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We study the phase transition through which the spontaneously broken symmetry of the cr model is restored at
finite temperature. The methods of nonrelativistic many-body theory, in which the equations of motion are
approximated in a self-consistent manner, are applied to the o. model in 1 time and d space dimensions for
2 & d & 3. We consider several different approximations of this type and discuss difficulties associated with
their renormalization. The Hartree approximatioii predicts a second-order transition for all d, but breaks
down at high temperatures when d = 3. The "modified Hartree approximation, " a variant of Hartree theory
which incorporates more of the effects of thermal fluctuations, predicts a first-order transition for all d. This
result is shown to be an artifact of the approximation. The tr model with N fields [the O(N) model] is studied
in the limit of large ¹ For 2 & d & 3 this model undergoes a second-order transition whose critical exponents
are computed to O(1/N). When d = 3, however, the large-N approximation breaks down at high
temperatures.

I. INTRODUCTION

The concept of spontaneously broken symmetry
has come to play an increasingly important role
in relativistic field theory' and descriptions of
high-density matter. ' As Kirzhnits and J inde'
first proposed, one might expect spontaneously
broken symmetries in field theories to be restored
at sufficiently high temperatures, analogous to
the way in which nonrelativistic systems, such as
superfluids, superconductors, and ferromagnets,
in broken symmetry or "condensed" states, be-
come symmetric or "normal" above a critical
temperature, T, . Such possible restoration of
symmetry in the hot early universe has interesting
cosmological consequences. 4 Finite-temperature
phase transitions from broken symmetry to nor-
mal states also have importance for the behavior
of hot high-density matter. For example, the
pion-condensed state of neutron star matter should
be destroyed at high enough temperature; an un-
derstanding of the condensation near the critical
temperature is needed to assess the effects of pion
condensation on the cooling of neutron stars. ' Also
of interest are possible finite-temperature phase
transitions from normal to abnormal nuclear mat-
ter. '

Subsequent to the suggestion of Kirzhnits and
I inde, several authors' have given descriptions
of how finite-temperature field fluctuations can re-
store broken global as well as gauge symmetries;
approximate calculations of critical temperatures
have also been presented. ' In this paper we fur-
ther explore phase transitions in finite-tempera-
ture field theory, focusing on the transition ex-
pected in the 0 model. This model is particularly
interesting in the study of high-density matter

since it forms the basis of the description both of
the pion-condensed state of neutron star matter
and of abnormal nuclear matter. Limiting our
considerations here only to states w'ith no nucleons
present, we shall study the extent to which various
approximate calculational schemes reproduce the
finite-temperature behavior physically expected in
the model and the predictions they make about the
order of the phase transition from broken sym-
metry to the normal state.

The 0 model is described by the Lagrangian
density

I = -s [(e„o)'+(B„v)']+-,'m, '((r'+st')

-s lto(a'+st')' . (1.1)

Here 0 and@ are real fields, m, ' is positive, and
for the moment we take the m field to have only one
component; the extension to three or more m fields
is trivial. Because of the negative squared-mass
term, -mo', the complex field Q—= (o +iir)/v 2 has
a nonvanishing constant vacuum expectation value.

At finite temperature the behavior of the 0 mod-
el is described in terms of thermal expectation
values (X), defined for any operator X by

(X) = Tr(e "I X)/Tr(e "I ), (1.2)

where H is the Hamiltonian derived from (1.1) and
temperature units are chosen so as to make Boltz-
mann's constant unity. The trace is over all states
with the internal quantum numbers of the vacuum.
At sufficiently low temperatures we expect the
broken-symmetry state with thermal expectation
value (Q) nonzero to persist. We choose the
phases of the fields so that (Q) = (v)/W2 is real;
(tt) is thus zero at all temperatures The effect o. f
thermal fluctuations is to decrease (tr) monotoni-
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FIG. 1. (a) Qualitative behavior of (o) as a function of
temperature. T~ is the system transition temperature.
(b) Qualitative behavior of the masses m~ and m~ be-
low T, , and the common mass m~= m~= m above T, .

cally with temperature from its vacuum value.
The critical temperature, 7„ is defined by the
vanishing of (o), as in Fig. 1(a); the continuous
decrease of (o) to zero at T, shown in that figure
is characteristic of a second-order phase transi-
tion. ' Defining the masses m~ and m„at any tem-
perature as the poles at wave vector k= 0 of the
thermal Green's functions for the 0 and w excita-
tions, respectively, we expect m and m to. be-
have as in Fig. 1(b). Below T„ the v field is the
Goldstone boson' in the condensed state and one
has m, =0. The mass m, is nonzero below T, .
Since the symmetry between a and m is restored
at the critical temperature, m, must go to zero
at T, , and m =m, above T, .

Several authors' have pointed out that the g mod-
el at finite temperature should behave qualitatively
in this way. Such behavior is characteristic of a
wide variety of familiar nonrelativistic systems
(e.g., superfluids, superconductors, and ferro-
magnets) which undergo second-order phase tran-
sitions. Indeed, one can invoke the principle of
"universality" (which, crudely stated, asserts that
the asymptotic behavior of systems very close to
a second-order phase transition is determined
purely by the space dimensionality and by the sym-
metry of the order parameter and of the Hamilton-

ian and is'independent of the detailed dynamics'0)
to conclude that the critical exponents character-
izing the asymptotic behavior of the 0 model with

(N —1) v fields are identical to those of the clas-
sical N-component Heisenberg ferromagnet. This
correspondence is a fruitful one since a great deal
is known about the critical behavior of classical
magnets. In particular, Polyakov, "Migdal, ' and
Brezin and Zinn- austin" have recently shown that
for N&2 the nonlinear g model [i.e., A, , mo'-~
with m, /A. remaining finite in the notation of Eq.
(1.1)] becomes asymptotically free in two dimen-
sions. Brezin and Zinn- Justin" show that in (2+@)
dimensions with e small, this model, whose criti-
cal properties are identical to those of the N-com-
ponent Heisenberg ferromagnet, has the qualita-
tive behavior shown in Fig. 1 with T, given (in
units of m, '/A) by T, =2m'/(N —2)+O(e'). They
compute the critical exponents for the nonlinear
o model to O(e'); the results should apply equally
well to the linear g model of Eq. (1.1).

Our goal in this paper is to find simple approxi-
mate treatments of the linear cr model that repro-
duce the qualitative behavior of Fig. 1 and agree
as closely as possible with the exact results avail-
able in (2+ e) dimensions. Such approximate
treatments can form a useful basis for future cal-
culations of spontaneous symmetry breaking in
high-density matter at finite temperature; the
emphasis in such calculations is on having an ap-
proximately correct description over a wide range
of temperatures, rather than an exact description
of the critical region.

The approach we follow is to generate self-con-
sistent approximations to the equation of motion
for (y) and the Green's function equations derived
from (1.1). Schematically written, these equations
are G, '(P) =A.,(P QQ) and G '=G, '-Z, where
G, '= '+m, '. We approximate (&j QQ) and the
self-energy Z in terms of (Q) and the complete
Green's function, G, and then solve the resulting
equations for U and (Q), thus obtaining expres-
sions for m, m„and (o) as functions of temper-

- ature. One variant of this scheme was used by
Kirzhnits and I.inde~' in their recent analysis of
the finite-temperature phase transition in the a
model. A similar approach was used by Chang, "
who showed that one can induce a phase transition
in the a model at zero temperature by varying the
coupling constant. Techniques for generating self-
consistent approximations directly from the equa-
tions of motion have been used extensively in
nonrelativistic many-body theory, "notably in
models of superfluid helium and superconductors.

