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A relationship between the two-point correlation function of the Ising model in the critical region and the

(sinv vriti(0)sin~@/(p)) Green s function of a sine-Gordon field is constructed. This relationship is tested by

means of a mass perturbation expansion with an infrared cutoff and shown to agree, at the leading-

logarithm approximation and up to the second order, with the exact result of the Ising model.

I. INTRODUCTION

Ever since Onsager's derivation of the free en-
ergy, ' the Ising model in two dimensions has re-
mained a notorious problem in statistical mechan-
ics. In this paper, we would like to exhibit a re-
lationship with a field-theoretical model, and de-
rive a well-known result of the Ising model by this
new method.

Long ago, Schultz, Mattis, and Lieb' showed the
equivalence of the Ising system with a free fermion
gas in one dimension. This analogy can be used to
compute its behavior in the critical domain char-
acterized by T-T„where T, is the critical tem-
perature, and p»a, where a is the lattice spacing,
and p is a typical distance of interest. It turns out
that at T = T„ the fermions are massless, whereas
departures from T, can be described by the intro-
duction of a mass term. On the other hand, it is
well known in statistical mechanics' as well as in
field theory'~ that a free Fermi field in two space-
time dimensions can be parametrized as the ex-
ponential of a Bose field. In particular, there is
an intimate relation between relativistic massive
fermions with or without four-fermion coupling
and the sine-Gordon (SG) interaction of this Bose
field. '~ This parametrization enables us to con-
nect the two-point correlation function of the Ising
model in the so-called scaling limit with the
(sin&it g(0}sin&tf p(p)) Green's function of the sine-
Gordon field. The behavior of the Ising correla-
tion function in the scaling limit [p -~, p(T —T,)
fixed] is well known in statistical mechanics.
After some pioneering work, ""the exact form of
this scaling limit has been derived rigorously in
the recent monumental work of Wu et al." Here
we shall use the mass perturbation developed by
Coleman' for the SG field to investigate the leading
corrections to the Ising correlation function in
this scaling limit, when p(T- T,) is small.

In Sec. II, we introduce our notations and review
briefly the results of Ref. 2. The third section is

devoted to the critical domain. In Sec. IIIA, we
show that expanding the transfer matrix near T = T
and near the mode q =0, which is valid for the
study of long wavelengths (with respect to lattice
spacing), leads to the Hamiltonian of a free rela-
tivistic Majorana field of mass m cc T —T,.' In
Sec. III 8, we turn to the study of the two-spin cor-
relation function. We introduce two noninteracting
Ising systems, in order to be able to describe
them in terms of a complex Fermi field. The lat-
ter enables us to use the above-mentioned param-
etrization of the free Fermi field in terms of a
Bose field, the sine-Gordon field gati. A close anal-
ysis of the short-distance singularities which ap-
pear when the lattice spacing a goes to zero, or
equivalently, when the distance p and the corre-
lation length 1/m - (T —T,) ' increase with a fixed
value of the ratio mp, reveals that the leading
contribution comes from the (sing tr tti(p}sinew gati(0))
Green's function of the SG field: This is done in
Sec. III C. Although we believe this result to hoM
generally, we rely, for the actual computation of
this Green's function, on a perturbation expansion,
where the cos 2vtttti interaction of the SG field is
considered as a perturbation for the massless
field. This mass perturbation is plagued with in-
frared divergences. A simple example in Sec.
III D allows us to understand the mechanism of a
natural infrared cutoff. However, this method
does not enable us to go beyond the leading-loga-
rithmic correction in (m plump)" to the behavior at
the critical temperature. Nevertheless, the two
first leading logarithms are found to agree with the
exact result of Refs. 10 and 11. Finally, Sec. IV
contains some comments on higher-order corre-
lation functions and our concluding remarks.

