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Model for Reggeon-Pomeranchukon cuts

Swee-Ping Chia*
International Centre for Theoretical Physics, Trieste, Italy

(Received 16 September 1975)

A model is presented for calculating Reggeon-Pomeranchukon cuts, making use explicitly of the Mandelstam
diagram. External spins are treated in a natural way. Calculation for the general case is outlined and it is

shown that in practical application the cut can be calculated in a standard way. Cuts associated with the
exchanges of 7r, p, B, and A, are considered, and characteristics of the RP cuts, as well as the structure
functions, are extracted and discussed. It is found that the model differs considerably from the absorption
model. Two suppression schemes are operative which control the magnitudes of cut contributions to
amplitudes with "naturality" opposite to the Reggeon. The n P cut is found to be a unique case because of the
smallness of the pion mass. In general, the RP cuts are self-conspiratorial. At very high energies, all cuts,
except ~P cut, exhibit quasifactorization.

I. INTRODUCTION

It has been known for quite some time that cuts
in the complex j plane, Regge cuts, are necessary
for the description of hadronic scattering process-
es. The most obvious example is the sharp for-
ward spike observed in the processes np-pn and

yp —r'n, which are dominated by m exchange near
the forward direction. The m Reggeon, being eva-
sive, cannot explain the forward spike. The con-
spirator model, ' ' which explains the forward spike
by assuming conspiracy between the m Reggeon and
its conspirator p„ is not compatible with factor-
ization. '' Regge cut is therefore the only natural

explanation.
Unfortunately, there is as yet no agreed way of

calculating Regge cuts. The absorption model, '
which generates Reggeon-Pomeranchukon cuts
through absorptive corrections, has some success
but is unable to explain the fine details of the zN
charge-exchange (CEX) reaction. The failure is
generally attributed to the lack of structure of the
Pomeranchukon used. Several remedies to the
conventional absorption model have since been
sugges ted, such as the Porner anc hukon model of
Hartley and Kane' and the phase-modified cuts, '
but they are unattractive.

In this paper we present an alternative method
of calculating Reggeon-Pomeranchukon (RP) cuts.
The cuts are generated explicitly from the Man-
delstam diagram, ' with spins explicitly treated in
a natural way. The model (herein referred to as
the diagxant ntodel) was first used to generate the
mP cut and was successful in explaining many fea-
tures of z-exchange reactions. "'" A preliminary
fit to the mN charge-exchange data also shows rea-
sonable agreement. "

The purpose of this paper is to present the mod-
el and to extract from it some common character-
istics of the RP' cuts. To do this, we have investi-
gated cuts associated with four different ex-

changes, w, p, B, and A„ together with a large
class of reactions controlled by such exchanges.
A reaction is identified by its two vertices, e.g.
nN- pN is identified by the vertices zp and NN.

When the exchange is intended to be explicitly
mentioned, we shall use the notations (x)vp and

(z)NN, where it is understood that the symbol in-
side the brackets denotes the exchange. To be
general, we have considered the following repre-
sentative list of vertices: NN, N~, mm, ~g, np,

mB, pf, and mA, .

II. THE MODEL

In formulating the model we are guided by the
general requirement that the input ansatz for the
RP cut in a particular reaction must be the same
Reggeon exchange to the same reaction. The sim-
plest way to realize this requirement over a large
class of reactions is to assume that, in the Man-
delstam diagram, the exchange Pomeranchukon is
linked to the external hadrons via isoscalar-scalar
"o"particles. " We therefore depict the following
physical picture for the RP cut as shown in Fig. 1.
The incoming hadrons, on passing by each other,
each emit a (T particle. The o particles then scat-
ter via Pomeranchukon exchange, while the virtual
hadrons interact via Reggeon exchange. The o

particles are subsequently absorbed by the out-
going hadrons.

Since the Pomeranchukon exchange enters via. the
scattering of spinless o particles, it takes on the
simple form

F' '(s, r) = —y~' exp( A~r)( is-)~ p"', -
with the trajectory function given by g~(r) = 1

Hereinafter, the variable T= —t will be
used instead of the conventional t. It will be seen
that with a Pomeranchukon exchange as simple as
(2.1) we are able to obtain structure in the result-
ing pP cut. The structure comes from the cross-
es.
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V' V'= V'V' for jR-O,

= ——,(V~), (V") for jz ——1, and

= (V')„(V ) for j,=2. (2. i)
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FIG. 1. Physical picture of the Mandelstam diagram,
showing emission and reabsorption of the 0 particles by
the hadrons. Virtual hadrons interact via Reggeon ex-
change, while 0 particles scatter via Pomeranchukon
exchange.

The Heggeon exchange in the process p, +p2 —p3
+P~ is assumed to be

A list of vertex functions is given in Table I. A
symbolic coupling constant g is put in front of the
vertex functions. When more than one coupling is
considered, the symbols x, x', and x" are used to
denote the ratios of these other couplings to g.
For exa.mple, at the (p)AN vertex, g=G and 3'

=G /G . The couplings used are not meant to be
the most general, but sufficient generality is en-
sured. In general, the various coupling constants
can be functions of q'= —T. Hereafter, unless
otherwise stated, we shall set mesonic vertices on
the left and baryonic vertices on the right.

