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The renormalization of the composite gauge field product operators A'„(x)A"(x) is carried out in detail in

asymptotically free non-Abelian SU(n) gauge theories. Upon renormalization, these operators mix with similar

operators obtained by Lorentz and SU(n) group rotations and with other composite operators formed from

ghost fields or derivatives of A. It is shown„using renormalization-group and SU(n)-projection techniques,
that this renormalization problem is completely soluble. The renormalization-group equations satisfied by the
composite renormalization-constant matrix Z are deduced and solved using the computed second-order
expression for Z. For SU(2), Z is put in triangular form so that the effective anomalous dimension eigenvalues

can be read oK For the general SU(n) group, it is more convenient to use group projection operators and

crossing matrices to explicitly diagonalize the renormalization-group equations. The main results can be most

simply stated as an explicit short-distance operator expansion which expresses the product A'„(x)A"„(0) for x —~0
in terms of the finite composite operators:A'(0)A&(0):. The leading singularity is seen to be associated with

the singlet operator 8'"g„„:A~ A:. The results are used to study the invariance of the models under the
Abelian gauge transformations A'„~A'„+g„A'.

I, INTRODUCTION

Consider a non-Abelian gauge theory (NAGT) in-
volving (unrenormalized) Yang-Mills (YM)' vector-
meson fields a'„ghost fields c', , and fermion fields
g, where ts =1, . . . , X for a gauge group of dimen-
sion N and i =1,2. The corresponding renormalized
fields''„, C, , 4 are formally obtained from the un-
renormalized fields by simply multiplying by the
wave-function renormalization constants Z, ' ',
Z, (', Z~ (', respectively. ' The renormalization
of unrenormalized composite operators such as
a,'ts'„, c,'css, TtrI'g, etc. , is more complicated be-
cause of the need to incorporate additive renor-
malizations involving lower-dimensional operator s
and because of the fact that operators of the same
dimension in general mix under renormalization.
In this paper we will be concerned with this latter
mixing problem. This is an important problem
which occurs in connection with all of the observ-
able gauge-invariant operators such as gy, g,
gy„Q„g, f„,f"„,etc.

In this paper we will study explicitly the re-
normalization of the lowest-dimensional composite
operator et'ett and the operators (including ghosts)
of the same dimension (2) with which it can mix.
This study should be worthwhile, in spite of the
fact that these operators are not observable, for
a number of reasons. The low dimension of these
operators makes the mixing problem relatively

simple and transparent. Furthermore, there is
no ghost-mixing to contend with„Also, the field
product of interest occurs in the fundamental co-
variant field operator

fa S tte S ate + + f ebctsstsc

where go .'.s the unrenormalized charge and f"'
are the antisymmetric structure constants of the
gauge Lie algebra, and in the gauge-invariant
products such as f',„f„'s. Finally, as we will re-
turn to later, our field product occurs when the
field product a a "a„, which occurs in the field
equations, is subjected to an "R transformation"
a„-a +r, r„=constant, or to an Abelian gauge
transformation a„-a. +8 A.s ~

If the non-Abelian gauge theory is asymptotically
free (AF), ' the only case we will consider in this
paper, the renormalization problem is completely
and exactly soluble. Because of the asymptotic
freedom, the renormalization-group (HG) etlua-
tions for the renormalization-constant matrix can
be exactly solved to give the exact' expression for
the matrix in terms of its behavior in the lowest
nontrivial order of perturbation theory. These
lowest-order calculations are straightforward but
often tedious.

In principle, there are three distinct sets of
operators that can mix with tt'„ttt: (i) the bilinear
operators
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ab c d ab c, dM,da„a„, g „M,dry 'a, (1.2)

ab c dg I P AC, C, (1.4)

Our analysis is somewhat simplified because the
operators (1.4) cannot, in fact, occur, as follows
from the structure of the YM Lagrangian,

L, = ,'f „„f-—"- (8 s)2+s'c,'~bcb+bgy„a"y,1

0

where M;~b is a gauge-group-invariant matrix (con-
structed out of 5", structure constants f", etc.);
(ii) the linear operators

~abc' +c (1.3)
I

where N' ' is a gauge-group-invariant matrix, and
(iii). the ghost bilinear operators

studied the renormalization off „f'" and the op-
erators (including those involving ghost fields)
with which it mixes, using renormalization-group
methods. It was again found that ghost mixing
could not be ignored.

For us, as we have stated, the relevant ghost
operators (1.4) are rigorously ignorable. How-
ever, they can be included for illustrative purposes
since the operators (1.2) do occur in the renormal-
ization of (1.4). In either case, the same result
is obtained for the renormalization of (1,2).