Recently several authors" "have investigated '

the field-theoretical formulation of the. Ising prob-
lem along lines similar to ours. Ferrell" intro-
duced a doubling of the number of degrees of free-
dom of the Ising model, in order to write the trans-
fer matrix as the Hamiltonian of a Dirac field;



J. B. ZUBER AND C. ITZ YKSOX

then he computed the logarithmic singularity of
the specific heat. More recently, Luther and
Peschel have used a relationship between the Bax-
ter model" in two dimensions and theLuttinger"
model in one dimension to calculate the critical
exponents of a Baxter-type model: In the special
case when the Baxter model reduces to the super-
position of two noninteracting Ising lattices, their
method is very similar, although not identical, to
ours. Berg and Schroer have shown that the for-
mulatiop of the Ising model in terms of Majorana
fields may be used to study the, correlation func-
tion. This was completed quite recently by Bander
and one of the authors, who were able to prove that
a definite Green's function of a massive Majorana
field in an external field may be computed exactly
and coincides with one of the various exact ex-
pressions obtained by Wu et al." Thisisnotin
contradiction to the present work but rather shows
fruitful connections between various models. On
the other hand, the relationship between the Ising
system and the sine-Qordon theory may be inter-
esting for the latter.

II. NOTATIONS: REVIEW OF THE RESULTS OF SCHULTZ,

MATTIS, AND LIEB

Onsager' was able to compute the function F(E),
showing in particular that its second derivative is
singular at the transition point K, given by

sinh2K, =1, K, =0.4407. . . . (2.4)

It is the purpose of the critical theory to investi-
gate the singularity of I'(K) and the behavior of the
correlation functions in the vicinity of K=K,.

B. Transfer matrix formalism: Schultz-Mattis-Lieb results

The 2~ && 2" transfer matrix V connects configur-
ations of successive rows on the lattice in such a
way that for appropriate boundary conditions

Z =trV". (2.5)

V may be expressed in terms of spin operators
along a row, which are represented by Pauli ma-
trices o„n denotes the site index along this row
and the original spin variables a„correspond to the
operators o'„". It turns out that it is very convenient
to introduce fermion operators by the weQ-known
Jordan- Wigner transformation.

r 1

c„=exp sm o,cJ, 0„,
1

In this section, we introduce our notations and
review the results' of Schultz, Mattis, and Lieb,
for the sake of consistency in our paper. We refer
the reader to the original paper of these authors
and we shall use the same notations whenever pos-
sible.

A. The Ising model: notations

t'-1

c~ =exp in' a,a, v„',
1

where

o' = —,'(o'" a io').

Their Fourier transforms q, are defined by

c„=K '~'exp( —iw/4) Q e""q„

(2.6)

(2 'f)

(2.8)
The partition function of a two-dimensional N

xN square lattice is where the momentum q takes discrete values of
the form

exp(tc p vp, .),
g =kl (~i)

(2.1)

=2r N —2 Nq= —p, P=O, +1, . . . , z

The c's and the q's satisfy canonical fermion anti-
commutation relations

where the energy E(o') is a sum of nearest-neigh-
bor contributions. The free energy per site is de-
fined as

{c„,c„,J ={c'„,c'„,)= 0, {c„,c'„,)= 5„„,. (2.9)

In terms of the g's, the transfer matrix V reads

E(Ã) = lim —lnZ
1

N N

and the correlation functions

(o ~ o. ~ ~ ~ o ~ ) =Z o. o ~ o ~ of] t2n il t2 2ng&=kl

(2.2)
V = (2 sinh2k) "~'W,

xp — Eq cos2
q Qq'Qq —p

——,
' s in 2 P,(q,q, + q",g])]I,

(2.10)

(2.11)

x exp K a,-o, 2.3
(&i)

where K*, e„and ]t], are defined by

tanhK* = exp(-2Ã), (2.12)
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cosh&, = cosh2(K —K*)

+ (1 —cosq) sinh2K* sinh2K, (2.13)

III. CRITICAL REGION

A. Expansion near T= T,

with the condition &,~ 0, and

sinhe, cos2$, = sin'q sinh2K*+ cos'q cosh2K sinh2K*

—cosq sinh2K cosh2K*,
(2.14)

sinhe, sin2 (t), = sinq cosq sin2K*(1 —cosh2K)

Close to T = T„singularities appear involving
long-range correlations. The discrete nature of
the lattice is washed out in the large-distance be-
havior of correlation functions, and continuous
Euclidean invariance is restored in this limit. "
We set

+ sinq sinh2K cosh2K~. 1K=K —4m, (3.1)
Noting that these definitions imply that

where mo«1, and from (2.12) to leading order
(2.15) K*=K,+ —,'m, . (3.2)

we introduce finally the operators g„
&, = )7, cos Q, + qt, sin(t)„

which diagonalize S'.