In order to extract the Hegge-cut behavior of
Fig. 1, two assumptions are made. The first con-
cerns the off-shell behavior of the Reggeon ex-
change. In particular, we require that this off-
shell behavior must be sufficient to overcome the
divergence introduced by spin complication. This
is accomplished by assuming that the on-shell am-
plitudes of (2.2) are continued off-shell through a
multiplicative softening factor G, of the form

Fi )(s3, &) =B(3)(ms + T) exP[-As(ms +T)]

x ( is)4s (T) is" (2 2)

=(V')'P (q)(V')' for j„=1, and

=(V') "E,.(q)(V')" «r j,=2, (2.4)

P (q) = g,„+q,q, (ms3, -
Z„„„(q)= ,'P (q}P„(q)+,'P (q-)P„,(q)-

3P, (q )P,.(q )

(2.6)

(2.6)

are, respectively, the spin sums for j~ = 1 and j~
=2. At large s, (2.4) reduce to

where ys(r) =j„-@„'( „m 3r+) is the trajectory func-
tion and m„and j„are, respectively, the mass and

spin of the lowest-lying recurrence on the trajec-
tory The pr.opagator-like denominator, (mz'
+r} ', comes from the long-range force of the
Reggeon exchange. The helicity structure is con-
tained in the residue functions B~,»

which are ex-
pressed as products of the vertex functions

(2.2)

where the dot represents symbolically the product

V V =V V forj =0,

where A,. are some cutoff masses. The powers n;
are determined by the degree of divergence caused
by spin complication. They are listed in Table I
against the corresponding vertex functions. The
second assumption is the Gribov finite-mass hy-
pothesis, "which states that the internal Regge
amplitudes are small if the invariant mass of a.ny
of the internal lines becomes large. The finite-
mass hypothesis is equivalent to demanding that
(i) no internal line is allowed to have both its plus
and minus components of momentum large, and (ii}
all transverse momenta must not be large. In this
context, a momentum component is large if it is
of order Ms.

The Regge amplitudes as given in Eqs. (2.1) and
(2.2) display explicitly the Regge behavior, and are
therefore valid only when the respective energy
variables are large. But when we write down the
Feynman amplitude for the BP cut corresponding
to Fig. 1, the integration variables will undoubted-
ly run through regions for which the energy vari-
ables for the internal Regge exchanges are not
large. In order to overcome this, we find it nec-
essary in practice to make a third assumption,
which will be elaborated in Sec. III.
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TABLE I. List of vertex functions.

Vertex n3 Vertex function

(p) nn'

(m) np

( p) 7iur

V" =g(Pi+P3)"
V""=g(P g+P3)" (P g+P3)"

V=g(&"J) (Pg+q)

V& =&ge'&a& g(e3) q P3

Vp =g'(~3) [g p+&(Pg+q) (Pi+P3)~]

8 b(~ ) [g"~(P +P )"+g"'(P +P )~]pyP3

V I =g(~3) [2g (p1+p3)„+2g,a(pi+P3)p+r(p&+q) (p, +P3)&(p&+p3)1, ]

(p)~A2

V =g(~~)ag(pi+q) (P, +q)'

Vp =ig
p yS( 3) p[g (p&+q) +g '(P&+q) ]piq

V" =g(t 3) 8[4""(P +q) '+g'~ (p +q)a+~(p, +p,)~ (p, +q)a(p, +q) ]

P~ g y~~~( 3)a8[g (pi+P3) +g (Pi+P3)"] [g (Pi+q) +g '(Pi+q) ]P1 (P3- q)'

(x)ÃN

( p)NN

g 2)NN

V =gu 4y5u 2

V& =gu 4(ry& +i o»q'/2 mz)u 2

Vp =gu4y5(p 2+p 4)~

gu 4[ (P 2 P4)p7 (P2+P4) Vq+&(P2+P4)q (P ) ~P4), /~p]u 2

(p)NA

P)NB

V =g64 qa" 2

V~ =g64 75(gap +&p2.a'Y~ +r'P2apg)u 2

g4-)4 (gap ++P2a&p ++ P~P2p)u 2

vv 8+4 Y2(gnp Yv +b'av Yv
+ (Enp&2v +BnvP2v+2 P2n(P2v7v+P2v Yv) + P2nP2vP2v) 2

III. THE RP CUT s, = n,P,s, s, = (1 —n, ) (1 —P,)s, (3.3)

In extracting the large-s behavior of Fig. 1, we
follow Gribov's approach, " treating the diagram
as a Feynman graph. The Sudakov variables for
the momentum k are defined as

n=s ' 'k, P=s ' 2k„k=(k„,f2 ). (3.1}

There are 12 integration variables corresponding
to the three loop momenta k» k, and k, . The fi-
nite-mass hypothesis confines these variables to
the following region of dominant contribution:

P„n,=O(1),

n„p„n, p =O(m2/s),

k, k„k, = 0 (m) .

