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In this paper we formulate a new stochastic description of quantum mechanics in phase space. The theory
of phase-space representations of quantum mechanics, initiated by Wigner, Groenewold, and Moyal and

systematized recently by Agarwal and Wolf is essentially a single-time theory, in that it deals only with the
quantum-mechanical joint distribution functions for position and momentum at a single instant of time. We

develop a natural multitime extension of such a single-time theory. We consider a class of multitime phase-

space distribution functions such that an arbitrary quantum multitime correlation function can be expressed as
a phase-space average of the form encountered in classical stochastic theories. We study the nonclassical
features of these multitime distribution functions and show that they may be considered as characterizing a
generalized stochastic process in phase space. We demonstrate that the multitime distribution functions that
correspond to Hamiltonian evolution of isolated quantum systems satisfy a certain condition that may be
regarded as characterizing a generalized Markov process. We also investigate certain special features of the
generalized stochastic processes that characterize the evolution of open systems.

I. INTRODUCTION

Probabilisti. c concepts appear in quantum mech-
anics in an entirely different way than in classical
statistical mechanics. The analysis of Birkhoff
and von Nuemann' shows that the conceptual foun-
dations of classical statistical theories are the
same as those of the classical theory of prob-
ability as systematized by Kolmogorov. ' How-
ever, from the point of view of classical prob-
ability theory, quantum mechanics seems to man-
ipulate somewhat mysteriously state vectors and
operators to end up with probabilities and expecta-
tion values. Also, quantum theory in what may
be called the "orthodox formulation"' does not give
any prescription for "alculating joint probability
distributions for noneommuting observables.

The search for joint probability distributions
for position and momentum is closely related to
investigations about the possibility of a phase-
space formulation of quantum mechanics. The
first step in this direction was taken in 3.932 by
Wigner, 4 who demonstrated the possibility of ex-
pressing quantum-mechanical expectation values
as averages over phase-space distribution func-
tions. Important contributions were later made
by Groenewold' and Moyal, ' and subsequently by
several other authors. These investigations led
gradual'. y to the realization that a phase-space
formulation of quantum theory is generated by a
"rule of association, "' which is essentially a linear
one-to-one mapping of operators into c-number
functions. ' Fach rule of association determines
a correspondence between quantum states and
phase-space distribution functions in such a way

that the quantum expectation values can be cal-
culated as phase-space averages. Hence a phase-
space formulation of quantum mechanics may be
viewed as a certain concrete realization of the
abstract Hilbert-space formulation, where the
language in which the formulation is framed closely
parallels the structure of classical statistical
mechanics. However, while the objects represent-
ing the states and observables in a phase-space
formulation of quantum theory have the appearance
of the corresponding objects of classical statistical
mechanics, their properties and relationships will
not be determined by classical statistical mech-
anics, except for the requirement that expectation
values should be expressible as phase-space aver-
ages. These relations will be completely deter-
mined by quantum theory, via the rule of associa-
tion.

The phase-space distribution functions that cor-
respond to quantum-mechanical states in any par-
ticular representation are sometimes called
"quasiprobabilities, " as they do not possess all
the attributes of ordinary probabilities. In par-
ticular, they are not non-negative in general.
This becomes clear from a theorem due to Wig-
ner,"that "if one imposes the condition that the
distribution function yields the usual marginal
probabilities, in addition to the requirements such
as reality and linear association, then one cannot
avoid negative probabilities in general. " Wigner's
theorem was the first among the several results
(see Refs. 10-13), which brought into evidence
certain nonclassical features of quantum mech-
anics, and demonstrated conclusively that quantum
mechanics cannot be formulated as ordinary
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stochastic theory in phase space.
The theory of phase-space representation

schemes discussed so far (sometimes referred
to as the "single-time theory") deals only with the
quantum-mechanical joint dis.ribution function
for position and momentum at a given instant of
time. It can also be shown that these quantum dis-
tribution functions and the corresponding charac-
teristic functions (see Ref. 13 for appropriate de-
finitions and results) have properties that are
analogous, to some extent, to those possessed by
the corresponding objects of classical probability
theory. However, the main problem considered
in the present investigation is to formulate quantum
evolution as a certain generalized stochastic pro-
cess in phase space. The results we mentioned
earlier deal only with certain "kinematical" as-
pects of the above problem.