Such self-consistent approximation methods are
particularly useful in problems such as the pres-
ent one, where there is no small parameter. Sim-
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pie approximations to (Q &pQ) and Z correspond
to the summation of whole classes of diagrams
written in terms of the bare propagator Go More-
over, by choosing these approximations in ac-
cordance with certain prescriptions, discussed in
detail in the following section, one is guaranteed
that the self-consistent solutions automatically
obey the Goldstone theorem or preserve the con-
servation laws (i.e., the Ward identities).

In this paper we examine a number of such self-
consistent approximations for the 0 model.
natural starting point is the familiar semiclassi-
cal or "tree" approximation. " This scheme is in-
adequate in that thermal fluctuations are complete-
ly neglected; symmetry breaking persists to ar-
bitrarily high temperatures. Next we examine
Hartree theory, "an approximation which incor-
porates fluctuation effects in the simplest possi-
ble way. Because of its (albeit crude) treatment
of fluctuations, Hartree theory does predict a
finite transition temperature and a second-order
phase transition. Unfortunately the structure of
this theory is trivial below T„both the 0 and m

fields are free and massless.
Hartree theory provides the first illustration of

a general difficulty encountered in formulating
self-consistent approximations in relativistic sys-
tems: The ultraviolet properties of the theory can
give rise to anomalies in the self-consl, stently
computed Green's functions. In particular, we
find that in the Hartree scheme in four space-time
dimensions it is impossible to define the mass of
the o and m fields self-consistently at tempera-
tures well above T, . This failure is readily seen
to be associated with the ultraviolet behavior of
the theory; it is (both in Hartree theory and more
generally) purely technical and does not, we hope,
affect the critical (i.e., infrared) properties with
which we are primarily concerned.

In order to circumvent this c'ifficulty we con-
sider the o model in 3. time and d space dimen-
sions, where d is taken to be a continuous param-
eter less than or equal to 3." So long as d & 3 the
theory is superrenormalizable; once mass renor-
malization is performed it is ultraviolet conver-
gent, in contrast to the situation in three dimen-
sions where infinite wave-function and coupling-
constant renormalizations are required as well.
One f inds, correspondingly, that no high-temper-
ature breakdown of Hartree theory occurs when
d &3. The mass of the particles is well defined at
all temperatures and the theory predicts a second-
order phase transition. Except for the vanishing
of m below T„ the behavior of the approximation
agrees with that of Fig. 1.

In an attempt to obtain a finite m below T, we
next examine a slightly more complex variant of

Hartree theory, incorporating more fluctuation
effects. We call this the modified Hartree ap-
proximation"; aside from trivial numerical fac-
tors, it is the approximation of Kirzhnits and
Linde. " We find that when 4&3 this scheme pre-
dicts a first-order, rather than a second-order,
phase transition, that is, (o) jumps discontinu-
ously to zero at T, . (Although Kirzhnits and Linde
state that the transition emerging from their ap-
proximation is of second order, more detailed
analysis indicates that their equations actually
predict a first-order transition. )

When d = 3 we encounter a serious difficulty in
the modified Hartree theory: Removal of diver-
gences by conventional renormalizations at zero
temperature does not leave the self-consistent
calculation divergence-free at finite temperature.
We are forced to relax the self-consistency re-
quirement of the scheme somewhat in order to ob-
tain Green's functions free of divergences. The
resulting approximation predicts a first-order
transition, in agreement with the d & 3 prediction.

Mean field calculations that predict first-order
phase transitions are not uncommon in nonrela-
tivistic theories. In order to gain more insight
into the modified Hartree theory prediction of a
first-order transition, we briefly review two such
calculations: the treatment of a type-II supercon-
ductor including electromagnetic field fluctuations
by Halperin, Lubensky, and Ma" (HLM), and the
Bogoliubov approximation" for the interacting
Bose gas. The first-order transitions predicted
by these calculations arise in a manner mathe-
matically identical to that oi the modified Hartree
approximation. Because the order parameter is
coupled to a gauge field in the superconductor,
one can argue that the prediction of a first-order
transition in this system is quite plausible. How-
ever, in the Bose gas, which is very closely anal-
ogous to the o model, such a prediction is an
artifact of the approximation used and is certainly
wrong.

We next try to attain a more precise understand-
ing of the critical behavior of the g model and to
pinpoint the failure of the modified Hartree ap-
proximation by considering the O(N) model, i.e.,
the o model with (N —I) m fields. " In the limit N-~ the behavior of the O(N) model for d &3 is ex-
actly calculable. " We exhibit the large-N solu-
tion; the O(N) symmetry is spontaneously broken
at low temperatures and is restored at a critical
tempe""ature via a second-order phase transition.
The critical exponents are identical to those ob-
tained for the classical O(N) model in the large-
N limit" and are consistent with the exact re-
sults" available in 2+ e dimensions.

We then apply the modified Hartree approxima-
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tion to the O(N) model for d & 3. In the N- ~ limit
this approximation agrees qualitatively with the
exact large-N results; in particular, the transi-
tion is predicted to be of second order. For finite
N, however, the deficiencies of the modified Har-
tree scheme become clear. We first compute the
O(i/N) corrections to the exact N=~ results. "
As expected, the only effect of the 1/N terms is to
modifythe critical exponents. The order of the
transition remains unchanged. In contrast, the
modified Hartree approximation is found to pre-
dict a first-order transition for any finite value
of N. We infer that this prediction is indeed an
artifact of the approximation.

Abbott, Kang, and Schnitzer" have argued that
when d = 3 there is no spontaneous symmetry
breaking at T =0 in the large-N limit. Turning to
fir.ite temperature we find that for sufficiently
small T the large-Ã theory contains no anomalies
and, as one would expect, exhibits no symmetry
breaking. For T sufficiently large, however, the
large-N limit does develop anomalies; the com-
mon mass of the 0 and m excitations becomes
complex. Thus the large-N approximation, the
most satisfactory of our simple mean field ap-
proximations to the critical behavior of the 0 mod-
el when d & 3, fails at high temperatures when d
=3.

The organization of this paper is a., follows: In
Sec. II we briefly review the self-consistent ap-
proximation methods of many-body theory, and
examine the tree, Hartree, and modified Hartree
approximations to the o model for d &3 and d= 3.
Section III is a brief discussion of the HLM treat-
ment of a. superconductor in a fluctuating electro-
magnetic field and the Bogoliubov approximation
for the interacting Bose gas. In Sec. I7 we ex-
amine ihe O(N) model at finite temperature; we
study the large-Ã limit for d&3 and d=3 and ''n-

clude O(l/N) corrections for d & 3.