W = exp(-H)

(2.16)
Here m, )0 (m, &0) corresponds to T)T, (T& T,).
Only long wavelengths with respect to the lattice
spacing, i.e., small q, are of interest. Thus it
seems legitimate to expand z, near q =0. From
(2.13)

(2.17) =mo +q (3.3)

H describes an assembly of free fermions of "en-
ergy" E,. Only the largest eigenvalue of W contri-
butes in the limit N-~ provided it is nondegener-
ate, which is the case for TcT, . In turn this
means that only the $-vacuum state survives in
this limit as it is the lowest eigenstate of H.
Henceforth angular brackets will denote averages
in this state.

As long as Kn(: K„ then K np K* and &,~ 2 ~K - Kq ~,
which means that the vacuum is an isolated point
in the spectrum. As K-K, the energy gap goes to
zero and the infrared region becomes predominant
in the calculation of physical quantities.

W'e shall concentrate our attention here on the
two-point correlation'along the same rom. As we
expect an isotropic behavior close to the critical
point, "this is not a serious limitation in this case.

Let x&x' refer to points on the same row; the
thermal average (v„v„,) is given in terms of a ($)
vacuum expectation value as

(c„c,,) =((c'„+c„)exp((cQ c',c,)(c'„,+c„.))r

~

~

r ~-1

(c,'—c,)exp((c Q c,'c,)(c'„.+c,.)).
r+1

(2.16)

Owing to the anticommutativity of the c's, the
right-hand side operators are Hermitian. Even
though the underlying dynamics has been brought
to the simple form (2..17), which means that the
vacuum has a simple structure, the computation
of correlations seems to involve complicated ex-
pressions in terms of fermion degrees of freedom.

-e(n' nl+n. n i(I (3 6)

We now define the fermion fields g, and (I), hy

e-in /e
c„= (P, + ig, ),

2

or equivalently

(3.6)

= (2N) ' ' g (cos(t), —sin(t), )($,e""-gt(. ""),

(3.7)

= (2N)-'~' g(cosQ, +sing, )((,e'~+ $~e '~)

( satisfies ordinary anticommutation relations:

This is the relativistic dispersion relation with
the identification of ~m,

~
with the fermion mass.

From the relations (2.14}we also find in this ap-
proximation

mo
c os 2 (t)

(m, +qj
(3.4}

sln2(t q ( 2 g})12

which allows us to write S' in the form

W = exp(-H)

=exp — mo 'g 'g +7j 'g —].
e&0



J. B. ZUBER AND C. ITZ YKSON 15

(C.(.), C,(")}= 6.,6,. (3.8) u(q) = [2(u((u+ q)] '~' ', (u -=(m, '+q')'~'.

In the critical region, one can use Eg. (3.4) and
write

4,(~) =N '~' Q [$,e'~u(q) + $",e ""u*(q)], (3.9)
c.( )

where

q(y f) 8IHty(~)c &Ht (3.11)

Indeed, if w'e introduce the following y matrices:

(3.10)

The Hermitian fields $, and P, are the two compon-
ents of a massive Majorana field, if we allow for
Minkowskian time development:

011 „,(0 11[=-'Y
(1 Oj (-1 0$

(~g ~y} 2+lav +00 +11 1 +01 +10

1 —1
g

1j (3.12)

and if we consider the argument r in (3.9) as a continuous variable, the field P satisfies the Dirac equation
with an unconventional mass term:

8iy" „g(x'=f, x' =ra) = imp-'P(x) (3.13)

or more explicitly:

(so —8,)$, =-m$„ (s,+ s, )g, =mp, . (3.13')

(We have changed m, into a dimensioned parameter m =a 'm, .) Of course, at the critical temperature,
this Majorana field becomes massless. "

B. Two-point correlation function in the critical region

To express the two-point correlation function in terms of g we observe that since

e"' ' = (1 —2c~c) = (c~+ c)(c~ —c),

one can rewrite (2.18) as

&cr„c„,& = &(c"„-c„)(c~„+c,)(c~., —c„„)(c~„+c„.,) ~ ~ ~ (c ~, , —c„, ,)(c~,+ c„,))

r r+1 r+L r ~-j. r ~

(3.14)

(3.15)

where from (3.6)

c~+c=g, +p, =p',

c~ —c=i(g, —p, )= p . (3.16)

The field (' is Hermitian and P is anti-Hermitian.
For arbitrary n, m, they satisfy

jorana fields is the following: This trick will en-
able us to construct a complex Dirac field and then
to use the machinery of the boson representation
of a Dirac field. ' ' In terms of the Bose field, cal-
culations will be greatly simplified.