Historically, the first step towards formulating
quantum theory as a generalized stochastic process
was taken by Stratonovich, "who introduced a set
of multitime distribution functions in phase space,
and showed that they satisfy the classical Markov
factorization property. Subsequent investigations
of Lax and collaborators"'" showed that there
exists a general class of such "Markovian multi-
time distribution functions. " However, it can be
shown" that these multitime distribution functions
are not suitable for calculating an arbitrary quan-
tum correlation function as a phase-space average
of c-number functions. It thus appears that such
multitime distribution functions are considered
mainly because they satisfy the factorization rela-
tion characteristic of classical Markov proces-
ses. There have been discussions on alternative
approaches to the description of quantum evolution
as a generalized stochastic process in phase space,
in particular those of Agarwal and Wolfs, is and
Bausch, Schlogl, and Stahl, "'"both of which are
closest in spirit to our approach.

In all the phase-space formulations of quantum
theory, the single-time phase-space distribution
functions are determined by the requirement that
the expectation value of any observable can be cal-
culated as a phase-space average of the c-number
representative of the observable. In the same way
we require that the multitime distributions are to
be determined by the condition that any multitime
correlation function of a set of observables can be
calculated as a phase-space average of the product
of the c-number representatives of the observables,
just as in the theory of classical stochastic pro-
cesses. In other words, the multitime distribu-
tion functions p„(q,p, t„.. . , q„p„t„)are determined
by the requirement that given any set of obser-
vables (g;), their multitime correlation functions
can be calculated via a relation of the form

(g, (t, )g,(t,) g„(t„))

g, (q„p,)g, (q„p.) "g,(q, P.)
x dpi ' ' 'dp~~

where Q, (t;)) are the time-evolved observables
in the Heisenberg picture and Ig&(q„p, )) are the
phase-space representatives of the corresponding
Schrodinger-picture observables Q.,(0)) (we as-
sume that the observables in both pictures coin-
cide at time t=0). Apart from the requirement
expressed by Eq. (1.1), the properties and rela-
tions of these multitime distribution functions will
be determined solely by quantum theory and not by
any analogy with classical stochastic processes.
We will often refe'r to these multitime distribution
functions as characterizing a certain quantum (or
generalized) stochastic process in phase space.
Such a statement should be taken to imply that
these distribution functions satisfy a certain set
of consistency relations (see theorem 2.1 below).

Finally, a few remarks may be made on the rela-
tion between the formalism outlined in this paper
and the various investigations on the probabilistic
foundations of quantum mechanics. There have
been several attempts to construct a framework
of "quantum probability theory" based on the work
of Birkhoff and von Neumann' (see Ref. 21b for a
detailed discussion of this subject). Recently an
operational approach to quantum probability theory
has been developed. " This approach makes use of
von Neumann's theory of successive observations"
to introduce statistical concepts into quantum the-
ory. In this approach, physically meaningful joint
probability distributions can be defined for any
collection of observables, provided that in char-
acterizing an observable we also specify the cor-
responding "measurement transformation" (i.e.,
the effect of performing a measurement of the ob-
servable on the state of the system; see Ref. 21b).
A theory of quantum stochastic processes can also
be formulated"" on the ba,sis of the above frame-
work of "quantum probability theory. "

The present investigation (in contrast to those
mentioned above), is solely concerned with obtaining
a stochastic phase-space formulation of quantum
theory in its orthodox formulation. ' Here the
statistical features of the theory are completely
characterized by the various multitime correla-
tion functions of observables, now merely speci-
fied as self-adjoint operators on a Hilbert space.
We. introduce multitime phase-space distribution
functions (in a manner analogous to the way single-
time distribution functions of Wigner and others
were introduced) as calculational tools in evalua-
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ting multitime correlation functions as phase-
space averages; in this repect they resemble the
multitime distribution functions of a classical
stochastic process. However, since in the evalua-
tion of a correlation function like (g, (t,)g, (t,)) we
do not take into account the influence of the mea-
surement at ty on the outcome of the measurement
at t, & t„ the multitime phase-space distribution
function that we introduce are not physically mean-
ingful as the joint probabilities for successive
measurements.