Our main result is most simply expressed as
the explicit short-distance operator-product ex-
pansion (OPE)

ga (x)gb(O) ~ g [In(x2)-&/2j l

~ab —5abe + g gabc~c
p, (1.5)

x/If b &"b ~ (o)a~(o) ~

D, = ~„-ig0A'T',

where T' are the fermion representation matrices.
The presence of the operators (1.3) is easily ac-
counted for since they are multiplicatively re-
normalized (by Z,). Thus the heart of our analysis
will be the solution of the mixing problem associ-
ated with the operators (1.2). The tools will be
elementary SU(e) group theory and the RG with
the dynamical input supplied by single-loop Feyn-
man diagrams. In principle, directionally depen-
dent singularities (e.g. , A„A„x"x"/x') can also
occur, but these will be seen to be less singular
than (1.2).

Composite operators were first precisely defined
in perturbation theory by point-separation" and
normal-products" techniques. The original appli-
cations of the renormalization group to study the re-
normalization of composite operators was made by
Symanzik in a series of beautiful and important pa-
pers. ' This work was extended to other operators
and models and to light- cone operator-product expan-
sions by Christ, Hasslacher, and Mueller" and by
Miter. " For NAGT's, renormalization and mixing
treatments of composite operators in leading light-
cone expansions were given in the original
studies of AF.' In this work, it was assumed that
the anomalous dimensions of gauge-invariant op-
erators could be correctly computed by ignoring
the mixing with operators involving ghost fields,
but the validity of this assumption has not been
rigorously established. The severity of the ghost-
mixing problem was subsequently illustrated by
Kainz, Kummer, and Schweda. " These authors
studied the renormalization and mixing off„„f",
and T|y„Q„g in AF theories and found a crucial
ghost dependence. Their conclusions were further
supported by Kluberg-Stern and Zuber, '4 who

which expresses the singularities of the product of
renormalized fields A'„ in terms of c-number func-
tions of the space-time separation and finite local
composite operators:A' Ad~: symmetric under the
simultaneous interchanges c d, & P. The num-
bers &, and matrices M, will be given explicitly
in Sec. V for the SU(n) gauge group. The leading
singularity will be seen to be carried by the identi-
ty projection

Mabel, nb 5ab5cdg g ab(s2 1)-x
Igv fLV

We begin our analysis in Sec. II with a review of
the general operator-mixing formalism. The con-
nection between the cutoff dependence of the re-
normalization mixing matrix Z, , and the singularity
structures of associated OPE's is stressed. In
Sec. III, after a review of the RG equations for
Z, and Z„RG equations are deduced for Z, &. For
AF theories, the forms of the solutions to these
equations are given. The renormalization of the
product A'„Ab for the SU(2) gauge group is taken
up in Sec. IV. The simplicity of this group enables
the renormalization problem to be discussed in
the absence of group-theoretic complications. The
mixing operators (1.2)-(1.4) are explicitly enumer-
ated and the renormalization constant matrix is
given in triangular form. The simplicity of the
operators (1.3) and the irrelevance of the opera-
tors (1.4) is discussed. The general SU(n) gauge
group is considered in Sec. V. Group-theoretic
projection operator and crossing matrix techniques
are used to diagonalize the RG equations. The
resulting uncoupled equations are then solved and
the general singularity structure is exhibited in
essentially the form (1.6). The final Sec. VI sum-
marizes our results and applies them to the study
of the R invariance of NAGT's.
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B]Z),. = U~, (2.1)

or

II. OPERATOR MIXING

In this section we will renew in a general context
the way in which renormalization mixes together
operators with the same quantum numbers and
naive dimensions. Let U, —= U,.(x), t =1, . . .N be
a set of such unrenormalized local field operators
which mix upon renormalization, and denote by
R,.—= R,.(x) the corresponding renormalized opera-
tors. %e suppress the implicit dependence of the
U, on a cutoff parameter K'. [Matrix elements of

U,. are cutoff dependent and generally possess no
finite limit when the cutoff is removed (K'- ~).]
The multiplicative renormalization matrix Z, &

=-Ztt(K') is defined by"
N

and d is the "effective anomalous dimension
matrix. " In matrix notation,

Z =e("')'C

En terms of projection matrices P&, i = 1,
which satisfy

(2.9)

P,.P) = 6)JI, QPt= I, (2.10)

where I is.the N ~N unit matrix, we can write

d=gd, P, , (2.ii)

(2.12)

where $d, ; l =1, . . . , N) are the eigenvalues of d.
Thus

R,.= P U,.(Z-'), , , (2.2) and (2.9) becomes

t "yP,C, (2.18)
where Z denotes the matrix with matrix elements
Zt&. More precisely, (2.2) should be written

so that (2.1) becomes

Rt(x) = lim Q Ut(x; K')[Z '(K')],.t.
g ~to

(2.3)
Ut —Q t ~t Q Rt(PtC)t t . (2.14)

We will use the simpler symbolic notation of (2.2)
throughout this paper.

Because of the mixing (2.2), the U,. are not mul-
tiplicatively renormalizable in the usual sense.
The linear combinations

(2.4)

which are multiplicatively renormalizable, are de-
termined by the matrix V which diagonalizes Z '.