II. MEAN FIELD THEORY

A. Basic definitions

In terms of the complex field (t) = (o +i7))/W2 the
Lagrangian density (1.1) becomes

where

(I)' = —m (I)' +q + h, (2 3)

@=2',(ytyy) . (2.4)

For nonzero h the quantity ti(x) can be regarded
as a functional of Q'(x'). Note that the functional
()l —m, '(I)') is simply the functional derivative with
respect to Q'* of the effective potential, V(~t(I)'}),
frequently employed in the study of spontaneous
symmetry breaking. " In any state with Q'(x) uni-
form, the equation of motion (2.3) implies that

q/jP = m, ' (2.5)

when k =0. We shall always assume that under
such circumstances the phases of the fields are
chosen so that (I)' is real, i.e.,

(~) = D2 y', (v) = 0 . (2.6)

B. 4-derivable and gapless approximations

As Kirzhnits and I.inde" proposed, one can study
the phase transition of this model within the frame-
work of a simple mean field theory. Starting from
the equation of motion (2.3), one approximates the
quantity p in terms of lower-order correlation
functions. This procedure has been used exten-
sively in the study of superfluids, where the vari-
ous approximations that have been studied are
typically classified as either "4 -derivable" or
gapless.
The "4-derivable" approximations are formu-

lated in terms of the quantity C, a functional of
Q'(x), Q'*(x), and of the (time-ordered) tempera-
ture Green's function matrix G(xx'), defined by

X X + X X
G(xx') = i~(-

x tx, x

t &(I))'(x)/&h(x') &(t)'(x)/5h*(x') l
(~4' (x)/&h(x') ~4' (x)/»~*(x') 1

(2.7)

Given a particular approximation for 4, one de-
termines g and the self-energy matrix Z through
the equations

0 (x) —q(x)+0"(x), (2.2)

I, = s„it)'s" y m-, 'y'y ~,(y" it)' . (2.1)

It is convenient to introduce the shifted field P(x),
defined by

5C"'*'=»c"(.))
54

Z„s(xx') =
5G8„(xx') ~c ~c*

(2.8)

(2.9)

where Q', the order parameter, is the expectation
value of P; thus 8 has vanishing expectation value
at all temperatures. In the presence of a, source
term (-h(I) —h*(I)) in the Lagrangian, the equation
of motion for ().

"becomes

The relations

(G ')„8=(G, '+m, ')5„s —Z„B (2.10)

are then solved along with Eq. (2.3) to determine
()))' and G self-consistently. |Here G, (ps) repre-



15 PHASE TRANSITION IN THE 0 MODEL AT FINITE. . . 2901

Ga- G»+ Gi2

since under these conditions {gv) = 0; also,

'=Go '+mo'-~»-~i2
G Gp + mo -Z»+Z»

(2.13a)

(2.13b)

Using (2.3), (2.12), and (2.13) we see that at k=0,
G, '=0 and. thus, as expected, the m field is the
Goldstone boson of the theory. (Note though that
at finite temperature, where one has a preferred
frame, G„' does not vanish for general k with

krak" =0.) Also, G '(k=0) = -2E„(0).

C. Tree approximation

The familiar semiclassical (or tree) approxima-
tion is a "gapless" approximation which corres-
ponds to taking

. (2.14)

sents the free, massless propagator, (s' —p~) '].
The C -derivable approximations are extremely
useful in many-body theory since the correlation
functions derived from them preserve the conser-
vation laws. " Moreover, having determined Q'

and G one can uniquely construct the effective po-
tential, V(fp'})." With approximations which are
not 4-derivable this is often impossible; typically
one can construct two or more different effective
potentials from Q' and G. The absence of such
ambiguity is a great virtue of the 4 -derivable ap-
proximations. Unfortunately. , most of them violate
the Qoldstone, ' or Hugenholtz-pines, "theorem in
the state of broken symmetry.

The "gapless" approximations are explicitly con-
structed to satisfy this theorem. " One starts with
an approximation to q as a functional of Q' and G.
The self-energies are then computed as

Z(xx')

t (~n(x)/~4" (x'))y~+ (58(x)/~0'*(x'))y~ )
(( q5*( )x/ y5'( x));* (&q*( )x/ y5'*( x))~. )

'

(2.11)

the functional dependence of G on Q' must be taken
into account in performing this functional differ-
entiation. Equations (2.3) and (2.10) are then
solved self-consistently; the resulting Qreen's
functions satisfy the Goldstone theorem. To see
this we note that under a uniform gauge transfor-
mation Q( )x-e' Q(x) one has P'(x)-e' Q'(x) and
q(x)-e' g(x) Thus .when (2.11) is obeyed, the k
=0 Fourier components of Z satisfy

Z„(k=o)y'-Z„(k=0)y'*=q . (2.12)

For Q' uniform and real we also have

The self-energies are then given, according to
(2.11), by

, t'2le'I' 8')'&
z(xx') =2m, 5(x -x')

Iq(e'")' 2le'I'p
(2.15)

From (2.5), (2.14), and (2.15) we immediately ob-
tain

{g)'=m, '/A, ,

G -'= G -'-2m '
a p p

G„-'=G,-'.

(2.16a)

(2.16b)

(2.16c)

O. The Hartree approximation

Hartree theory, the simplest self-consistent
scheme beyond semiclassical theory, amounts to
approximating q as a functional of Q' and G by

n=». [le'( )I"(4'( )i( )&]e'( ) . (2.17)

This approximation can be "4 -derived" from the
functional

c =—'. dx[s TrG(xx)+2ly'(x)l']'
A,~ (2.18)

We see from (2.16a) that symmetry breaking
persists to arbitrarily high temperatures in the
tree approximation. In order to observe the res-
toration of symmetry at finite temperature one
must include effects of fluctuations. Any venture
beyond the semiclassical treatment requires re-
normalizations. Since the renormalization coun-
terterms in the Lagrangian are temperature inde-
pendent, carrying out the various renormalizations
to remove the infinites at any one temperature
fixes the values of these counterterms uniquely.
(T =0 is a particularly convenient temperature at
which to renormalize. ) Kislinger and Morley'0
have recently argued how the renormalized theory
which results is free from divergences at gg tem-
peratures. It is not true, however, that all ap-
proximations preserve this feature. Indeed we
shall exhibit a very simple self-consistent approx-
imation which cannot be rendered free of infinities
at all temperatures by the standard renormaliza-
tions. Since our prime goal is to acquire some
feeling for the critical (infrared) properties of the
0. model, we shall temporarily avoid this compli-
cation by working in d space dimensions, where d
is a continuous parameter less than 3. For any
fixed d& 3 the theory is superrenormalizable; all
infinities at T = 0 can be removed by mass renor-
malization alone and, at least for the elementary
approximations we shall consider, no new diver-
gences occur at finite temperature. %e shall later
return to the difficulties that arise when d = 3 and
coupling-constant renormalization is required.
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and the general prescription (2.8) and (2.9); then and from (2.19b),

[-mo + 2A.0 ~

y'
~

+ Q.o Tr G (xx)]y' = 0 (2.19a.) m = -m +2&. G(xx) . (2.26)

and

Z, (xx') =6(x - x')6,
x ho[2~/'(x)~'+i TrG(xx)] . (2.19b)

Evaluating G(xx) as in (2.21) we have

d"k
m - m +2k

2 ~ 2
+I«'m 227a

277 2(dy

where
In the broken-symmetry state

Z„8=6„86(x—x')m, ';
thus G and G, are free and massless. Since TrG
=2G, and

(u, = (P+ m')'~' (2.2Vb)

(2.2Vc)
d"0 1Gp(xx)=fT Q (2 )~ (. )3 P (2.20)

(where +„=2vnT, n=0, +1,+2, . . .), (2.19a) deter-
mines (o) as a function of temperature:

d'k
(o') mo /Ap 2

(2 )~ ~ ~/r 1
+

(2.21)
This equation shows how the thermal fluctuations
of the field decrease (o)' and act toward restoring
the symmetry. A trivial mass renormalization re-
moves the (temperature-independent) infinity, no
coupling-constant renormalization is required for
d&3, and (2.21) becomes

m'+A. ,b(d)~m~ '=2k, Ii ~(m) —p',
where

(2.28a)

Equation (2.2Va) is the d-dimensional version of
Dolan and Jackiw's' "gap equation, " that describes
the behavior of the O(N) model above T, in the N-~ limit. It is not surprising that this equation
emerges from the Hartree approximation: it is
well known that the large-N approximation is iden-
tical to Hartree theory above the transition tem-
perature.