We now summarize the main results of our in-
vestigations. In Sec. II we consider the case of a
closed quantum system undergoing Hamiltonian
evolution. Since the evolution is.given by a unitary
transformation, we can define a family of time-
evolved representation operators, which [together
with an "orthogonal family, " see Eq. (2.7) below] is
a phase-space representation scheme. We then ex-
press an arbitrary multitime correlation function of
a set of observables of a phase-space average of the
product of the phase- space representatives of the ob-
servables with respect to multitime phase-space dis-
tribution functions. These multitime distribution
functions turn out to be correlation functions of the
time-dependent representation operators. In theo-
rem 2.1, the consistency relations among these
multitime distribution functions are enumerated.
In particular it is shown that the multitime dis-
tribution functions are complex, nonsymmetric,
and are related nonlocally to the conditional dis-
tribution functions. We define a generalized
Markov process in terms of the conditional dis-
tribution functions in the same way as in classical
theory. We then demonstrate that the multitime
distribution functions that correspond to Hamil-
tonian evolution of isolated quantum systems char-
acterize such a generalized Markov process.

In Sec. III, we obtain a stochastic phase-space
description of the evolution of an open system.
We show that the multitime correlation functions
of a set of observables that, initially, refer to the
system alone, can be calculated by using a set
of "reduced" multitime distribution functions. Our
theorem 3.1 demonstrates that these distribution
functions also satisfy the same consistency rela-
tions that are obeyed by the multitime distribution
functions that correspond to the evolution of closed
systems. However, we also emphasize that the
dynamics of open systems does not, in general,
give rise to a generalized Markov process in phase
space.

II. MULTITIME PHASE-SPACE DISTRIBUTION FUNCTIONS

In this section we consider a closed quantum
system undergoing Hamiltonian evolution. If p(0)
is the initial density operator of the system, the

evolution can be described in the Schrodinger
picture by a one-parameter group of unitary opera-
tors U(t), such that

p(f) = U(t)p(o)U '(i),
with

(2.1)

U(t) e-(i/h)Ht (2.2)

where H is the Hamiltonian operator. 'The evolu-
tion in the Heisenberg picture which is equivalent
to (2.1) can be expressed by the equation

A(t) = U '(t)A(0)U(t), (2.3)

~'(q, p) = &(q, P),
and satisfy the condition

(2.5)

& q, p dqdp=I, (2.5)

where I is the unit operator. Associated with the
family of representation operators {4(q,p}}is
another family of operators (&(q', p')] which satisfy
the relation

Tr[n(q, P)n(q', f ')) = 5(q —q')5(P -P'}, (2.7}

valid for each observable A. From (2.1) and (2.3),
and the cyclic invariance of the trace operation,
it follows that the expectation value of an observ-
able A in the state p at the time t can be equivalent-
ly expressed as

Tr[p(t)A. (0)]= Tr[p(0)A (t)] . (2.4)

In developing the multitime formalism, it will
be useful to begin with a brief outline of the single-
time theory. We will only present the basic re-
sults necessary for an understanding of our analy-
sis. A detailed discussion of this subject may be
found in Refs. 8, 13.