V-'Z-'V =~,

U, , = t'z pR,.(P,C)„. (2.18)

If U,.(x) is expressible as the product

U,.(x) =a,.(x)bt(x) (2.16)

of unrenormalized fields a, , b„and if the corre-
sponding renormalized fields are

The leading degree of divergence of U, for K'- ~
is then given by'the largest eigenvalue d~ among
the ddt):

where z is diagonal, with entries z~, k = 1, . . . , N,
the eigenvalues of Z '. Thus

AZ+gf)B)ZQ
then (2.1) becomes

(2.iv)

Rtt —Q V~tRt =g,.U', — (2.8)
X,(x)a, (x) = g R,(x)Z,,{K'), (2.18)

The renormalization matrix will have the general
form

Z (K2) g (~(1 t)g)n (2 'I)

t = InK'/p, ', (2.8)

where, for scale-invariant theories, t =K'/p, '
(p,

'
is the normalization mass) and d is the "anomalous
dimension" matrix, and for AF theories or in
finite orders of perturbation theory,

where

(2.19)

Note that although (2.17) are cutoff independent,
the local product 2, (x)Bt(x) is not in general cutoff
independent but rather has singularities for E'- ~
given by Z(EP). The nonlocal product A, (x)Bt(0),
on the other hand, is cutoff independent for K'- ~
but has singularities for x-0. If the E'- and
x-0 limits commute, then (2.18) can be recast as
the QPE'
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A,.(x)B,.(O) —P B,.(x)Z, , (1/x') .
x~0

{2.2o) 8 8—„—+p(g) , —+r;(g) z;(t, g) = 0, (3.9)

(2.21)Zg Zg

(2.19), (2.20), and (2.13) give the explicit OPE

We will see in the following section that (2.20) is
in fact the correct OPE. If

8
y;(g) =lim —lnz;(t, g), i=1, 3

t-

so that
3r, = r-, r, =my P/-g

(s.lo)

(s.11)

A, (x)B,(0) g u" &'6& g R, (x)(P. , C), , , (2.22)

where

u =ln(-x'p, ') . (2.23)

8
js(g) = t —, g

gO fixed

8
y(g) = p —lnZ,

(3 2)

(3.3)
gO fixed

with go the unrenormalized charge, g the renor-
malized charge, and p. the subtraction mass. The
finiteness of I'"' implies the cutoff independence
of P and y. Expressing the derivative in (3.3) in
terms of derivatives at fixed g gives

III. RENORMALIZATION-GROUP EQUATiONS

In this section we shall deduce the renormaliza-
tion-group equations satisfied by the renormaliza-
tion matrix Z. We begin by recalling the simpler
equations satisfied by the elementary renormaliza-
tion constants Z, and Z, in NAGT's. " The renor-
malized YM vertex functions satisfy"' "

8 8

8g+P(g), -n—r(g) 1'"'(P„. , P„; g, t/) = o,

(s.l)
where

It should be emphasized that the existence of the
limits in (3.10) is the crucial ingredient in the de-
rivation of (3.9).

The solutions to (3.9) have been discussed else-
where. "'" For our purposes, we will only need
the result

(Z /Z )2 t-C(C'C+3)/25 (s.12)

for the SU(n) gauge group. Here b is related to
the (positive) lowest-order coefficient b in the ex-
pansion of P(g):

Is(g) = —bg'+O(g'), b =16m'b (3.13)

f ccdf bc@ 2C 6cb

tr(TcTc) = 2C, bc~

(s.15)

(s.16)

where T' are the fermion representation matrices,
one has

and

n, = 0 for C,/C, & '-,' (3.1v)

and a, is the limiting value of the effective gauge
parameter n(t, g),"

n(t, g), =n. . (s.14)

This function arises in connection with the term
5(g)e/sn in the RG equations' which we have sup-
pressed. In terms of the constants C, and C„de-
fined by

8 8——+ p(g) —»z.(t, g) —r(g),8t 8g t
(s.4)

n, ='-' ——,
' C,/C, for C, /C, &"-'.

We recall that'

(3.18)

which implies the RG equation"

8 8
-et + p(g) s

- r(g) z, (t, g) = o.

Similarly, using

g=g z '/'/z

(3.2) gives

(3.5)

(3.6)

(s.19)

so that for AF (b &0) one needs C,/C, &'-,'.
We consider next the renormalization of corn-

posite operators. For generality we treat a re-
normalized operator product A(x)B(0), where in-
essential indices have been suppressed, which can
be expanded as

3 8 82gy-g ——+P —lnZ, = P,8t 8g

which implies the RG equation

8 8 3 P——+p —+ 2y —— Z =0
8t 8g g

(3.7)

(3.8)

Equations (3.5) and (3.8) can be summarized as

A(x)B(0) ~ Q EI"'()xI"B'( )0. (s.2o)
x~0

n, i

Here n denotes the Lorentz and internal attributes
carried by 8'"'„and i enumerates the operators
with identical quantum numbers.