If J and K denote the combinations

(g, Cd=0, C =-C.'=I,
9:,~:}=-9., c}=» . (3.1V)

J'=if'X' and K=ig X,
they satisfy

(3.19)

J=J~, K=K" J =K =1, [Z, K]=0, (3.20)
We now introduce a second set of Majorana fields
X which anticommute with the fields g, and we cal-
culate the square of the correlation function as
given by

hence

m 7rJ'=exp -i-(J'-1), K=exp i -(K-1)
2 ' 2

&c,c,.&'=&0,l;„".g &&x,x,'.," x', & (3.18) (3.21)

The reason for introducing this second set of Ma- This allows us to write



QUANTUM FIELD THEORY AND THE TWO-DIMENSIONAL. . . 2879

&o„o,.&' =&(S,x,)(x'„,g„)(P„„X„„)"(P„.,x„. ,)(x'„.g. )&

= &(~gx,)(~g„x'„.)(ft„,x,„)"(fP„, ,X.. .)(ft„.x'„.)&
r'-Z

noel
(3.22)

Let D be the complex Dirac field

(0+ fx),
1

20
(3.23)

{D (r), Dt8(r')j = —5 ~5„,, (3.24)

J' =Dy'D

(ggxg + 42X2)

= 2s(gxn —4xi). (3.25)

(the other anticommutators vanish). D has been
given the dimension (mass)'/', and when a-0 we
recover the canonical anticommutator. %e recog-
nize that the argument of the exponential in the
right-hand side of Eci. (3.22) is the time component
of the current J:

In the continuum limit, the current J~ is con-
served: 8 J"=0, which implies that the equation

Jp esvs (3.26)
vm

can be solved. Asiswell known, ' ' this field P is
nothing other than the sine-Gordon field correspon-
ding to the Dirac field D. When the separation

is large (i.e., distance Ix —x'I=sir
much larger than the lattice spacing a), we approx-
imate the discrete sum in Ecl. (3.22} by an integral.
With the convention &"= -1, we have

(1/Wm)s, y and
r~-x

2 g (gx'. —(.X.) =-f«g ~'(~)
n=r+1 r+1

(w ~ -1)a
d(s, y(g). (3.27)

(r+1 )a

The correlation function becomes

&o(x =ra)o(x' =r'a)&'=&alt-X-(x) exp{fern [y(x' —a) -y(x+ a)]Mfq'X" (x')]) . (3.28)

Notice that the sign of the argument of the expon-
ential in (3.21) and (3.28) is arbitrary: Our re-
sults should not depend on this arbitrariness. The
educated reader may also wonder whether any sin-
gularities are encountered in the expressions
PP' or P y, when use is made of the continuous
field theory. In the following section, we address
ourselves to this problem, using the boson repre-
sentation in the manner of Mandelstam for the
Dirac field D.

At this point a remark is in order, concerning
what we call the continuous limit. As pointed out
in the Introduction, it is equivalent, for the dimen-
sionless function &ocr&, to letting the lattice spacing
a go to zero or letting both the distance p = lr- r'

l
a

and the inverse mass m, ' increase with a fixed
value of the ratio m, p; the latter corresponds to
the critical regime. We thus let the lattice spacing
a go to zero and replace the discrete variables,
x, x' by continuous variables. However, we do not
strictly set a =0, which would cause the occurrence
of short-distance singularities, but rather use a '
as a natural ultraviolet cutoff whenever necessary.

C. Boson representation

Mandelstam's parametrization for a one-dimen-
sional massive free Dirac field reads'

c
D (x) — y 5 l e-gsl /8

2m

zxpf exp -j n y' x — d e~~ w
~00

p+ N„{sin2vn $}=02cm p,

v7c
(3.30)

and m its conjugate momentum. N„refers to the
normal-ordering with respect to the operator Q~

defined by'

(x}
2

0+
( 5+ 2}l/2v (3.31)

and p, is an arbitrary mass scale. c is a constant
related to Euler's constant and R is a spatial cut-
off". We will let R go to ~ at the end of the cal-
culations. When handling the field Q, the crucial
point to remember is that, owing to the superre-
normalizability of the sine-Gordon interaction,
the short-distance behavior of the commutators,
Green's functions, etc. is the same as in the free
field case; for instance, for spacelike separation

(3.29)
Here p is the sine-Gordon field satisfying the
equation
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[& (x} 0 (y)j.=-, 4, in[-+u'(x-y)']. (3.32)

The field D ad defined above sati. fies equal-time
anticommutation relations

LD (x), D8(y))„o,a=0, (D (x),D&(y)}~,0 ——0.