After one has performed the same mass renor-
malization required in (2.21), Eq. (2.2Va) becomes

(o&'= u'/&. —2o(&)T' ', (2.22)
d —1 (2v)~ (x'+ I)'~'g(d) = (2.28b)

dx 1
(2m)' x(e" —1) (2.23)

where p' is the renormalized value of mo' and
a(d) is the positive constant It is trivial to verify that for all T )T„Eq. (2.28a)

has a positive solution, m= m(T), which increases
monotonically with T and vanishes at T = T, . Since
for small m we have

The expectation value (o) decreases monotoni-
cally with temperature until a critical tempera-
ture, T„defined by

I"(m) =a(d)T '-T~m~ 'c(d)+ ~ ~ ~,

where

(2.29a)

Q(d)T = V /2&0, (2.24)
2 d"x 1

d —2 (2v)" (x'+ 1)' (2.29b)

G-1 G
-1 m2

P (2.26)

at which (o) vanishes; (o)' decreases linearly
with temperature as T approaches T, from below.
The phase transition is of second order and the
critical exponent P [the power of (T, -T) with
which (o) vanishes as T- T, ] equals ~.

Note that for d ~ 2 the contribution of the thermal
fluctuations of the field in (2.22) is infrared diver-
gent since the constant a(d) is then infinite. Such
behavior is a specific realization of the general
theorems" that forbid the spontaneous breaking of

. a continuous symmetry above zero temperature
when d (2. %'e restrict ourselves henceforth to
d)2.

Above T„(2.22) has no solution and (2.3) im-
plies that Q' vanishes identically; still Go= G, =G,
where

it follows that

[m(T)] (T T ) I( - ) =(T T~)y (2.30)

E. The modified Hartree approximation: 2(d(3
Hartree theory provides a Simple picture of how

the thermal fluctuations of the fields in the 0 mod-
el lead to a second-order phase transition. The
theory is unphysical, though, in that the spectrum
of cr-like excitations, described by G~, is that of
a free massless particle for all T &T,. By con-
trast, the tree approximation predicts a 0 mass,

as T approaches T, from above. Hence the critical
exponent y that describes the behavior of m' above
T, is simply 2/(d —2) in the Hartree approxima-
tion."
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(2m, ')'/', independent of T, and no phase transi-
tion. An interesting question is whether one can
construct simple approximations that describe the
phase transition while incorporating a more real-
istic description of the spectrum of the fields be-
low T, . Let us therefore consider a slightly more
complex variant of the Hartree approximation.
Aside from insignificant numerical factors, it is
the mean field approximation suggested by Kirz-
hnits and Linde. " This scheme, which we shall

refer to as the "modified Hartree approximation, "
is a hybrid between the C -derivable and gapless
methods.

We start with C given by (2.18); q, computed
through Eq. (2.8), has the same form (2.17) as in
Hartree theory. At this point, however, we de-
viate from the C -derivable procedure and compute
Z„s from (2.11), holding not only Q' but also G
constant during the functional differentiations to
obtain

(2.31)

m 2
Q p G

where

(2.32a)

(2.32b)

This prescription differs from the gapless scheme
where Z is computed as the tota/ functional derivative
of q with respect to Q'. Fortunately the Goldstone
theorem is preserved" despite this heresy. When

ts

&f&' vanishes (above T,) this approximation is iden-
tical to self-. consistent Hartree theory, as is clear
from Eqs. (2.19b) and (2.31). Below T„however,
the structure is that of the tree approximation
(2.15) plus the fluctuation term included in Hartree
theory; choosing Q' real we find

nant term on the left side of Eq. (2.36) as m -0.
Thus

c(d) ~m, ~" '= -2(d —1)T," 'a(d)(T, —T) (2.37)

as T approaches T, from below. The left and right
sides of this equation have opposite sign; hence
there is no solution below T, of Eq. (2.36) for
small, real m, .

The true behavior of m, near T, in the modified
Hartree approximation can be qualitatively under-
stood by studying the effective potential, V((o&),
whose derivative with respect to (o&' is simply
(q/Q' —mo')/2. In the state of equilibrium V((o&)
is a minimum. Integrating (2.33b) with respect to
(v&' using (2.34) we find for small ~(a&~

m ' =
3AO( g& '+ A.oi(G + G „)—mo',

m„=ho(g& +Aoi(G~+G„) —mo

(2.33a)

(2.33b)

V((a&) = V(0)+A, a(d)(T' '-. T,' ')((y&'

-A
i &v& i'- ai &v& i"'+Z,&g&'/4,

where

(2.38a,)

m, '= 2x, (o&' . (2.34)

Equation (2.5) implies that m, '= 0 in the state of
broken symmetry and

2)/2 Tc(d)y ~/2/d

B = 2(~-3)/2b (d)y (~+ ~)/2/(d y ])
(2.38b)

Thus m, is determined self-consistently from

m, '+ 2A.,i(G, + G „)= 2m, ' . (2.35)

m, '+2Ao[Ii &(m ) —I~@(0)] —Rob(d)~m,
~

= 2 p,
' —4x,a(d)T' ' (2.36)

for T &T„where T„defined by the vanishing of
m„ is again given by (2.24).

Now, however, a qualitatively new feature
emerges: m does not decrease continuously to
zero as T approaches T, from below. To see this
we not'e that ~m ~" ', which occurs in the expan-
sion (2.29a) of Ii ~(m, ) for small m, is the domi-

Evaluating G and G, as in (2.20) and (2.27a) and
carrying out a single mass renormalization we ob-
tain

A schematic plot of this function is shown in Fig.
2. It is clear from the figure that T, is not the
true transition temperature of the system. As ex-
pected, the absolute minimum of the effective po-
tential occurs away from the origin for all temper-
atures less than T„however, Fig. 2 shows that,
owing to the presence of the (-A

~
(a& ~') term, this

behavior persists even as T becomes greater than
T, . Only at a higher temperature, T,*, does the
minimum at the origin become the absolute mini-
mum of V. T,* is therefore the true transition
temperature of the system. Furthermore, cr~, the
value of (a& which minimizes V just below T = T+,
is nonzero; (a& jumps discontinuously to zero at
the transition temperature. Thus the modified
Hartree approximation predicts a first-order, ra-
ther than a second-order, phase transition.
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V(& o. &} m'[1 —A. in(m'/p, ')/8 v'] = 2AI '(m) —p' . (2.41)

It is easy to verify that coupling-constant renor-
malization has no effect on Hartree theory below
T„where the theory remains trivial (both the o
and m excitations are free and massless). From
(2.21) and (2.40b) the condensate density varies
with temperature according to

(o)'= p. '/~ —2a(3)T', (2.42a)

and 1', is defined by

T, = g /2ka(3) . (2.42b)

FIG. Z. Effective potential, V((o}), as a function of
(o) for the modified Hartree approximation with 2 &d

&3 and several different values of T. From bottom to
top these curves correspond to T& T~, T =T, , T, & T
& T, T = T*, and T )T*, respectively. T,* is the true
transition temperature of the system, and 0.* is the
magnitude of the discontinuity in the equilibrium value
of (v) at T~.