We define the renormalization constants as usual
by
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a =Z„A,

5=Z B,
(S.21a)

(S.21b)

where a, b are the unrenormalized field operators.
Under renormalization the set JR,"&

~z =1, . . .j can
mix among themselves, as described by a renor-
malization matrix Z&n&(f), where

B&n& ~ p&n&(Z &n&-&.)

in terms of the unrenormalized operators U&"'.

We can thus write the unrenormalized OPE

(3.22)

+(X)|&(P)~ g B&n&Q)P&n&(P)(Z&n&-1) Z Z
n~ k&g

(3.23)

By varying the renormalization point p, in Eq.
(3.23), we obtain""

9 8g 5;, V s +P(g)s +r;, (g) B&"'(x p, )=P

where

(3.24)

z„z»(z'"' '),~. (s.25)

Z(n) Z(n)Z -xZ
A B

satisfies the HG equation

(s.28)

The fact that (3.21) and (3.22) renders all oper-
ators cutoff independent implies that y,,(g) is also
cutoff independent. It therefore follows from (3.25)
that the matrix

Z ]) f +y Zc ZD ZA ZB

In the case where C, =A, D, =B we then have

Z (n) g(n)

(s.sl)

(3.32)

The input for the HG calculation is the second-
order evaluation of the matrix Z. Suppose we
would like to determine the element of Z for the
contribution

ab =:CD: ZCZD~+ (3.33)

The superscripts on the matrix elements indicate
the order in g to which they are to be evaluated.
Since:CD: is a finite operator, the singular con-
tributions to (3.34) originate only from the first
term on the right side, and so the calculation de-
termineS the COntributiOn Z,»B = )OZc ZD Z„'ZB '

ggAB 0 C~ Dg A

[see (3.31)j directly to second order.
For C =A, D =B, (3.34) simplifies to

+(A (:AB:(B&&», (3.35)

and Z„~ is now simply f in (3.35).
Returning to E&I. (3.27), we find its solution to be

(t =InZ jp)

&It'~&"&(g(t', g) )

where:CD: stands for the renormalized operator
R. Taking matrix elements of (3.33) between (C

~

and D) one-particle states to lowest order iso-
lates the contribution of:CD:, giving

(C ~AB D)' ' = (C ~:CD: ~D) o'(Z~ 'Zs 'ZcZ 0)

+(c:cD:D)&'&(z -'z, -'z,z, g)&0&.

(s.s4)

Q 5&) u +P(g) —+r& (g—)
xZ~", '(p, g(t, g)), (3.38)

(3.27)
an equation identical in form to the HG equation
(3.24) satisfied by the singular functions E&"&(x;p, ).
Thus these equations imply that the behavior of
Z as K'- ~ is the same as the behavior of E as
x' -0.

We shall now specialize to the case in which
U',"' is bilinear in some fields, say

+&n&(g) ~&n&g2+B&n&(g) (3.37)

Z(n) + e~ ~(n) ~(n)

where T is the time-ordering operator and g(t, g)
is the effective charge. We define

U&,."&Q) =c, (&;)d, (x) . (3.28)
XZ&n&(1 g(t g)) (3.38)

and

-~gg ZC&Z D&
(s.sp)

We write the contribution of 8',."' to the renormali-
zation of UJ"' as

v&J"&( ) =z, z, ft&"&g)c„+~ ~ ~, (s.29)

so that

where we need not exhibit the expression for the
"mixing" matrix M.

IV. SU(2) GAUGE GROUP

In this section we shall illustrate the HG tech-
niques for determining operator-product singu-
larities by calculating explicitly the renormaliza-
tion required for the composite operator A„A"„for
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the gauge group SU(2). Thus we must first deter-
mine the set of operators with identical quantum
numbers that mix with A, Av under renormalization.
The first kind consists of the bilinears in A, of
which there can be five independent combinations;
(1):A",A„":, (2):A,"A"„:, (2) g,„:A,A"':,
(4) gm" A~A ~ (5) g $™n A A ~ '

(pre will see
that directional-dependent singularitie. s are non-
leading. ) The second kind is made from the ghost
operators (1) gn„(C C" +C"C ), (2) g„„6 "CC.
We have here written C =C» C = C, . The third
kind is linear in the derivative of
A: e' (B,At —B„A„').