(3.2)

In this region, the energy variables of the Reggeon
and the Pomeranchukon exchanges are, respec-
tively,

and the respective submomentum transfer squares
are

r, = k', r2 = (4I —k)'. (3.4)

where N and N are cross structure functions for
the left- and right-hand crosses. The dot product
has the same meaning as (2.7). In the following we
shall concentrate on the left-hand cross, bearing
in mind that N can be similarly treated. The ex-
plicit expression for Ni is

From (3.2) it follows that p«p, at the left-hand
cross and n «n2 at the right-hand cross, thus
enabling us to factorize the two crosses within an
integral over k,

d2k e-AR (tttR +T1)e-Ag
F I„')"(s, 7') = ——,

'
( ),t 27T) mR +

24 ( jS}VR (vl)+n p&v ) jR 22+L .ii(R--
X3X1 X4)t2r

d'k dt's dn . D„„~2 A2 tl1 ~2 A2 tl3

f4f =s' ' dp ' 'pnR"4' 'R(1 p )nP«2i (3.6)



MODEL FOR REGGEON-POMERANCHUKON CUTS

where d, = n,. P,s —k,.' —m,.'+ i&, i = 1, 3, come from
the hadron propagators, and

d,'= (n,s —m, ')(P, —1) —k, ' —m, '+i»,

&,' = (n,s —m, ' - r) (P, —1) —(k, + q)'- m, '+ is

are due to the a propaga. tors. The remaining de-
nominators d," and d,"are the same as d, and d3
with m,.' replaced by A,.'. %e have used the vari-
ables @3=a,—n and k, =k, k. D, ~ are the nu-
merator functions in which are lumped all factors
appearing in the numerator. Rules for writing
down D~ „corresponding to a particular V~ „are

3 1
given in Appendix A.

The a, and e3 integrations are easily performed
by contour integration, "picking up poles due to the
o. propagators, which are at

«

n, s = m, '+ r —(1 —P, ) '[(k, + q) '+ m, '].
It turns out that both these integrals vanish unless
0&p, (1, so that (3.6) can be rewritten as

dp p+s~& & |ip(1 -p )4/(&«~&/& (3 8}
3 1 1 1 1 X3X1

The reduced structure functions X are given, af-
ter combining the remaining denominator s,"by

(n, +n, + 1)!
2wm, '(n, —1) I (n, —1)!"

1

xf «
(1-u)3!1'

Pn, -1d~
(1+8)3!3 k', - (ff1+A3+2)

(3.9)

where the integration variable k, has been replaced
by k

k/2
D =H +H, ', + +H„

Pl 3
" m3

(3.17)

k', =k, —«(1+u)(k —P,q).

The other quantities appearing in (3.9) are

t}= [(1-p, )'m, '+ p,m. ']/m, ',

A, = 1+ (1 —I')x+ (1 —u)z,

~ ik —P,q),
4m3 q

(3.10)

(3.11)

(3.12}

(3.13)

where n ~ n, +n„and H,. are polynomials in u to
some degree m, which depends on n a,nd i,

«,. =pc, , (3.18)
g-0

The coefficients c,, are finite polynomials in k and

q. Examples of the explicit expressions for the
numerator functions can be found in Appendix B.
With D~ given by (3.17) and (3.18), we arrive at the
final expression for X~:

z =, (1 —P,)'(m.,' —m, '),2m. 'n
(3.14)

egL + ~(n1 n3)1

2&l3 f~ 0
(3.19)

, (1 P,)(a,.' m,.'), i=1, 3.
3

(3.15)

The integrations in (3.9) can be performed ana-
lytically once the numerator function D~ is ex-
plicitly written down. The process is as follows.
D, as given by the rules of Appendix A, are ex-
pressed in terms of the Sudakov variables P„n„
n„k„and k. The other variable P is neglected in
comparison with P, . The powers of n, a,nd +3 are
then counted in order to determine the powers n„
n, appearing in the softening factor G„and the
following assignments are made:

n, = highest power of n„
n, =highest power of n3.

(3.16)

Next, the values of n, and n, from (3.7} are sub-
stituted into the expression. , and the variable k, is
replaced by k,' according to (3.10), thus introducing
the variable u into the expression. The final ex-
pression for D can be written as

The functions W,'.,".1'"3' are given in Appendix C. It
is noted that the 8',.',".'"3' functions at a particula. r
vertex do not depend on the spins of the external
particles or the type of excha, nged Reggeon. The
external spins and the Beggeon coupling serve only
to determine the values of n, and n, .

The calculation of the right-hand cross is iden-
tical to that of the left-hand cross. In going from
the N to NR, we merely have to make the substitu-
tion

(mq, m«', Pq, n~, kq', n, k; q)

- (m„m, ; n„P„—k, ; P, k; q). (3.20)

Equation (3.8), for example, will be replaced by a.

similar expression with an integral over the vari-
able 0.2.