For all T & T,*, the gap equation (2.28a) still
holds and has, as we have already noted, solutions
m „=m = m. The qualitative behavior of m „m,
(v), and m, as predicted by this approxima, tion,
is summarized in Fig. 3.

Hartree theory in three dimensions presents the
first example of an explicit breakdown of our ap-
proximation methods. To see this, note that the
right side of (2.41) is positive at m'= 0 for T &T,
and decreases monotonically with m', approaching
(-p.') as m'-~; it also increases monotonically
with T. The left side is zero at m'=0, but, be-
cause of the in(m'/p') term, attains a maximum
at m'= p, 'e "'"~ and goes to -~ for large m';
thus for sufficiently large T Eq. (2.41) has no real
solution. By contrast, the left side of the gap
equation in Hartree theory for 2 &d & 3 does not
contain the 1n(m'/p. ') and increases monotonically
with m, thereby ensuring that the equation has a
solution for all T. The dominant behavior of the
A. ln(m'/p, ') for d= 3 signals a, breakdown of the ap-
proximation and the need to include higher-order
correlations. This phenomenon is an interesting
illustration of the interplay in relativistic theories
of the infrared behavior, which determines criti-
cal properties, and ultraviolet effects.

F. Hartree approximation in three dimensions

Before commenting further on the modified Har-
tree results let us consider the case d = 3, where
coupling-constant renormalization must be per-
formed. We first examine the effects of this extra
renormalization on the Hartree approximation.
Above T, the unrenormalized gap equation (2.27a)
takes the form

2

(2.39)
where A is a high-momentum cutoff.

Defining the renormalized coupling constant, ~,
and mass, p', by

1/Ao = 1/A. —[ln(4A /p, 2) —1]/8m 2 (2.40a)
Tc Tc

m, '/z, = g'/a+A'/4w', (2.40b)

we are led to a gap equation free of infinities:

FIG. 3. Qualitative behavior of ypz, ypg, and (g) as
functions of temperature. T* is the true transition
temperature of the system. Above T, , m~ and m~ are
identical.
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G. Modified Hartree approximation in three dimensions-
renormalization difficulties

m, '/&&, = (o&'+ I&'&(m.) + I&'&(0) + A'/4v'

+ m, '[1+in(m, '/4A')]/16m' . (2.43)

Since Eq. (2.34) implies that the mass m, is tem-
perature dependent, the divergent term m 'lnA'
in (2.43) cannot be removed by simple tempera-
ture-independent coupling-constant and mass re-
normalizations.

One way to circumvent these difficulties is to
relax the self-consistency of the approximation so
as to allow the removal of all infinities by conven-
tional renormalization. " I.et us writ'e Ao= A, + 6A.,
where ~ is the renormalized coupling constant and
5A. is the corresponding counterterm, and treat
the 5&&.Q' term in tree approximation to obtain

The gapless and 4 -derivable approximations
are not simple expansions in the coupling constant,
but rather involve summing selected subsets of
diagrams in a self-consistent manner. In general,
however, when one must include a coupling-con-
stant renormalization, such schemes are not con-
sistently renormalizable. This difficulty is illus-
trated by the modified Hartree approximation in
three dimensions, where the field equation for T
& T, becomes

finite temperature becomes

2'~'»/&o) —m, '= -g'+ a&a&'

+ [&&'& cr&' ln(&&. & a&'/», ')]/8m'

+&&.[I '&((2&&)' '&&y&)+I&'&(0)] . (2.48)

As in the case 2&d &3, we now integrate (2.48)
to arrive at the following expression for the effec-
tive potential, valid when (o) is small:

1'(&a&) = 1'(0) +&&s(3)(T' T,')-&o&'

-[(»')"Tc(3)/3]1&a&'I

&&. (a&'
+ —1+, ln, —-',

& o&',8~2 p2

(2.49)

where T,'= g'/2&&. a(3). The qualitative behavior of
this function is identical to that of the effective po-
tential for the case 2&d&3, plotted in Fig. 2.
Again, owing to the presence of the negative I(o)'I
term in V, &o& approaches a finite value as the
transition temperature is approached from below.
Thus the modified Hartree approximation for d = 3
predicts a first-order transition as well.

Above T,*, (o& = 0 and the common mass of the a
and m fields is determined by the formula

2"
7&

=
&&.,&a&'+ f&&(G. + G,) & a& . (2.44) (2.50)

At this point we abandon the self-consistency re-
quirement used previously to determine the
masses m and m, and simply demand that below
T, these masses satisfy the tree approximation
conditions

m 2=2K&a&', m, '=0 . (2.45)

The second of these equations builds in the Gold-
stone theorem. The first is the simplest assump-
tion that allows the theory to be sensibly renor-
malized and is consistent with the tree approxima-
tion and the expectation that m and &o& should
vanish simultaneously as T, is approached from
below. With (2.45) we have, at T=O,

2'i'r& —m '&o& =&&. (o

+, A +&&&.(o&' 1+in~&a& . . . ~&o&'

Thus m'(T) is positive at T,* and increases mono-
tonically with T thereafter. The behavior of (o&,
m~, m„, and m as functions of T is qualitatively
identical to that shown in Fig. 3.

To what extent is this prediction of a first-order
transition to be believed'P Mean field approxima-
tions are at best marginally reliable in their pre-
dictions about critical phenomena, and the modi-
fied Hartree scheme makes approximations even
beyond canonical mean field treatments. For 2
&d & 3 we sacrificed some of the self-consistency
of the usual gapless methods by ignoring the de-
pendence of the Green's functions on &I&' in comput-
ing the self-energy. For d = 3 even more self-
consistency was sacrificed in order to make the
theory renormalizable. Thus one should view the
first-order transition that emerges from the mod-
ified Hartree approximation with a healthy dose of
skepticism.

-m, '&o& . (2.46)

Convenient definitions of the renormalized mass
and coupling constant are

m, '= g'+A, A'/4v', (2.47a)

(2.4Vb)&&. =
&& —A. [1+in(p'/2A )]/8w

whereupon the expression for (2'~'»/(o& —mo') at

III. ANALOGIES IN MANY-BODY THEORY

Mean field treatments that predict first-order
phase transitions are familiar in nonrelativistic
field theories. In trying to ascertain whether the
first-order transition of the last section is quali-
tatively correct or whether it is simply an artifact
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of the approximations used, it is useful to review
some of these examples briefly.