We shall then be required to calculate the eigen-
values of the renormalization matrix of this set
of operators to lowest nontrivial order. The task
is greatly simplified by observing that the renor-
malization matrix can be chosen to be triangular
in this case. For the composite operators bi-
linear inA, we set

FIG. 1. Second-order Feynman diagrams giving the
:AA: terms in the expansion of the product AA of gauge
fields. The solid lines between vertices are the gauge
field propagators, the dots are the cubic (-g) or quartic
(-g ) gauge field couplings, and the cross is the AA
vertex. The loop integrals are logarithmically divergent
and so give rise to the factor In%2 when a cutoff K is
introduced. The Feynman rules are given, for example,
in Ref. 5.

where

AmAn K, AmAn. yK .AmAn .yK g .AmAnA, .
p 1' p, p' 2' V p ' 3 gv' [AmAn]n (AmAn +AmAn) (4.3)

+K 6mn A' A'+K g 6 n A'A' '
4 ' p, p' 5 gv

+ (other operators), (4.1)

and we learn from (4.1) that, apart from ghost and
BA contributions,

[A™A„"]'= (K, +K,):[A,"A„"]'.+K,g, „:A'"A":

+K gmn. Al Al. +K ~ gmn. AlAl &.
v' 5' v

(4.2a)

This sector of the renormalization matrix is thus
clearly triangular. As for the sector involving
ghost operators, we shall define the renormaliza-
tion constants by

C C m+CnC n~m. (CmCn+CnCm). +~sgmn. C ~ C.

+g .AmAnX. +g gmn. AlAl&.1'X'2''A
(4.4)

[A.A„]-= (K, -K,):[A:A,"]-:,
A.A" =(K +K +4K )g:A"A"'.

+ (K, +4K,)g„„& ":A',A":,
6~A ' A'= (K +K + 3K )5~ A' A'

(4.2b)

(4.2c)

and

A, A"„=[right-hand side of (4.1)]

+~ g .CmCn+CnCm.

~ (K,+ 3K,)g„„& ":A'„A"., (4.2d)
+M, g „6 ":C'C:. (4.5)

g P "A~A'~= (K, +K, +4K, + SK, +12K,):A~A'~:,

(4.2e)

We can now calculate these constants to second
order in g. The E„.. . ,K, are determined by the
diagrams in Fig. 1. Explicit evaluation gives

(Fig. 1)=1.((-26""6'~+5"'P~+ P'5 ~)[ —,'(1+n)g„„g q
—,'(1+c.)(g g +g g )]

+ '(- ~"'~"'+~"~"')(g..g.& -g..g,&)],

from which we obtain

—,'(7+ o.)S. ,

K, =-,'(+ 5 o.)1.,

K = ——(1+ c.)L,

K, =+ —.'(1+ n)l. ,

K, =+-.'(1+ ~)I. .

We have used the abbreviation

(4.6)

(4.7a)

(4.7b)

(4.7c)

(4.7d)

(4.7e)
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(4.6)

(Directional-dependent singularities are seen to be absent. )
This sector of the y matrix is thus

+ K~+K2

0

K3

K4

K5

K~ -K2

0 K~+K2+ 4K3

K4+ 4K5

K, +K, +3K4

3+ 3K5 Ki+K2+ 4K3+ SK&+ 12K5

(4.9)

and the diagonal entries are

y,.=--'( +1)16, ,

on the right-hand side of 8A. Thus these contribu-
tions occur in the same triangular configuration.
The diagonal element j.n the Z matrix is of course

g 2

}6m'
'V

y„= a(o'+-1)
16m

y„= 3(o,'+ 1)

(4.10)

1/2
8&8& 3

We write schematically

AA -E,:AA: +E28A,

and then the functions E, and E, satisfy

8 8
+ P —E,=Ag2E, ,8p

8 8
+ P —E,=BgE, +Cg'E, .

(4.11)

(4.i2)

(4.13)

(4.14)

By a well-known theorem, the eigenvalues of such
a matrix are just the diagonal elements, and so for
our purposes it is never necessary to know the
off-diagonal elements;

Composite ghost operators such as:C C"+C"C:,
which can by quantum-number considerations
occur in the expansion of AA, do not actually con-
tribute. The structure of the ghost Lagrangian,
&,CS"C, means that only:(&, C)C: can occur in the
expansion, and that is of dimension 3. This ob-
servation can be explicitly verified from the Feyn-
man diagrams to all orders ing. (See, for ex-
ample, Fig. 2.) We canthus exclude the ghost
operators from consideration in the renormaliza-
tion matrix. On the other hand. the CC expansion
does involve contributions from:AA: (see Fig. 3),
in addition to CC (see Fig. 4). We can of course
consider this larger renormalization matrix for the
set of operators JAAjU/CC}. The result of the
computation, using this Z, for the AA singularity
is of course the same as if the ghost operators
are ignored in the first place. We have explicitly
verified this.

The contribution from terms of the type 8A
merits a separate discussion. They do occur in
the expansion of AA, but they are trivial to re-
normalize. In particular, no:AA: terms occur

E,- (lnx') "~'b

E -maxfE„(lnx') "+' ')
(4.is)

(4.i6)

In reality E, includes only those components of
:AA: that are- antisymmetric under the internal

FIG. 2. Second-order Feynman diagram giving the
ghost field product: CC: terms in the expansion of the
product AA of gauge fi.elds. The dashed line between
vertices is the ghost field propagator and the dots are
the ghost-gauge field couplings. The loop integral is
convergent, corresponding to the fact that it is actually
the operator;8& CC: of dimension 3 which occurs.