In practical evaluation of the P, a,nd n2 integra-
tions, we require a third assumption in the model.
The assumption is that when a hadron emits a cr

particle, its large component of momentum (P„on
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~R, P =~R, P+ 4R, P ln4- &
2

I . R

(3.22)

(3.23)

It is understood that in (3.23) the variables p, and

n, have been set equal to & ~

We reiterate here the main steps involved in the
calculation of the BP cut in a. particular reaction
from the diagram model:

1. Write down the vertex functions for the Beg-
geon exchange.

2. %rite down the corresponding cross nun1era-
tor functions according to Appendix A.

3. Express the numerator functions in terms of
Sudakov va, riables, a.ssign values to n„n„n„and
n4, and bring the numerator functions into the
forms (3.17) and (3.18).

4. Compute the W",,- functions according to Ap-
pendix C.

5. Obtain the cut amplitudes from (3.19) and

(3.21).

IV. SOME GENERAL FEATURES OF THE STRUCTURE

FUNCTIONS

The most prominent characteristic of the dia-
gram model lies in the factor Kt, ~

which appears
in the final expression (3.21) for the cut. In com-
parison, if we were to generate the BP cut via ab-
sorptive corrections, ' using the same Begge ex-
changes (2.1) and (2.2) as inputs, we would obtain
an expression similar to (3.21), but with

the left and P, on the right) must be shared equally

by the emitted 0. and the virtua. l hadron. Since by
definition ky plpy and k, = a,p, , this assump-
tion is equivalent to setting pl &p z The purpose
of the assumption is to avoid the unwanted and a.r-
tificial divergences in the P, and a., integrations,
which arise from the singularities at the end points

p 1 Q2 0 1 The singular ltles are artificial be
cause at these end-point regions one of the two en-
ergy variables s, and s, is not large enough to
justify use of the Hegge form (2.1) or (2.2) for the

internal exchange. To be exact, we must modify
the internal exchanges appropriately at low ener-
gies. But since we are concerned only with ex-
tracting the Begge-cut behavior from the Mandel-
stam diagram, we shall avoid these end-point re-
gions. This is most effectively taken care of by
the third assumption. With the help of the last
assumption, we can rewrite (3.5) as

d2k -)tR {mR +7'g )e-)IP7"P

( I ) 8
(2 &2 2~"R +~i

(3.21)

where

{abs )
~R, P R, P+~R, P

7' = (k ——,'q)-'. (4.3)

It is interesting to note that, with the third as-
sumption of the model, the W,-,. on the left and
those on the right are functions of this same vari-
able w'. This is a reflection of the left-right sym-
metry inherent in the model. In fact, if the two

crosses are identical, a relation between the
structure functions exists. For example, when
both crosses are NN crosses, we have the relation

Nxv ~RN-x-~

where qz is the naturality of the Heggeon (q~ =+ 1

for a Beggeon with natural parity, qR= —1 for a
Heggeon with unnatural parity). The 7' dependence
of 8', , is illustrated in Fig. 2. It is observed that
the dependence is typical of all 5',&., it is monoton-
ically and gently decreasing. The 8', , also depend
on the a mass m, and the two cutoff masses A, and

A3 The dependence on I„A„and A, is best
illustrated in the ease of the m p cross, i.e. , the
cross at the m p vertex. The behavior of W,.',.'" at
7' = 0 is such that for I,', m3' «m, ' «A, ', A, ',

(4.2)

where 8 is the angle between the vectors q and k,
n is the net helicity flip, and the residue function
8 t, ~

is to be evaluated with T —~,. It is obvious
from (4.2) that, besides the factor cosn8, the
structure of the cut comes entirely from the Beg-
geon couplings. If a. more complex structure were
desired of the cut, one would have to employ a
Pomeranchukon with complicated struetur e. The
diagram model, on the other hand, generates the
cut with a structure given by the factor Kt„~ which,
in this model, is the product of two structure func-
tions corresponding to the two crosses. Each
cross structure function contains the detailed in-
formation about the cross, including the helicity
structure. As given by (3.19), two factors come
into the structure function, (i) W, , which are due
to the inherent cross structure, and (ii) c,, which
describes the helicity structure of the cross.

The W, , functions come from the four propagator
denominators at the cross and, as such, they are
an inherent feature of the cross. They do not de-
pend on external spins or on Beggeon coupling, ex-
cept for assigning values to n, and n3. Calculation
of such functions is outlined in Appendix C. In

general, they are given by logarithmic functions of
complicated arguments. The dependence of 8', , on
the momenta k and q is simple, and it is through
the variable
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FIG. 2. Dependence of W;, on 7'=(k -~-q) at m~
=13 GeV and ~ =A& —m& =A —m~ ——20 GeV for the 7t'p

cross. Wpp' refers to the ~1t cross.