A. Type-I superconductors

This equation is a.n exact analog of Eq. (2.19a).
In the superconductor, the inverse, e, of the

penetration depth is defined by
~' =87j p.q,'r I &g& I

' (3.8)

and plays the role of a photon mass; for small
I (p& I

the expectation value ( A'& is given by [cf,
(2.27c) and (2.29a)]

( A'& = 8n p, I "(~)

=8wp, Tao(3) —(32wyqo po) ~
po T I (g&l, (3.6)

We shall first consider the type-I superconduc-
tor and then the weakly interacting Bose gas. Ac-
cording to BCS theory~ the superconducting phase
transition is of second order. Furthermore, owing
to the very large zero-temperature coherence
length in type-I superconductors, the effects of
fluctuations are negligible until the temperature
is so close to T, that"

I
T —T, I /T, -10 ".

Recently, HLM" showed that the presence of a
fluctuating electromagnetic field in such systems
can change the order of the transition from second
to first. The coupling of the superconductor to a,

vector potential A(r) is described in their work by
the classical Ginzburg-Landau "free-energy func-
tional"

I'({y,A)) =
Jl

d'~ al gl'+-,'bl gl'+rl (v-iq, A)gl'

+ Q (
' — '), (3.1)

where ( is the superconducting order parameter,
a =a'(T —To)/T, , q, =2e/@c, g, is the magnetic
permeability of the normal metal, and a', g, and

y are temperature independent constants near T,.
Thermal expectation values, e.g. , (p(r) g(r')&, are
defined by the functional integral

fgQ] g{A)Zj, e «(4, A))/r-

(&&=, (3 2)
fg{y] g{A) e-«(&. A)&&&

where X is any functional of g and A.
We may cast the HLM calculation in a form which

emphasizes its similarity to our treatment of the

o model by first writing the Ginzburg-Landau field
equation which follows from (3.1):

-y((V -iqoA) g& +a((& +b(l gl g& =0. (3.3)

For translationally invariant systems the v' terms
in (3.3) vanish. The neglect of fluctuations in p is
equivalent to the tree approximation and reduces
(3.3) to

(we, '& A'& +~ +I I (y & I
') &y &

= 0 (3.4)

+l I 1(y&l' (3.7)

HLM are able to show that the transition in the
superconductor occurs at a temperature, 7.',*, suf-
ficiently above T, [the temperature where a sec-
ond-order transition would occur in the absence
of the

I ((&I' term in (3.7)] that the fluctuations in

g are completely negligible near T,* Thus., for
purposes of discussing the region near 7.",~, the
initial neglect of the fluctuations in g is justifiable.
The prediction of a first-order phase transition in
type-I superconductors is therefore on much firm-
er footing than is the analogous prediction for the

0 model. The result for the superconductor de-
rives from the electromagnetic field fluctuations,
which are significant outside the extremely narrow
region about T, where the fluctuations in the order
parameter are important. The 0 model, on the
other hand, has only one field: p. When the low-
order fluctuations in p that we considered in the
preceding section play a significant role, then
fluctuation effects of arbitrarily high order be-
come equally important. There ls no )ustjtfication
for the omission of these higher-order fluctuations.

B. The weakly interacting Bose gas

The weakly interacting nonrelativistic Bose gas,
which can be taken as a first model for superfluid
helium, is more closely analogous to the 0 model
than is the superconductor. It is well known that
the Bogoliubov approximation, the analog in non-
relativistic Bose systems of the tree approxima-
tion in relativistic theories, provides a correct
first description of the ground state and low-lying
excitations of the weakly interacting Bose gas.
However, when one tries to extend the approxi-
mation to describe the phase transition from the
superfluid (broken symmetry) state to the normal
state one finds, in a manner remarkably similar
to that already observed for the 0 model and the
superconductor, a first-order transition. To see
this, we start with the Hamiltonian

3C= d x (Vg ) ~ (VP) pg /+zing P (P

(3.8)

Note that ( A'& is linear in
I (g& I, so that the field

equation (3.4) has [as we found in our analogous
Eq. (2.37)] no solution for arbitrarily small I (p&l.
As we have seen, such behavior indicates a first-
order phase transition. Again the effective poten-
tial, p((p&), obtained by integrating the left side of
the field equation has the form

V((g&) = V(0) +a'(T —T, ) 1($&I'
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where m is the particle mass, p the chemical po-
tential, and g the field operator, '

and from it de-
rive the equation of motion for the order param-
eter:

(fs/st +ad'/2m+ q) (y& =x(y' jy& . (3.9)

The Bogoliubov approximation, like the tree ap-
proximation, starts with the factorization

(3.10)

For a uniform, time-independent condensate, (3.9)
then implies

(3.11)

The self-energy g [defined as in (2.11)] is com-
puted by the gapless prescription (2.12), yielding

„, ( l(y&l' (3.12)

where p is the total particle density and (g&
' rep-

resents the density of particles in the condensate.
For small (g&,

p =(q&'+f (d)(2m T)"i'

g(d) m«2 Tys-»&2
l (y&

l~-2

+ ~ 0 ~ t (3.15)

where f (d) and g(d) are positive functions of the
dimensionality. As we have seen before, the
l(p&l" 2 term dominates for small l((&l, (g& does
not vanish continuously as T approaches T, [de-
fined as the temperature where (g& =0 solves (3.14)]
from below, and the familiar first-order phase
transition results. Again, the effective potential
contains a negative l (g&l~ term, the harbinger of
first-order transitions.

However, the conclusions to be drawn here are
quite different from those in the superconductor
since there is n0 temperature regime near T, for
superfluids where the neglect of fluctuations as in
(3.10) is valid. There is no reason therefore to
believe this mean field result. Indeed, the vast
body of well-established theoretical and experi-
mental evidence that the A. transition is of second

Then

G„(p,z) =(z +p'/2m +X(g&')/(c'- &o '), (3.13)

where ~~ =p (A(g& +p /4m)/m and (g& is assumed
real. The conservation law for the total number of
particles in the system determines (p& as a func-
tion of T. Equation (3.13) implies

( &, d p 1 p'/2m+x(y&'
(2m)' (u~ e~p ~r —1

1 2

+ — +x(q&' —~~, (3.14)

order indicates that the Bogoliubov prediction is
simply wrong.

We believe the situation for the 0 model to be
rather similar to that for the imperfect Bose gas.
The modified Hartree approximation has no ap-
parent validity in the vicinity of the first-order
transition it predicts. We have no general method
for properly taking into account all of the impor-
tant fluctuation effects. One can, however, ac-
quire some feeling for the effect of higher order
correlations in the z model by considering a re-
lated theory, the O(N) model, "which for large N
does have a legitimate small parameter, viz. ,
1/N, near T,. The existence of this parameter
allows us systematically to include the effects of
fluctuations and thus to see how a second-order
transition results.

IV. THE O(N) MODEL

A. 2&d(3

The 0(Ã) model, a generalization of the o model
to N fields, is described by the Lagrangian density

L=~ Q -(8~/~) +ma p~

(4.1)

When mo'&0 and& =0 we expect the O(N) symmetry
to be spontaneously broken at low temperatures.
As usual, the coupling constant is written as Ao/N.
so that the theory has a finite limit as N ~. We
consider dimension 2 &d & 3, where difficulties arising
from coupling-constant renormalization do not
occur. It is trivial to generalize the methods of
Coleman et al."to finite temperature and so com-
pute the effective potential in the N-~ limit. We
shall proceed slightly differently and compute the
field equation and Green's functions to make con-
tact with our earlier calculations.

