)=0 for x &0. Then Eq.
(22) for 0&x& 1 admits the solution

II (x) ~ x

The constant can be fixed by the normalization
condition on dP(ur) and is proportional to P. Equa-
tion (22) was first written down in Ref. (9) and
used to obtain in a simple way the already well-
known power-law behavior of dP(e).

However, Eq. (22) allows one to calculate II(x)
I
and hence dP(u&) eventually] also beyond the point

x=1. Let us call 1IO(x) the solution of Eq. (22) in
the range 0 &x &1 and II„(x) the solution in the
range n & x &n+ 1. Then Eq. (22) can be written
as

dP(u)) = d(d
d& ~+ «~&-'~E&&

2m

where

(21)

(24)

iE7 dyh(E7) = p —(1 —e ') .
o

E is the maximum energy that a single photon can

where we have imposed the condition II„(n)
=II„,(n) For the pa. rticular ease of x in the in-
terval (1, 2) one has, after some rearrangement
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of terms,

An expansion in P now shows that the quantity in
square brackets is of order P and hence II, (x) is
of order P'. Repeated applications of Eq. (24) for
higher values of n show that II„(x) is of order

n+ l

IV. CONCLUDING REMARKS

In this paper we have presented a nonperturba-
tive approximation to the transverse-momentum
distribution function for soft-photon emission
derived from the Bloch-Nordsieck theorem. Pre-
vious calculations'4 have already shown the energy
distribution of soft-photon emission to be respon-
sible for a Regge-type behavior of the cross sec-
tions. We now find an exponential cutoff appearing

as a collective multiphoton effect in the trans-
verse-momentum distribution at high energies.
This effect is thus one more indication that a
Bloch-Nordsieck-type mechanism might be at
work in producing some of the observed features
of strong inclusive reaction distributions at high
energies. ~

We have also studied the discontinuities in the
energy distribution within the framework of the
Bloch-Nordsieck method and are presently in-
vestigating the implications of a recursion rela-
tion between the various discontinuities such as
the one obtained in the last section.
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