Wpo Wop Wp4 w g'/m, ',

Wyoy Wgp ill(A /Yp1 ) &

W„- (m, ' —m, ')/m, ',

W„-A'/m '

-3
10 l I I I I I I I I I I I I ~ I

5 10 15 20

GIV

0
10

O.l W20
~ M

~
M

~ W

~
A

~
A
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the 1t1t cross.

This is illustrated in Figs. 3 and 4. We find that
in general 8",, are decreasing functions of m, ', but
are increasing functions of A'.

The c,, functions come from the numerator func-
tions and, therefore, depend strongly on the ex-
ternal spins as well as the Reggeon coupling. The
helicity structure of the cross structure function
is reflected in c,, via the following pattern:

1. For X, -X, =O,

c,, =a, +a@"q' +0 k

+a, (k "q' ')'+a, (k' 'q")'+
where the a,. are, in general, polynomials in k' and

2. For X3 gg 1,

I
e r

I r
/

/
-1 r10~r

a /
-/
7

W(1,1)
10

(1,1)
00

~ 100w",,
')

4;,')(ma)

~ ~ ~
~ ~

c,, =a'k' '+a'q' '+a'k' 'k' 'q"
1 2 3

+a,'q' 'q'-'k" + ~ ~ ~ .
3. For X3 —g, =2,

c,, =a"k' 'k' '+a"q' 'k' '+a"q' 'q' '+ ~ ~ ~

1 2 3

In the above, the symbol k"' is used to denote k„

-3
10 I I I I I I I I

10 20 30 40 50

0) GeV

FIG. 4. Dependence of W;, (v' =0) on ~ =A& -m&
=A -m at m =13 GeV for the np cross, W pp'

refers to the ~n cross.
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(et=) C
N&,~,

= N~ ~, + & N-~, -~,.3 1
(4.6)

Of the vertices considered, only the NN vertex is
relevant to C conjugation. Combinations with de-
finite g and g are shown in Table II. It is noticed
that only the combination N, /, , /, —N, /, , /, has un-
natural C parity, and it receives no contr ibution
from our RP cuts. This is obvious because, since
we do not consider A, -type Regge poles, the con-
tributions of RP cut to unnatural C parity must
necessarily be absent.

One useful property of the structure functions is
the relation

Ni ~,
= qRqitl~(- l)" N*, (4.6)

where gR is the naturality of the Reggeon. This

TABLE II. Combinations of the NN cross structure
functions exhibiting definite naturality g and C naturality
~C

Structure
function

N «, «2+N, /2-j. /2

N(/2~ )/o —
j. /2 j. /

N j/2-ip+N-j/2, i/2

1/2-1/2 -j. /2, 1/2

+ ik, . We have, of course, q" = q' ' = q„= —v T,
since q, = 0. The pattern can be understood if we
identify k' ' and q' ' as objects which raise the he-
licity by one unit at the left-hand cross, and 3z"
and q" as objects which lower the helicity by one
unit. Then for X, —X, =0 the structure of c,, is such
that there are equal numbers oi' (+) and (—) objects
in each term. For g, —X, =1 there is an excess of
one (—) object in each term, and for X, —X, = 2 there
are two excessive (—) objects in each term. The
roles of (+) and (-) objects are interchanged at the
right-hand cross.

The quantum numbers of the RP cut are essen-
tially the same as those of the Reggeon except for
parity. We can, nevertheless, form combinations
of the cross structure functions which project out
definite parity. Referring to the left-hand cross,
the combination with na. turality p is

(4.4)

where g, and q, are naturalities of particles 1 and

3, respectively. In a similar way, when particles
1 and 3 are identical, combinations can be formed
that have definite C parity; the combination with

C naturality g is

relation is important because, together with (4.4),
it implies that the real part of a structure function
always has naturality g=qR, wherea. s the imagi-
nary part has naturality g= —g~. It is found that
the structure functions are such that ImN is pro-
portional to k, and is an odd function of k„where-
as ReN is an even function of k, . This implies that
the cut contributes to amplitudes of naturality g =

—q~ with a factor
hazy

in K(, )
but the contributions

to amplitudes of naturality q=q~ need not contain
any factor of fz, . Cut contributions with a factor of
)jz, from one cross and no factor of k, from the
other cross are zero because they are of mixed
naturalities, and are strictly forbidden by parity
conservation; parity must be conserved from one
cross to another, although the cut itself has no

definite parity.
At a mesonic vertex, the structure function N«

is constrained by (4.6) to be either real or imagi-
nary. It is purely imaginary when q~= —q, q, . In
this case, it is suppressed by the factor q„k,. One
should note that N„, since it is helicity nonf lip,
need not contain any factor of q„. The presence of
the suppressing factor is due entirely to N«having
naturality opposite to that of the Reggeon. This
suppression is observed at the following vertices:
(p)zur, (A.,)mp, (p)~A„and (A, )tt f. On the other
hand, when qR = qyp3 Npp is real and is enhanced.
There is a similar suppression in the structure
function N, / g/p at a baryonic vertex. For the NN

vertex, either Re N, /, , /, or Im N, /2 l/2 has un-
naturality C parity. ReN, /, , /, will be of unnatural
C parity when g~= —,in which case ImNl/ /2 is
suppressed by the same factor q„k,. It therefore
follows that the contributions of pP and BP cuts
are unimportant in N, /, , /, at the NN vertex. On
the other hand, when g~=+, ImNl/2 l/2 is of un-
natural C parity and ReN, /p y/ is enhanced. For
the N& vertex, ImN, /»/, is similarly suppressed,
while ReNl/2 g/p is always enhanced. The above
suppression scheme leads to strong suppression
in the cut contributions to amplitudes of naturality
opposite to the Reggeon and which do not partake in
the M = 1 conspiracy.

