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The Hamiltonian of t Hooft in two-dimensional quantum chromodynamics, defined as a natural Friedrichs
extension, is shown to have a purely discrete spectrum with eigenvalues approaching infinity.

In studying two-dimensional quantum chromody-
namics (QCD), ' t Hooft has introduced a Hamil-
tonian we call H (in the limit of zero masses, H,).'
This Hamiltonian has been studied numerically and
analytically (see, for example, Ref. 1 and Secs.
121 and 122 in Ref. 2). We do not pursue these di-
rections, but rather use elementary Hilbert-space
techniques to study the spectrum of the operators.
The basic device is comparison with an exactly
soluble Hamiltonian.

Our main result is that the spectrum of H and
that of H0~ (the Friedrichs extensions off natural
initial domains) are purely discrete, with eigen-
values approaching infinity. We have not consid-
ered two obvious questions. Classify other exten-
sions, assuming the given operators are not es-
sentially self-adjoint. How fast do the eigenvalues
approach their expected asymptotic values, m'n

(i.e., the spacing should approach 7)')? The simpli-
city of the results we have found is satisfying, and
continued research is certain to provide rigorous
results on further questions of interest to physi-
cists.

We now define operators H and Ho with domain
S in L'[0, 1], and H~ with domain S~ in L [ m, w]-
Here S is the set of infinitely differentiable func-
tions with closed support in (0, 1), and D~ is the
set of infinitely differentiable functions of period
2m. That is,

$=(f
~

fEC", closed support f& (0, 1)}, (1)

$~=(f )
f&C", f(x') =f(@+2m)}.

Here the closed support of f is the closure of the
set where f40. The operators are determined by
their forms:
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It is important to us that all of these forms arise
from symmetric operators, but we do not show
this. We denote by H~, H~~, and H~ the Friedrichs
extensions' of our basic operators.

Theorem X. H~ + 1 has compact inverse. The
functions e' ", m =0, +1,+2, . . . , are eigenfunc-
tions of H~~ with eigenvalue 0' I)m ~.

Proof of theorem 1. By the rotational symme-
try of the kernel in (6), e' " is necessarily an
eigenfunction. It is an easy calculation (using con-
tour integration) to show

0

(I)

The compactness of (H~~+1) ' is a consequence of
the spectral decomposition just exhibited.

We will characterize operators with compact
resolvents, of the type interesting to us, by the
following straightforward theorems.

Theorem 2. Let A. ~ 0 be a self-adjoint operator.
Then (@+I) ' is compact if and only if there is a
basis of eigenvectors of A with eigenvalues X,. sat-
isfying

(We understand throughout that the X,. are arranged
in increasing order with each eigenvalue repeated
a number of times equal to its degeneracy. All de-
generacies are finite. )

Theorem 3. Let A —0 be a self-adjoint operator.
Let S~i/2 be the domain of A. ' '. Then
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(c-'1 +1) ' is compact

is relatively compact.
We proceed to study

S in S~ by associating
Q~ defined by

[ f(x/~),

[f( x/~),

H (or Ho). We first embed
to f in S the function sof in

0~x~~
0.

We note that this is proportional to an isometric
embedding

(s'f, & f&=c,(f,f& (10)

Most important to us is the following estimate.
Theorem 4. There is a constant c, &0 (indepen-

dent of m, 2 and m, ') such that

(f, Hf& c~(so f, H&so f). (ii)
, [Of course (11) holds with Ho replacing H.]

We first use this theorem to prove our main re-
sult.

Theorem 5. (H +1) ' [also (Hor+1) '] is compact.
Proof of theorem 5. We use the. characterization

of theorem 3 and note that, from theorem 4, there
follows

(yEn„ i
~

(H"'y, H"', y&

&(PEG„~(2~ (H~' 'P, H~' 'Q&~c/c~]. (12)

Our notation here suppresses the I', writing B' '
instead of (H )'~'. The inclusion takes place via

dx dp
Iso f(x) —so f(y)P

4 sin'[2(x-y)]

I f(x) —f(y) I'
y 4 sin'm [-;(x -y)]

~ f(x) —f(y) P

4 sin'w[-;(x+y)]

1
2

1
7T2 dx

1
+3' dx (i4)

We note

sin'm[&(x+y)]~ sin'm[ —,'(x —y)] if 0~x, y~ 1

and

sin'm[~(x-y)) c,~x-y~' if 0 —x,y 1, (16)

for some c,&0. The inequalities and (14) prove
(ii).

We finally note that we can easily show that the
A.„are asymptotically ~c4 ~n ~, but the constant c4
we thus find is less than n' (this follows from the
mini-max principle and our comparison of Ham-
iltonians).

We would like to thank Dr. M. Einhorn for sug-
gesting the problem and providing understanding.

the identification provided by s. It is the use of
the Friedrichs extension that has ensured that (12)
follows from (11). (The inequality holds through the
completion. )

Proof of theorem 4. We study (so f, H~s o f):
(s o f, H&so f&
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