[J"(x),D(y) ]8=/ = -y'y'D(x) 5(x —W)

(—g~'+ a~'y')D(x)5(x —y).

(3.36)

Finally, as shown by Mandelstam, the field D sat-
isfies the field equation

(3.33)

It is possible to define a regularized version of
the charge current. We choose Klaiber's defini-
tion4

iS"y, D(x) = [S,y'D],

9=m dxD x y5D x .

(3.3V)

(3.38)

J'~ (x) = —,
' lim [D(x+ $)y ~D(x) —y ~D(x+ ()D(x)]

(3.34}

rather than Mandelstam's, because this regulariz-
ation seems more natural in our Ising problem.
One is led to the expression (3.26)

(3.35)

for the current J" in terms of the scalar field P
and thus to the canonical equal-time commutation
relations'

Equation (3.3V) is the quantized form of the Dirac
equation (3.13) which we are interested in. We
thus conclude that Eq. (3.V9) is a good parametriz-
ation of the field D.

We now return to our Ising problem and use this
parametrization in the expression obtained in
(3.25) and (3.28). We first remark that the bilinear
operators g'X', ~P y in (3.22) and (3.25) need to be
regularized. However, there is a very natural
regularization in our problem. Suppose that our
second Ising lattice is slightly shifted by a trans-
lation g. The bilinear products now have the form
P'(x+ $)y'(x}, which can be expressed in terms of
the components of the field D:

iP'(x+ $)x'(x) = s-,' [Dt(x+ $)D,(x) —D, (x+ $)Dt(x) + Di2{x+ ()D,(x) —D,(x+ $)D~{x)]
+Di(x+ g)D, (x)+D,'(x+ ()D,(x).

The quantity in the brackets in the right-hand side is the regularized definition of J' [cf. Eq. (3.34)], where-
as the two last terms DtD, and DtD, are regular when (-0. Thus

lim i('{x+$}x'(x)= aJ'o{x)+Dt(x)D, (x) + Dt{x)D,(x) .
o

Note that this regularization justifies our calculation of Eq. (3.25). We also find that

D',D,(x) = i —"Ã, exp[-2i&mp-(x)],

D~+, (x) =i N„exp[+ 2—iv v P(x)]

(3.40)

(3.41)

Equation (3.28) thus becomes

CP.{0(x=~a)o(x'=r'a))'=a' —Jo(x) — N„sin2v vp(x) e '~'~~~'e' '~~" " J'(x') ——N sin2v n p(x')

(3.42)
When we compute this expression using the continuous field theory, two types of singularities may ap-
pear. First the exponentials exp(aiVn p) may give divergent self-contractions: We claim that the natural
ultraviolet cutoff of our problem is A =a '. On the other hand, when we let a go to zero, the products of
operators in (3 42) become singular. One finds that

J (x)e '+~o'""' = (clia)' 'N e ' '~ "'(1+O(a))+J (x.)e ' ~i' " (1.+ O(a))2@a (3.43)

CP,
[sin2&v)(x)]e ' '~&"+"= . (cpa)'~'N e'~'4'"'(1+ O(a))+ (cpa)'e "'o'"'{1+O(a))

1
2mia (3.44)
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with similar expressions for the operators at the point x . We now insert these results into Eg. (3.42}.
All ultraviolet divergences have been explicitly exhibited, and we may keep the leading power of a '.