There is a second suppression scheme which is
operative only at very high energies."" This sup-
pression is particularly important in structure
functions where there is a change of helicity by one
unit. Structure functions with naturality opposite
to g~ are suppressed in comparison with struc-
ture functions with naturality —g~. The suppres-
sion is directly related to the quantity n~~'lns, and

therefore grows logarithmically as s increases.
However, the ~P cut, owing to the smallness of the
pion mass, is little affected by this suppression
scheme. This has important consequences on con-
spiracy.
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V. CHARACTERISTICS OF THE RP CUTS

The RP cuts from this model, besides being
richer in structure, are also capable of contrib-
uting to all amplitudes, except those which have
unnatural C parity. We therefore find the cut to
populate in more amplitudes than does a,n absorp-
tive cut. For example, our mP cut contributes to
four of the five amplitudes innp CEX, whereas the
absorptive cut contributes only to two of them,
namely F,/»/2. «2, /2+F, /2 «, , /21, . The e a
amplitudes receiving contributions from our mP cut

1/2, 1/2;1/2, 1/2+ 1/2, 1/2;-1/2-l /2 d 1/2, 1/2;1/2-1/2
In p production, our pP cut has an extra contribu-
tion in F, , /. ../, +F, ,/. ../, . In u production, the
extra contribution of the pP cut goes to Fp1/2 p 1/2.
It is observed that all these extra amplitudes which
receive cut contributions only in this model have
naturality opposite to the Reggeon. They are all
suppressed to some degree because of the first
suppression scheme mentioned in Sec. IV. It
therefore appears that although the cut has extra
contributions, these extra contributions are sup-
pressed. They are, nevertheless, of importance.
For example, because of its extra contribution in

Fp 1 / 2 p 1 / 2 the pP cut has a small contribution to
the density matrix element pp, in (d production.

All RP cuts are found to be self-conspiratorial
with respect to the M = 1 conspiracy relation. We
recall that the M = 1 conspiracy relation is a con-
sequence of angular momentum conservation; it
relates amplitudes of both naturalities which have
a unit helicity flip at each vertex. For example,
the conspiracy relation for vector-meson produc-
tion is

( l, l/2;0-1/2+ -l, l/2i0-1/2)

I I/ 2) O-l/2 -1,1/ 2i 0-1/ 2)

(5 I)

at 7 =0. In order to have a conspiratorial solution,
this relation must be satisfied nontrivially. The
criterion is F, , ,.„/», ( r0) 40. This is satisfied
by all RP cuts in this model. Self-conspiracy is
an important feature of Regge cuts. In g-exchange
processes, for example, it is the conspiratorial
mP cut interfering with an evasive p pole that ac-
counts for the sharp forward spikes observed in

nP CEX, )/' photoproduction, and p,",do/dt of po

production. "" For other RP cuts, this conspira-
torial feature of the cut is masked by the second
suppression scheme discussed in Sec. IV. Con-
tribution to the amplitude F 1 I/2 p 1/2
—p~F, , /2. 0 ./„which has naturality —q» is sup-
pressed at large s, resulting in the suppression
also of the contribution to F, 1/2 p 1/

+p~F, , /2. 0 ./2 at T=0. The cut therefore appears

ff („)-- Q a, , k,' 0', (5.2)

and evaluating the following integrals:

I; k„'k'.
(2)t)' m s'+ r,

With the help of I,, , (3.21) becomes

(5.3)

F"""(s,r) = ——,
' Qa, , f, , . (5.4)

The integral Ipp is given by

e- ~mR e- z p /&~z. ~p)1 G(z x)
00 4+ z.

(5.5)

where

z = (Xs+)(p)ms', (5.6)

7x= P
~R+ ~P R

and G(z, x) is a descending series in z,

(5.7)

(5.8)

In arriving at the expression (5.5) for I» and the
series expansion for G, we have already assumed
that z» 1 and ~x

~

&1. The condition z» 1 is real-
ized by most RP cuts, except the pP cut, at s» 30
GeV'. For the mP cut, z»1 can be fulfilled only
at s» 10"GeV'. It therefore appears that (5.5) ts
not good for the pP cut. We shall return to this
point shortly. Assuming that (5.5) and (5.8) are
valid expressions, we can express the other I,,
in terms of I„, for example,

1 BGI = —m vx 1+——I10 R zG ex
(5.9)

1 2x BG 1 8G x2 ~'G
'2z'zG e~ 2z'G ex z'G ex'

(5.10)

1, 1 BGI =—m 2 1+——I
2z " zG Bx

(5.11)

In the limit z» 1, we can approximate G by

to be evasive, with a small residual conspiratorial
effect because the contribution to F 1~ 1/2 p 1/2 at T

=0 is not strictly vanishing. The degree of eva-
siveness increases logarithmically as s increases.
But at lower energies, particularly at s & 30 GeV',
the suppression is weak, and we expect that the
conspiratorial effect of the RP cuts be visible, for
example, in B' production.