Let g and P be the canonical position and momen-
tum operators, respectively, that satisfy the com-
mutation relations

[q,P]=ie,
where I is the unit operator. A phase-space repre-
sentation is obtained by mapping the canonical
operators q and P and any operator function

g(q, P) that depends on them, onto the phase space, "
q "q J'-p i(q P)-z(q p)

according to some rule of association. Each map-
ping of a large class of linear mappings can be
characterized by a set of representation opera-
tors (n(q, p)) parametrized by q and p [see Refs.
8, 13 for several examples of representation oper-
ators that satisfy Eqs. (2.5)-(2.7) below]. These
representation operators are self -adjoint, i.e.,
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where 5 is the Dirac 5 function. We often refer
to the relation (2.7) as an orthogonality relation
and also refer to the family of operators (2),(q', P')]
as being "orthogonal" to (&(q, p)]..

In terms of the family of representation opera-
tors (&(q, P)] and the orthogonal family(Z(q, P)),
the transformations from the set of operators on
Hilbert space to functions on phase space are given
by the formulas

t'(q, P, t}=&(q,P, t), (2.12)

& q, p, t dqdP =I, (2.18)

representation operators &(q, P, t) and b, (q, p, t) are
defined in terms of a unitary transformation in
(2.10) and (2.11), it is evident that the properties
(2.5}-(2.7) of t),(q, P) and A(q, P) are also valid for
t).(q, p, t) and &(q, P, t):

g(q P)=»lg(q, P)t(q, P)],

r((), p)= f f g(r, r)~(r, r)drdr'.

(2.8)

(2.9)
»(&(q, P, t)~(q', P', t)] = 5(q —q')5(P -P').

(2.14)

&(q, P, t) = U '(t)n(q, P)U(t),

n(q, P, t) = U '(t)&(q, P)U(t),

(2.10)

(2.11)

with U(t) as given by (2.2). As the time-evolved

Thus, we see that a family of operators (n, (q, P))
which satisfy the relations (2.5)—(2.7) along with
an orthogonal family (E(q, p)j definesaphase-space
representation scheme for quantum mechanics.

We now extend the above framework of the single-
time theory by introducing the set of time-evolved
representation operators (t).(q, P, t)].which enable
us to obtain a phase-space description of the dy-
namics of the system. For the case of a closed
quantum system undergoing Hamiltonian evolu-
tion, characterized by the Hamiltonian operator
II, the time-evolved representation operators
(t) (q, P, t)] and (Z(q, P, t)j may be defined by means
of the relations

Thus &(q, P, t) also form a family of representation
operators for each t. Also Eqs. (2.3), (2.9}, and

(2.10) imply that the time-evolved observable

g(q, P, t) is given by the relation

r(r, )', &)= f f r(r, r)~(ar, &)drdr (2.15)

In the course of our discussions, it will become
clear that the time-dependent representation oper-

atorss

4(q, P, t) and Z(q, P, t) play a very important
role in the phase-space description of the dynam-
ics of the system.

We now employ Eq. (2.15) to calculate the time-
correlation functions of the observables g, (q, P, t, }. .
Starting from the relation

(g, (t, ) "g,(t,)& = »f pg, (t,) g, (t,)1

we obtain

OO OO

(g (t) '*'g, (t,)& =Tr p ''' g (q P }'''g'(q, P,)&(q P t )'''&(q„p„t,)dq, dP„

g, (q„p, ) ' ' g„(q„,p„)Tr[p (q„p„t, ) ~ b(q„, p„, t„)]dq, . . . dp„,~ ~ ~ ~ ~ ~

mOO aOO

(2.16)

where

g&(q;, P;) =»fg)(0)n(q;, P;)] (2.17)

are the phase-space representatives of the observ-
ables g, considered in the SchrMinger picture. A
comparison on Eqs. (2.17}and (1.1}immediately
yields the multitime distribution functions

P,(qd,t„,q,P,t, )

=»b&(q, P„t,) "&(q, P, t,)]'
The multitime phase-space distribution functions

P„(q,p,t„.. . , q„p„t„)as defined in (2.18), will form
the basis of our stochastic formulation of quantum
theory in phase space. We will first show that they
exhibit many features of whay may be called a