We choose the "phase" of the condensate so that
when P = 0 only (p, & is nonzero, and introduce the
shifted fields p, =p~-(p, &, p~ =p8 for Pc1. In
order to correspond with our previous notation we
refer to the fields p8 with Pg1 as w. fields and (2/
N)'~'y, as the o field. Then (p~& =(N/2)' '(g&,
where (o& is of order unity. The equation of mo-
tion for (y„& is

( '+m. ')(P &

=Ig +2m, g((y, &'(y„&+(ys')(y„&

+2(/san &(ys& +(ys'y ))IN ~ (4.2)

Setting@ =0 and taking o, = 1 in (4.2) we find the
equation for (o),
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m, '(o& =X,~(o&'+ —
[&N —1) G, (xx) +3G. (xx)](o)

2s Let us now examine (4.3) in the N-" limit. The
quantity (ys'&$, & in lowest order is -XoG&s'G, (P,&/
N and hence is -N ' '(o&. Equation (4.3) thus be-
comes

(4.3)
m, '(o& =X,[(g)'+2iG, (xx)](g& (4.5)

since when jz =0 the Green's functions Q„8 assume
the form

G„B(xx') =5„8[5 G (xx')+(1 —5„)G (xx')].

(4.4)

for N-~. This result, exact when N is strictly in-
finite, is identical in form to (2.19a) which was
derived in the Hartree approximation for pf =2.

The Green's functions may be evaluated by taking
the first variation of (4.2) with respect to h:

Z/2

( '™,')G, (xx') =6(x-x')+X, [3(o&'+2iG~(xx)]G, (xx')+ — &,&o&g, &p8'(x)& ~

The N —1 terms 5(p8'(x) &/5h, (x') with p ~2 are evaluated through use of 5G, =-G„5G, 'G, and the N ="
form for G„; this produces the integral equation

5G, (xx) — 2»2 6G (xX)
dx G, (xx) G, (xx) — (o& G. (xx )+i5h'x j

(4.7)

(4.8)

( + mo ) G„(xx') =5(x-x')+ho[(g& +2i(1+N ')G~(xx)+2iN 'G, (xx)] G~(xx')

2 ~/
+4&.

N
&o& 5„', (y, (x) y.(x)&+

2N Q 5q', &yg'(x) y.(x)& (4.8)

The last term in this equation is-(~,,'/N) G88 G, ' plus higher-order terms, while the penultimate term is
-1/N; these terms can thus be neglected in the N-" limit, as can the terms multiplied by explicit factors
of N . Using the field equation (4.5) we see that in the broken symmetry state G, is free and massless for

In this same limit G, is given by

Solving (4.8) by Fourier transformation and using
(4.5) we finally arrive at the exact N-" result for
G, in the broken symmetry state:

2X, (o&'

1 +2X0Sr(p, z)

where S~ is the Fourier transform of
-iG~(xx) G, (xx), given explicitly by

(4.9)

,(p,

=TQ
d" 0 1
(2n)" ((u '+k') [((o„+(u„)'+(p+%)']

(4.10)

Since Q, is free and massless, we see from Eq.
(4.5) that(o& is given as afunction of Thy Eq.
(2.22), which we write as

(o& =2a(d)(T, ' —T~ ) (T&T, ), (4.11)

with 7.', defined in terms of the renormalized mass
p, by (2.24). The behavior of (o& is thus identical
to that found in Hartree theory. The transition is
of second order with P =-,'.

In contrast to the Hartree theory result, the 0.

Green's function for large pf is nontrivial below T,.
The "mass" of the 0 excitations is defined by the

pole of G, (0,z) that approaches the origin as T
-T,. The leading behavior of Sr(0,z) ass-0 is
given by Ke m =0 term of (4.10) ~d is-(z )"
(The branch cut in the z' plane is along the posi-
tive real axis. ) Thus as z -0,

G, '(O, z)-z'+il(d)(o)'(1-e"')(")" ~~'/T+ ~ ~ ~
t

(4.12)

where l(d) =2~ 'g'" 'P(d/2). Owing to the pres-
ence of the massless Goldstone bosons in the the-
ory, the p. particle is unstable. Let us look for a
zero of (4.12) of the form z'=R'e'o. The first
sheet of the function G corresponds to 0&8&2m.

Q, ' then has zeros of the form

R =~ 2sin(md/2)(o&'l(d)/T ~'" "
' =(d+4v) ~/(d —2),

(4.13a)

(4.13b)

where p can assume any integral value; sin(vd/2)
is negative since 2 &/&3. It is clear that no value
of p corresponds to a 8 on the first sheet, as is of
course guaranteed by unitarity, but there are so-
lutions on higher sheets. The "mass" of the o is
proportional to (o&' (' ' and so vanishes like (T,
—T)' " ~ as the critical temperature is approached
from below.



PHASE TRANSITION IN THE 0 MODEL AT FINITE. . . 2909

Above the transition, (o& vanishes and the N = ~
limit is identical to Hartree theory. The common
mass m of the and m excitations is given by the

gap equation (2.28a). We recall that m(T)-(T
—T, )' ' ' as T approaches T, from above T. he
critical index (d —2) ' is the same as that found

below T,.
The leading term of the 1/N expansion gives

rise, as we have just seen, to a second-order
phase transition with no anomalies when 2&d &3.
In Sec. II we observed that the modified Hartree
calculation predicted a first-order transition for
the N =2 model. It is instructive to apply the modi-
fied Hartree approximation to the O(N) model for
large N in an attempt to pinpoint the source of the
first-order result. For arbitrary N the modified
Hartree approximation corresponds to writing the
self-consistency condition for m, ' as

2P= y[d(2-n) ' 1]-, (4.16)

where g is the critical index that describes the
spatial decay of the two-point Green's function at
the critical temperature. Ma's classical calcula-
tion~' of y and q to O(1/N), together with (4.16),
yields

with increasing N, disappearing when N becomes
strictly infinite. It is interesting to compare this
prediction with that obtained by calculating the 1/N
corrections to the true N- result. The critical,
i.e. , infrared, properties of the quantum O(N)
theory are expected to be identical to those of the
classical O(N) model, whose critical behavior
has been computed to O(1/N). " To this order in
the classical theory, Brezin and Wallace" have
proved the exponent scaling law

m =2mo +4ikoN [G +(N —1)G~]. (4.14) (4.17a)

= 4z,a(d)(T ' ' —T' ') (4.15)

with T, defined by (2.24). This result is not the
correct N- ™answer. The order parameter (c& is
given correctly, but, owing to the failure of-the
mean field theory to include the momentum-depen-
dent renormalization of the coupling constant aris-
ing from the Sr term in (4.9), the expression for
nz, ' and the analytic structure of the o propagator
are hopelessly wrong. Nonetheless modified Har-
tree does predict a second-order transition for
N = , in qualitative agreement with the proper
result.