At very high energies, the last integration over
k in the expression (3.21) for the cut amplitudes
can be evaluated approximately. This is achieved
by expanding K~, ~

into a Taylor series in k,



S%EE-PING CHIA

G(z, x) =(1+x) '.

In this limit,

(5.12)

I,, = q 50I00,
R+ P

(5. iS)

so that (5.4) becomes, after resumming the Taylor
series,

P'""( )= ——,1 lf k- j).f)t} i 8 00 i)t} ~ ~
~ (5.14)

(5.15)

Therefore, the opposite-naturality contributions
are suppressed when z» 1; the suppression in-
creases logarithmically as s increases, and al-
rnost linearly as ~ increases. At 7 = 0 the unsup-
pressed like-naturality contribution of the cut is
forced by the conspiracy relation (5.1) to suppress
itself, giving rise to a forward dip structure to the
like-naturality contribution. The stronger the sup-
pression, the more profound is the forward dip,
thus rendering the cut to appear evasive.

The zP cut is an exception by itself. Because of
the smallness of the pion mass, the quantity z is
not large at energies which are within reach. We,
therefore, cannot express I» by (5.5). It can,
nevertheless, be demonstrated that I» is well ap-
proximated, at least for «10m, ', by the formula

=ee ".
00 (5.16)

From (5.16) we can derive expressions for other
I,, in terms of I», similar to Eqs. (5.9) to (5.11).
It is found that there is little suppression of oppo-
site-naturality contributions. As a result, the con-
spiratorial effect of the zP cut is very prominent.

Another important characteristic of the RP cuts

%'e recall that K~~} is the product of the two struc-
ture functions. From the exact formula (3.21), the
cut has factoriza, tion within the k integration. But
Eq. (5.14) tells us that in the limit z -~, cut am-
plitudes factorize completely. This quasifactoriza-
tion of the cut is accompanied by the second sup-
pression scheme of Sec. IV. It is important to note
that this qua. sifactorization is not valid for the mP

cut.
To see how the second suppression scheme of

Sec. IV operates, we recall that the opposite-nat-
urality contribution of the cut, i.e. , the contribu-
tion to amplitudes with naturality opposite to gz,
has an extra factor of k,' in K~,}. In amplitudes
with a unit helicity flip at both sides, which are the
relevant amplitudes for M=1 conspiracy, the ratio
of the opposite-naturality contribution to the like-
naturality contribution is roughly given by the ratio
of I„to I», which, when z»1, is

generated in this model concerns pole-cut inter-
ference. Contrary to the absorption model, we find

that. the pole-cut interference is not necessarily
destructive. Examples of constructive inter fer ence
are found in (i) the vP cut with v pole in the am-
plitude F, ,& 2, ,&, for p' production, "and (ii) the

pP cut with p pole in co' production. In some cases
the interference depends on the parameter rn, '. A

detailed analysis of the pole-cut interference will
be presented elsewhere.

VI. CONCLUSION

We have presented an alternative model for cal-
culating Beggeon- Pomeranchukon cuts. The model
is simple and easily applicable. Spin complication
is treated in a natural way. In practical applica-
tion, the calculation of the cut involves essentially
two steps: (i) calculation of the numerator func-
tions D~ and D~, and (ii) evaluation of the appro-
priate 8', , functions. One can actually evaluate all
the 8', , functions for all types of RP cuts and list
them as known functions. Only the numerator func-
tions need then to be calculated in any particular
case.

The diagram model is found to give structures
to the cut even with a simple Pomeranchukon. In
addition, the cut. contributes to more s-channel
helicity amplitudes than does the absorptive cut.
All the contributions from a cut are characterized
by one strength, which is the product of two cross
coupling constants as defined by (A6). The relative
strengths of the various contributions are inherent
in the model. It is found that cut contributions to
amplitudes with naturality opposite to the Beggeon
are somewhat suppressed. Those opposite-natu-
rality contributions which do not take part in the
M = 1 conspiracy are strongly suppressed. Those
which partake in the M = 1 conspiracy are sup-
pressed at very high energies, except for the case
of the gP cut.