Some care is needed in solving this pair of RG
equations because here the coefficient Bg of E, is
only of first order ing. We report here the solu-
tion":
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with 0 "„ finite. The limiting value &, for a theory
depends in the usual way (3.17) and (3.18) on the
representation content of other fields.

V. SU(n) GAUGE GROUP

We have chosen the group SU(2) for illustrative
purposes in Sec. lV. The simple relation

&
abl & Lcd gacII)bd |)ad abc (5.1)

for SU(2) enables the enumeration of all the opera-
tors that can mix, and the renormalization matrix
can be put in triangular form. What we need for
SU(n) is a group-theoretic analysis analogous to
(5.1) that enumerates the representation content
of the various operators that can mix.

The calculation of the Feynman diagrams (Fig. 1)
is no more complicated, and we get similar results
for a general SU(n) group. Following the discus-
sion in Sec. IV we need only concern ourselves
with the:AA: contribution to the AA expansion.
The lowest-order result is

FIG. 3. Second-order Feynman diagrams giving the
:AA: contributions to the product CC. The cross now
represents the CC vertex. The loop integral is logar-
ithmically divergent.

symmetry, since ~A contributes only to that sec-
tor. The second quantity in the max f ) can be
recognized as just Z,/Z„using Z, /Z, '~'- (in@') '~'.
For SU(2), the antisymmetric part y in (4.10) is
negative, and so E, actually vanishes. E2 is then
simply =Z,/Z, .

This analysis works for any gauge group. The
8A contribution always provides a minimum singu-
larity of Z, /Z„ to the complete AA expansion.
Thus our subsequent statements about the singu-
larity of the AA operator product should be under-
stood in that sense.

From the foregoing analysis, the maximum sing-
ularity of the operator product is determined to be
[b =(1/1$r')b, P(g) = —bg'+' '']

A~(~)A"(P) ~ [ln(x ) ~~a] ac+1)~bbomn(P) (4 17)

FIG. 4. Second-order Feynman diagram giving the
:CC: contributions to the product CC. The loop integral
is logarithmically divergent.

(& + 1)(faclf bdb +fadlf bcl) (5.4)

and we have used the abbreviation (4.8).
Equation (5.2) can be easily diagonalized in its

space-time indices to give two independent equa-
tions:

6"O' A'A - (E +4E )'" A'A .L
5acbbd(Ac Ad Lg Ac.Ad)

(5.5)

+ 4E f abl fcdl +
& (3a + 1)faclf bdl

+
~ (3(y ~ 5)f adolf

bcl (5.7)

The aim now is to decompose (5.5) and (5.6) ac-
cording to the internal-group symmetry into a
number of diagonal, independent equations, each
of which can be the input to an RG equation. The
key to the solution of the problem is to realize
that the tensorial forms occurring in these equa-
tions are just proportional to projection operators
for the identity and the regular representations in
either the s, t, or u channels, where s corre-
sponds to ab —cd, t to ac - bd, and u to ad- bc.
Thus if we were to express all the projection op-
erators in the t and u channels in terms of those
in the s channel, we would arrive at a number of
independent s-channel projections of the original
equations. Each of these projected equations can
then be the lowest-order inputs to the RG equa-
tions. The singularity of the original expansion
then coincides with the highest singularity found
among these projections.

The projection operators Pz in the t and Pz in
the u channels onto the representation P are in
general expressed in terms of those in the s chan-
nel (Po =P) by means of c—rossing matrices.
Specifically,

Eabcd (Ac A. d &

g Ac.Ad).L (5 8)

The coefficient in (5.5) is

A' A - (E'"d:A' Ad:+E' 'dg:A'Ad:)L (5.2)y v 1 ' g v' 2 gv'

where
Pd(ah~cd) = g C'j"(ab ~cd), (5.8)

f abl fcdl +f calf bcl

+&(& l)(faclfbdl+fadlfbcl) (5.3)
Pd(ab ~cd) = p Cp+'(ab ~cd), (5.9)
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where C is the crossing matrices. They exist
in principle for any group, and have been computed
in the literature for the groups SU(n)."

In Eqs. (5.5) and (5.6) we are dealing with (regu-
lar representation)-(regular representation) "scat-
tering" in SU(n). The s-channel (ab - cd) projec-
tion operators are' PI, P» P R, ) PA s ) P sA )PAA ) P s s,
where, for instance,

r, , (ab)', = [(X'Xb),—(AbX'),']
3n

3 gf dbc(yc)f1

v3n
(5.13)

T, (ab) = (, „,+tr(A;Ab) =, ,q, 36db,
1 a b 1

(5.11)

Pss(abed) = Q Tss(ab)~', [Tss(cd),".,]t .
Egal

(5.1O)
P (ab lcd) = bdb6"4

(5.13)

T" ensors ss) ~SA) AS) TR) ~R' an I or
.respond to the 27, 10, 10, 8, 8', and 1, respec-
tively in the case of SU(3). T„„first makes its
appearance in SU(4). The exact forms of the T's
need not concern us, except for the I and 8' repre-
sentations:

(5.14)Pz, (ab lcd) = f'b'f—'d'4
n

Now Eqs. (5.5) and (5.6) can be expressed via
Eqs. (5.13) and (5.14) entirely in terms of Pz and

PR, in the s, t, and u channels:

(n —1)PI(ac I
bd)A'Ad- n [ . Pz (ab-Icd) + —'(3&+1)Ps, (ac lbd) + (3n+ 5)P'(ad

I
bc)]:&'&d:I,

(n —1)Pz(ac l bd) (A' Ad ——' g „4'Ad) n(-Pz, (ab
l
cd) +Ps. (ad lbc)

+-( —1)[Ps,(ac lbd) +Ps, (ad lbc)]):(A'„A„—,' g„„A'A —):I..
(5.16)

The decomposition of (5.15) and (5.16) into s-channel projection operators is easily made with the help
of the tables of crossing matrices. '4

t channel PI PR PR, P SA PAS PA„PS S

1 1 1 1 1 1 1
n —1n —1n —1 n —1n —1n —1n-1

0 0

I channel PI PR B~ SA AS AA PAs

1 1 -1 -1 -1 1 1
n 1 n 1 n 1 n2 1 n 1 n2 1 n

1
2 0

Equations (5.15) and (5.16) thus each decompose into seven independent diagonal equations:

p (abl cd)
I

& n(~ + 1)P (ab l ed )

,'n(&+1)P„—
3

SA

PAS

SS

0

~a(o'+1)

-2(o.+ 1)

(5.1V)
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p (col cd.)
I

SA
(A'A ——'g A'A ) =

n (& + 1)P (cb lcd )

—,'n(~+ 1)P,
1—2nP~,

.(Ac Ad ) g„„Ac.Ad).1 (5.18)

AS

AA

PSS

~b(o' + 1)P

-b(o(+1)PddSSg

Equations (5.17) and (5.18) are actually 14 inde-
pendent operator-product expansions, and the in-
dependent projections behave according to the re-
sult of 14 uncoupled RG equations. Thus we have

occurs in PIA'Ad and this i:s the dominant singu-
larity in the A'„A» expansion (5.2):

Ac ( )Ab(0) [ln(X2)-1/2](3/2)n(a +c1) 2/b
v v XW

A'A'= —,
' g P, (ab ~cd):A'Ad [ln(x') '/']d),

(5.19)

x i5'~g .A A-1
n —1

(5.23)

and

AS

d,„=(2b)-'-.'(~, + 1),
d„=(2b) '(-~b)(o.,+1),

where

d/—- (2b) 'b n(&, + 1),
d = (2b) '—n(o.', + 1),
da, =(2b) '(-b)n,

8SA (5.20)

VI. DISCUSSION

Equations (5.19)-(5.22) are the main results of
this paper. They completely specify the bilinear
singularity structure of the product A;(x)A»(0) for
x-0 and they precisely define the finite local
composite operators:A;(x)A„'(0): . Together with
the vacuum expectation value and the result (4.16)
for the linear singularity structure, we have the
complete and explicit OPE

A', (X)A»(0) - (0 iA;(x)A'(0) i 0)

+ const x E,(x)f"'(()„A' s„Ac )

A~ A'- -'g A'A'
v 4 uv

= c g P, (ab
~

cd)'(A' A ——'g„„A'Ad):

)([ln(x') ' '] ), (5.21)

where

D, = (2b) 'bn(o. ', +1),
D, = (2b)-'-.'n(~, + 1),

& ~ =(») '(--')n,

DSA 0
p

b

D„,=0,
&„=(2b) 'b(&, +1),
D = (2' '(- b) (o', + 1) .

(5.22)

For the cases where d, or D, vanish, the main
contribution is no longer given by the RQ, and the
finite coefficient is not calculable in this frame-
work. ""By inspection, the largest singularity

+ (bilinear terms) . (6.1)
These results were derived using RG methods in

AF field theories. The various dimension-2 op-
erators mix upon renormalization as in (2.1),
giving rise to a mixed OPE as in (2.22). The OPE
coefficient functions E((")(x) [Eq. (3.20)] and the
renormalization-constant matrix Z 'b'(t) [Eq. (3.26)].
satisfy the same RG equation [(3.24), (3.27)]. Be-
cause of the AF, the solutions (3.38) are given in
terms of the lowest-order results (3.34). For the
SU(2) gauge group, the explicit mixing relation is
given in (4.1) and the explicit lowest-order evalua. -
tion (4.6) gives the y matrix, which can be put in
the triangular form (4.9). Using (3.38), the OPE
can then immediately be put in the general form
(2.22). For the general SU(n) gauge group, it is
more convenient to diagonalize the renormalization
procedure, as in Eqs. (2.4)-(2.6). Because the
operators that mix are related by exact Lorentz
or SU(n) group rotations, the diagonalization can
be explicitly performed. The original lowest-order
result (5.2) was thus written in terms of projection
operators, Eqs. (5.15) and (5.16), and the SU(n)
crossing relations then gave the diagonalized re-
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(e.2)

for a,rbitrary c-number functions A'(x), provided
the quantities

and

3 3 3
(e.3)

A A (6.4)

all vanish. ~ Because of the vanishing Z, /Z, in
a/f AF NAGT's [cf. Eq. (3.12)], and the finiteness
of the field operators 1,A', 8 A'„, the products
(6.3) do'indeed vanish. 4 We are now in a position
to determine when (6.4) also vanishes.