As in Sec. II, (4.14) predicts a first-order tran-
sition for any finite value of ¹ The discontinuity
in the condensate magnitude at T, becomes smaller

I

Recall that for N =2, G', gives rise to the term
~ m, ~" ', which is ultimately responsible for the
first-order transition. In the N-~ limit, how-
ever, the offending term vanishes, leaving us with

m, ' = 2x, (o&'

where

S,=-2[sin(gd/2)/~(d —2)8(-,'d- 1,—,'d- 1)]

(4.17b)

and B (x, y) is the p function: I,' dn o." '(1 —n)~'.
It is easy to verify that to O(e/N) Eq. (4.17) is in

complete agreement with tbe exact calculations of
Brezin and Zinn- Justin" on the classical nonlinear
o model in 2+ E dimensions. One can readily
check, moreover, that the N= ~ result for T,
[which is identical to the Hartree theory T, and is
given in (2.24)] vanishes linearly with e as d ap-
proaches 2 from above. Aside from a trivial nor-
malization factor this T, is identical to that found
by Brezin and Zinn- Justin.

We now briefly indicate how (4.17) follows direct-
ly from (4.3) and (4.6). The only term on the right
side of Eq. (4.3) that remains to be computed to
order 1/N is G, (xx). From (4.6) we obtain the
O(1/N) g self-energy,

&,(xx') = X,(5(x- x') [(a&'+ 2i(1+N ')G,'"(xx)+ 2iN 'G, (xx) ]+4(2N ')'~'(o&5(Q, (x)Q, (x)&/5(p, (x')&

(4.18)

where G,'" denotes the p Green's function to O(1/N). The penultimate term on the right side of (4.18) can
be computed through an equation similar to (4.8); the O(1/N) part of the final term is evaluated in the
Appendix . The result is

Z, (q, iver„) = X, (o&'+ 2i(1 —N ')G,"'(xx)+ 2iN-'G, (xx)

d~k G,(k+q, i(&u„+u&„))G, '(k, iv„) (kG, i&@„) &

(2V)' 1+ 2Xp r(k, iu)„)
(4.19)

Comparison of this result with the equation that follows from the substitution of (4.8) into (4.3),
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m, ' = A., (o)'+ 2i(1 —N ')-G,"'(x x) +2iN 'G, (xx) —4N 'T
( m) 1+2K/ (k, ko„)

(4.20)

shows that

Z, (q, iv„) = m, ' —4X,N 'T g ~
' ' " [G,(k+ q, iu&„+ iv„)G, '(k, i&@„)—I]d"k G,(k, i(a)„)

1+2XP r(k, ko„)
(4.21)

Since Z, (5, 0) is simply m, ', this equation demon-
strates to O(1/N) that the ~ excitations are the
Goldstone bosons of the O(N) model.

Expression (4.21) enables us to compute G,"'(xx)
in terms of the known N= ~ Green's functions G,
and G, . Equation (4.20) then consists entirely of
known quantities; after some straightforward alge-
bra it becomes

c(T, —T)=(v)' 1+ '
ln(~))

8$„2d- 5
(4.22)

B. d=3

In Sec. II we saw that simple Hmtree theory,
well-behaved when 2&d&3, breaks down because of

for small (o), where T, is defined as the tempera-
ture where (o) vanishes and c is a positive constant.
To O(1/N) this equation can be written as (T, —T)- (o)'~', where P is the exponent defined in (4.17}.
Thus we arrive at the expected result: The inclu-
sion of 1/N terms modifies the critical exponents
but does not alter the order of the transition of the
O(N) model.

Note that we were required to interpret Eq. (4.22)
correctly to reach this conclusion. Had we re-
tained in (4.22) only the (o)'In(g} term, the domi-
nant term on the right side for small (o), we would
have found that for 2d& 5 the equation had no solu-
tion as (o) approached zero; as in the modified
Hartree approximation [cf. (4.14)] we would have
concluded that the transition was of first order. In

(4.14), the dominant term of 0(1/N) is actually a
power of nz„ try as we might we cannot interpret
it as a simple correction to the leading (N= ~)
terms. In (4.22), on the other hand, the logarith-
mic 1/N term represents an obvious correction to
the leading power. We expect inclusion of terms of
higher order in 1/N merely to produce further
corrections to the critical exponents.

The modified Hartree approximation completely
neglects the (p,Q, ') term [the last term in (4.7)] of
the 0 self-energy, Z,. In consequence Z, is mo-
mentum independent and the logarithm which ap-

pearss

in the 1/N expansion is replaced by a power.
A less drastic approximation to Z, [such as the
N= ~ result of Eq. (4.9)] is evidently required if
the order of the transition is to be given correctly.

ultraviolet effects when d = 3. , The breakdown was
manifest in the absence of a solution of the gap
equation (2.41) at sufficiently high temperature.
Since Hartree theory and the N- ~ limit of the

O(N) model are intimately related, we might ex-
pect to find anomalies in the large-N approxima-
tion as well. Abbott, Kang, and Schnitzer" have
argued that at zero temperature the N- ~ limit is
free of anomalies and that spontaneous symmetry
breaking does not occur. The ground state of the
theory is O(N) symmetric in the large-N approxi-
mation. It.is straightforward to extend the work of
these authors to finite temperature. The O(N) sym-
metry is of course preserved for all T; the 0 and

g excitations are identical and are found to have a
mass given by (2.41}. We conclude that the large-
N approximation is consistent at low temperatures
but does indeed break down at temperatures suffi-
ciently large so that (2.41) has no solution.

Thus when d= 3 the thermodynamics of the O(N)
model cannot be reliably computed for all tempera-
tures, even for large N. While we believe that
spontaneous symmetry breaking does occur at low

temperatures. for small values of N and that the
restoration of symmetry occurs via a second-order
phase transition whose critical exponents are iden-
tical to those of the classical O(N) model, we know

of no simple approximation whereby this prejudice
can be convincingly confirmed.
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APPENDIX: EVALUATION OF 5&$3 (x)$2(x)&/&&$2(&')&

In this Appendix we compute to 0(1/N) the
quantity

I..(xyx') -=~(4.'(x)4.(y))/~H. (x')}

which occurs in (4.18). Recalling that
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&43'(x)&(y)& = ~~'

dz dz G, (xz) „~ G~, (zx)
6Z.,(zz)

and noting that to leading order in 1/N,

(A1)

Z.,(zz) = 6.,6(z z)u.,g [(y,(z))'+ zG„(zz) j/X,
6

we have

(A2)

dz+G, (xz)G, (zx) ' Q 2$&,(z))G„(zy)+i
6h, y

(AS)

whereupon it allows that
I

l„(xyx')= —jd G, (xxx)G, (xx) ' 2II(x —x')G„(xy)+(2N)'~ (x), ',
)

—y(Xp„(xyx')6(, x' (A4)

The quantity 6G»(zy)/6($, (x')) is readily evaluated through an equation analogous to (4.8); to leading order
we find that the Fourier transform, I",(k, i(d„;p, i~„), of 6G»(zy)/6($, (x')) is

(~ . ~ .
)

. 4X(&
( )

Gg(ky g()~)Gy(py K()~)
(A5)

1+2XP r(k, i(d „)

Equation (A4) then implies that the Fourier transform, I»(k, i(()„;p, i&@ ), of I»(xyx ) is simply,

1+ 2A.P r(k, k()„)
(A6)
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