All RP cuts are found to be self-conspiratorial.
This self-conspiracy is particularly prominent in
the mP cut, which results in the sharp forward
spikes observed in p exchange processes. For the
other RP cuts, the conspiratorial effect is masked
by the suppression of the opposite-naturality con-
tribution at high energies. However, the effect
may be visible in B' production at s &30 GeV'. At
very high energies, the RP cut (except the vP cut)
exhibits quasifactorization, a property not ob-
served at lower energies.
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APPENDIX A

1. wP vertex: V" =gI"(p„p.,),
D"=gcI'"(k „k,),

2. pV vertex:

(Al)

V" =g(&,*) I'".(p„p,), (A2)
D"=gc(e„*j,(-g' +.k;k;/m, ')I"",(k„k,),

wT vertex: V"=g(t,'),1""(p„p,),
(A3)

D"=gc(tf)"Z„q{k,)I'" (k„k,),

In this appendix we give the rules for writing
down the cross numerator function. In Table I,
the vertex functions fall into five classes, i.e, ,
wP (P=w, il), w V (V= p, ~, B), wT (T=f,A,), XN,
and N~. The rules are written separately for each
of the classes. I orentz indices on the vertex func-
tions and the numerator functions are abbrevia. ted
by the letter A. :

where Z„B is as given in (2.6), with»s replaced
by w„

4. i' vertex:

V"=g . I' (p, p, )
A4)

D"=g cii, (g, + m „)I'(k„k,)(k, + m„)u„
5, Ã& vertex:

V" =gE,.1.".(p„p,)&&„

D"=go~,'(-g„+3k,~k,8/m~'+-, 'k„y~/m~)

x (P, ~»,)r" (k„k,)(k, +»„),,
(A5)

In the expressions for D", we have lumped all the
coupling constants into one single quantity g~,
wh:ch we shall call the cross coupling constant,

gc=y g f,f,/(16w'),

where f, and f, are coupling constants « the & P»-
ticle to pa, rticles 1 a.nd 3, respectively.

APPENDIX 8

We give here the explicit expressions for some of the numerator functions:

1. (w)wp cross: D„= {4k"-+(i' ' ni '+6» '-'+4uk" —k')k,"
2yv7. '

+[-,'m, '+m, ' m, '+k' ——,'-(I+u)'k"][,'-m, ' —2», '- (1 —u)'k "]],

D„=&—,{[2uk,"+-,'(3+u)m, ']k" '+m.,-'q' '+-,'-(1 —u)[-,'m, ' —m, '+k-'——,'(1+u)'k"]k' '},

where k' =k ——,'q, and the symbol k"' denotes k„+it,.
1

2. (p)w(u cross: (D„),= v s(1 —u)(q "k' ' —q' 'k"),

(D„),= ~ v sk" '.

3. (w)XE cross: D~&, », =--', (q "k' ' —q' 'k"),

D"„,„,=- ., (-', (v+,.-', &ii,-'k"' ,'„m, 'q'*'--,'-(1-u')—[.{k'——.'q)k"' ——,'k"q "]}.
Vl

The W', , functions are defined by

(e1)
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(1-Q)3l 1
(1+u)y3

y nl -ldll p ll3 Id/ (A $ Q )
tll j+li3 '(+1 )

1 3 3 1 1 3
0 0

(C2)

for n„n3~ 1, and

L &0, 0} A0
q

The I., functions satisfy the following relation:

I (n( n3) I d I (nl, n3)
mg dA m

(C3}

(C4)

so that once L,„'",'„"3' is known, all the other I., can be calculated. We give here the functions I „'",&*„",3'for the
two important cases (i) n, =n, = 1 and (ii) n, =2, n, =3:

L,""= 2q(A, lnA, -A, lnA. , -A, lnA, +A, lnA, ),
L5'" = —5q'g(A,'1nA, -A', lnA, -A', lnA, +A', 1nA, )- (~ + —,

'
+ —,')(A -A,'-A', +A', )]

—46„[(A,'lnA, -A', lnA, ) —(-,
'

+ —', )(A.', -A.',)]
46,[(A,'lnA, —A,'lnA, ) —(-.'+-.')(A,'-A', )]

+ 66,'[(A,', lnA, -A,' lnA, ) ——,'(A,' —A,')]

+ 126,6,(A,' inA, ——,'A,') —126,6,'A, lnA J, (C6)

t)[x(1+x)]"' (1+x)"' —~x ' (C9)

where q and x are as given by (3.11) and (3.13),

6, ,=(1+u)y, „
A, is given by (3.12), and

A, =A, +

A3=A, + 5„
A4-A +5 +5 .

The computation of 8', , from I,. is straightforward
but tedious, and will not be given here. We give
here only the simplest of all 8', , , i.e., 8",0"'" for
the case m] Pl3.'

respectively. The general 8', , have more com-
plicated structure than(C9). But they all have one
feature in common, namely the dependence on the
logarithmic function

Z„(a)=n '-'"'" ln
1 '
1. —0

1—2 0+30 +' ' '+ 0
2n —1

(C 10)

where a is some algebraic function of x, z, y„and
y3. It should be noted that when particles 1 and 3
are identical, m, = m3, J,=X„and I, , are eve
functions of u. This implies that W, , =0 unless j
ls even.
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