The contribution of the c-number term in (6.1)
is not relevant because vacuum subtractions are
always assumed. " The linear S„A„term in (6.1)
contributes to (6.4) the product of Z, '/Z, '~'
= (Z, /Z, )(Z,/Z, '~') and a finite field operator.
Since each of Z,/Z, and Z, /Z, '~' =g,/g vanishes,
this product also vanishes. It is therefore suffi-

lations (5.17) and (5.18). The then uncoupled RG
equations gave the results (5.19)-(5.22).

It was, of course, the simplicity of the opera-
tors (1.2)-(1.4) under consideration which enabled
the explicit diagonalization to be performed in
this case. In a more general problem, the mixing
matrix in (3.38) cannot be completely determined
by our methods. In this respect, our analysis
simply illustrates the general problem in a com-
pletely soluble situation. .

There is at least one case in which our results
are of practical, rather than illustrative, impor-
tance. This is for an investigation of the further
symmetries of quantum field theories which arise
as a consequence of renormalization, in the sense
of Ref. 4. In AF theories, the short-distance be-
haviors, and in particular the renormalized field
equations, are exactly known. It was previously
shown how, because of the exact vanishing of ap-
propriate combinations of renormalization con-
stants, the equations can be invariant to a larger
symmetry group than are the classical field equa-
tions. The results of this paper can be used to
investigate this possibility in more detail for
NAGT's.

Consider the renormalized YM field equations
which follow from the Lagrangian (1.5). These
equations will all be formally invariant to the
"Abelian" gauge transf ormations

~a (x) ~a (x)+ s Aa(x)
1

cient to consider the bilinear contributions to
(e 4).

For the SU(n) gauge group, using (3.12), and
using the result (5.23) for the leading singularity,
we find

This approaches zero provided

~, —3&0. (6.6)

For C2/C~&'-~, &, =0 and so (6.6) is satisfied. For

——,
' C,/C„which is negative provided C, /'C,

Thus (6.6) is equivalent in general to

C,
C, (6.7)

So, within the AF range '-'&C, /C, » 0, (6.6) holds
for '-' &C,/C, & 2 and fails for —,

'
& C, /C, » 0.

For SU(n), C, =n/2, and every fundamental
representation of fermions contributes an amount

to C2 ol

C, =m/4 (6.8)

if there are m fundamental fermion representa-
tions. Thus (6.7) is equivalent to

m &n. (6.9)

For the popular color SU(3) gauge group with three
flavors (0f, (P, X), n = 3 and m = 3 so that (6.9) is not
satisfied. On the other hand, for the same gauge
group with four flavors (X, (P, 1,c), m = 4, ' and so
(6.9) is satisfied. Experimentally, "it appears
that m» 4 so that (6.9) and (6.7) are satisfied in
nature, "and consequently (6.5) vanishes and one
has Abelian gauge invariance. "

What about models with C,/C, & —,
' '? Although such

models are not believed to be of physical interest,
it would for completeness be desirable to deter-
mine the status of the zero-momentum theorems
there also. These models are not strictly A in-
variant because (6.4) does not vanish. However,
since (6.3) continues to vanish, the transforma-
tions (6.2) induce a simple change in the field
equations, and this may be enough to deduce the
theorems. This is presently under investigation.

A source of optimism in this regard may be
found in the AF' gg4 theory with negative renor-
malized coupling constant. This model is not
strictly 8 invariant because of the mass terms.
However, the effects of these terms can be de-
termined completely because of the AF, and the
result is that the zero-momentum theorems are
still valid. This means that the effective potential
can vanish. The details will be given elsewhere. "
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The renormalization-group methods employed
in this paper have been straightforward but tedious.
It would clearly be desirable to find more effi-
cient ways to determine the desired exact informa-
tion about short-distance behavior in AF theories.
An attack on this problem has been made using
quasicanonicals methods and has been reported on
elsewhere. "

In conclusion, let us recall the roles of the es-
sential ingredients in our analysis. It was the AF
of the NAGT's which led to the solutions (3.38) of
the BG equations with yo"' explicitly known from
the lowest-order Feynman diagram evaluations.

It was the SU(n) group invariance which led to the
explicit diagonalization which effectively deter-
mines M'"'and thus led to the exact behavior of 2'"'.
In both cases, the solubility of the problem was a
consequence of an invariance property of the theo-
ry, renormalization convention invariance in the
former case and SU(e) transformation invariance
in the latter.
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