((r( x)o(x') )';, ( cpa)'~' —,(N, [sins w P(x)jN, [sinu w y(x')]) . (3.45)

This is our major result: In the critical region,
the square of the two-point correlation function of
the Ising model is the Green's function
(sing m Q(x)sinu m P(x')) of the sine-Gordon field-
up to an unknown normalization factor originating
from the terms neglected in the original Hamil-
tonian (3.5). Equation (3.45) can be used to compute
the behavior at the critical temperature. At this
point, the Dirac field is massless and the field Q

is free:

im
——z, (ml

where )=x —y. As m-0, we find

(o(x =ra}cr(x' = x'a})' =

or

1 1
pp2 (y yl)1/2

- 1
r r'~ T=Tq

t & &r )1/4 &
Cg 0,5

(3.48)

(3.47)
——lnCm

4

sc
27r

which is a, mell-known result of the Ising model. + ~ ~ ~ (3.51)

D. Mass perturbation

%e now want to use this relationship between the
Ising and sine-Gordon models to investigate the
vicinity of the critical temperature. Our calcula-
tion is based on a mass perturbation expansion:
We assume m Ix —x'I to be small, and consider the
sine-Gordon interaction as a perturbation. To il-
lustrate the care required to deal with such a per-
turbation and its infrared singularities, let us
first treat a simple exercise.

(1) Consider the free Dirac field D solution of
Eg. (3.3'I); we expand D as

1
p g2 dq' [~(q}e '~&(q}

5(D.(x)D', (y) ) =
~

——lnCm

vyE
+—&n~m Ill27r

0 )
(3.52)

Let us see now if this idea works. The interaction-
picture Gell-Mann- I ow formula tells us that

The first term is of course the mass-zero value of
(D D~z) and the correction term is of order m lnm.
It would seem that perturbation theory in m is in
trouble. However, the origin of the inn factor
lies in an infrared singularity. If we assume the
existence of an infrared cutoff of order m in mo-
mentum space, or 1/m in configuration space, we
should be able to recover' from perturbation theory
that to lowest order

+ 5'(q)e""~(q)],

where the spinors u and v,

(3.48) (TD'(x)D'q (y)exp[-i f d'zX„(z)])
(exp[-i f d'z X„(z}])

1 -A'n
[2q'(q'+q')]'" q'+q' '

v(q) =u(q)*,
(3.49)

are normalized to l~il + i~el'= I~il + I~2) =1.
The equal-time Wightman function for this field
is an average computed in the vacuum state of the
a and b operators, and is found to be

(3.53)

where 3C =-&n5"y"O'. On the right-hand side, we
use a massless field D' arid a Minkowski space
formula. Since we are computing an equal-time
%ightman function which does not distinguish be-
tween real and i'maginary time, this should not
make any difference. The massless propagators
are
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TDP x D't 1
'-y'+( '-y')(1- ) '

6&D (x)Dt/[(y)) I"=,
~.

= -m d'z( TD' (x)D'8t(y)n'(z)y'D'(z) ) . (3.55)

(3.54)

and (TDD|(x) D,'t(y) ) vanishes. Since K„satisfies
(X ) =0, we find to lowest order

Applying Wick's theorem we see that this implies

6(D.(x)D'.(y) ) i„.;=O

in agreement with (3.52), while for instance

(3.56)5D, x)D, y =
2

d'zm 2 1
(1 —'~)+( ' — '}][( — }(1—R) —( —y'

The z' integral is readily evaluated by contour-integral methods, and with ig = ix' —y'i we obtain, in
configuration space, the logarithmic infrared-divergent integral

00

6(D, (x', xo), Dt(y', xo)) =-—
0

(3.57)

This is exactly what was expected and we supply an infrared cutoff by replacing the upper limit of integra-
tion by I/Km, where, of course, the constant X is unknown.

Then

im
5(D, (x'x')D,'(y'y') )= -i2,

0
(3.58)

(3.58}

pgg &/& )zf&(Elm) ) & d2g

Fortunately, we reproduce the exact result given in (3.52), at least at the leading-logarithm approxima-
tion. We thus feel confident to apply the same method to the Ising correlation function.

(2) We now consider this Ising function as expressed by

(vari* ( [iiinMsw4(x)[nr, [sinMr y(x')] exp /ri'z , "ii, sos.R—Miry'(z[
(o(x}o(x'})' =

—N

where, from now on, the field P is a free field. As explained by Coleman, ' the mass parameter p has to
be set e[lual to zero at the end of the calculation. In Eq. (86), a Wick rotation has been performed. Using
an infrared cutoff of order (Kim i)

' in the Euclidean z integrations, we readily calculate the first two
corrections.

Thus

ma'i2
ix-x'P'(InK minx-x + ~ ~ ~ ) .2' (3.6o)

([r(x)o(x')) & ir r
In the second-order correction, the vacuum graphs have to be taken into account:

m2~2 l/o x/2
6.( & ~(x)o(x') )') =

(3.61)

x d's, d2s2[ N sin 7t x sin ~ x' cos2 r z, „cos2 m z2

—(N„[sing v P(x)]N [sine v P(x')])(N„[cos2&rr it[(z, )]N [cos2v 7/ y(z, )])]

(3.62)
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The second-order leading logarithm in &a(x)o(x') ) is thus

(3.63)

(o(x)~(x') )-
& ().(")&i„.=" ~' "'~}

Notice also that our perturbative calculation should still make sense for negative values of the "mass"
parameter m, corresponding to T& T,. These results, as well as the first-order correction (3.61), are
in agreement with the exact result obtained by Wu et a/." These authors write

Z~, (f) =1+ )t)n+„'t'~„' ~t) n+ ~ ~ ~,
where 0 =ln( t t /6)+y (y is Euler's constant).

(3.64)

(3.65)

6,& o'(x)o(x'} ) 5,&
eo &' 1 6,&

g&)&'

&o(x)o(x')) (r r 2&op&'~, 6 &&)o&2[

From our perturbative calculation using an infrared cutoff, we can only conclude that there is no term of
the form m2 x —x' 2lna m(n —n') in the function

IV. REMARKS AND CONCLUSION

In the preceding sections, a relationship between the two-point functions of the Ising model and of the
sine-Gordon model has been exhibited and successfully .ested, using a mass perturbation. What can be
said about the higher-order correlation functions'P It is easy to convince oneself that the duplication of
the Ising lattice and the manipulations performed in Secs. IIIB and C lead to

(4.1)

&»(»)"'(»*.))'= [((»(*. ,)«P&(~.«. ,[((»„) ((»...))-)((»»'(»„))
/=1

,sin K x~ + ~ ~ ~, (4.2}

where it is understood that the 2n points x„.. . ,x,„are along the same row and are ordered: x, &x, & ~ ~ ~

&x,„; indeed this ordering is implicit in E&I. (4.1). In (4.2), the dots stand for terms suppressed by powers
of ma or any a/~x, -x~ . As remarked in Sec. IIIB, there is some arbitrariness in the exponentiation;
this is reflected by the presence of the e's: e(=+1. At the critical temperature, . we can use E&I. (4.2) to
compute the behavior of any correlation function. For example, consider the four-spin on-line function:

&~(x)o(~)o(s)o(~)&'=
'

[lx-yl '"lx-~l'"lx-~l '"ly-~l "'ly-~l'"l~-~l "'+(y-~)+(~-~)].

The expression obtained by Kadanoff and daeva"
coincides with the first term of the right-hand side
of Eq. (4.3). Thus our formalism seems to give a
symmetzized version of Kadanoff and Ceva's re-
sult. On the other hand, in any possible regime
where all distances increase at the same rate, or
where a given distance is much larger than the
others, the two expressions give the same behav-
ior: For instance, if x —y =L and ~s —w~=L'
are much larger than y —z = I (which is itself
much larger than the lattice spacing), the first
two terms of (4.3) behave as al '~~(L+L') ' 2 (Kad-
anoff and Ceva's result), whereas the third term
is -aP 'L 'L' '(L+L')' '. Neither for L-L'» I

» a nor L» L'»l» a does this term affect the
(a/I)(I/L}'~' behavior of the first ones. As a con-
sequence of this discussion, it is clear that the
calculation of the corrections near the critical
temperature must be done in a definite regime.

At the end of this paper many questions remain
open: Is there a deeper connection between the
sine-Gordon model and the Ising model (more pre-
cisely, the model consisting of two noninteracting
Ising lattices) P Our relationship has been built
using the transfer matrix formalism, its formula-
tion in terms of fermion operators, and finally the
boson representation of these operators. Would it
be possible to avoid these intermediary steps and
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construct a direct relationship'? This seems to be
a difficult problem.

Finally, if the exact expressions of Refs. 11 and
15 are to be identified with the two-point function
of the sine-Gordon theory, we can learn some use-
ful information about the large-distance behavior
(mx» 1,x» g-1 jm) of the latter. Such an investi-
gation is beyond the scope of this paper.
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