"generalized stochastic process. "
(1) From the definition (2.18), it is clear that the

multitime distribution functions P„(q,p,t„.. . , q„p„t„)
are not restricted to assume only real values in
general. For the case of the single-time phase-
space distribution function, it is known that the
reality of the distribution function is due to the
fact that the representation operators (and the
density operator} are self-adjoint. However, a
product of the self-adjoint operators &(q„p,, t,.),
is not necessarily self-adjoint as they do not com-
mute in general. Hence, for the multitime dis-
tribution functions, we only have the relation

Pr (qlPlt11 q2P2t21 ' ' 1 qr-1Pr-1tr-11 qrPrtr)

Pr(qrPrtrl qr 1Pr ltr 1% "' ' ) q2P2t21 qlPltl) ' (
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(2} Another consequence of tbe fact that
&(q;, p;, t;) do not commute among themselves in
general, is that the multitime distribution func-
tions p„(q,p, t„.. . , q„p„t„) are not symmetric under
a joint permutation of ((q„p,)} and (t,). This lack
of symmetry of the multitime distribution functions
is a direct reflection of the same feature of the
time-correlation functions in quantum theory.
Since there is no general relation between all the
differently time-ordered multitime distribution
functions, except that expressed by Eq. (2.19}, we
will have to consider (x!/2) independent distribu-
tion functions p„ for each xt and times (t„.. . , t„).
Also, for a complete specification of a generalized
stochastic process, we will have to consider dis-
tribution functions such as p, (q,p, t„qp, t„qp, t, )
which are not encountered in classical theory. '4

(3}Since the multitime distribution functions are

(g, (t, ) g„(t„)g„(t„) g, (t, )) - 0, (2.20)

for all g, (t, ), for all r. From (2.20) we obtain
the condition that p,„(qp,t„.. . , q„p„t„,
q„'p'„t„, . . . , q,'p', t,), is non-negative kernel for each
r and for all (t,f, i.e.,

not even real in general, there does not arise any
question of their being non-negative. For the.
single-time distribution functions, it has been
shown" that the usual non-negativity requirement
of classical probability theory has to be replaced
by a generalized non-negativity requirement, which
is a direct reflection of the fact that the density
operator is a positive operator. In order to obtain
a generalized non-negativity requirement on the
multitime distribution functions, we use the con-
dition

~ " g,*(q„p,) ~ ~ g„*(q„p„)g„(q„',p„') g, (q'„p', )p, (qrpi, t„.~ . , q',p', t, )dq, dp, dq, dp, - o
moo

(2.21)

for each &, for all (t,.), and for arbitrary funcfions g, (q, p).
(4) As tbe representation operators 4(q Jt;t, ) satisfy (2.6), we have the marginal distribution re!ation

Pr ~1Pltl& ' ' t @i- i-lti-11~ ti& ~i+1Pi+1 i+it ' ' y ~rprty ~Qi Pi Pr-1 QlP]. tlat ' '
y ~i- i-1 i-lo ~i+ i+1 i+1&

(2.22)
for all y and for each i (x. In the case of classical stochastic process, it is sufficient to verify the con-
sistency relation (2.22), for the last variable i = r only, as all the other relations for i (r can be derived
from the case when i =r with the aid of the symmetry property. However, for quantum stochastic pro-
cesses, tbe consistency relations in (2.22) are independent of each other.

(5) Finally, the multitime phase-space distribution functions defined in (2.18) do not satisfy the equal-
time relation of classical stochastic processes; i.e., we have in general

Pr(qiPi it ' ' ' t qr-iPr-itr-it qrPrtr 1} Pr-i(qlPitit ' -' ' t qr-iPr-itr-i}6(qr qr-1}6(pr Pr-i) ' (2.23)

I!elation (2.23) is established once we note that the right-hand side is symmetric under the exchange of
(q„,p„) and (q„„p„,), whereas the left-hand side is not, since &(q„p„t„,) and &(q„p„,t„,) do not commute
in general. In fact, , instead of the classical relation, we have the following nonlocal relation for quantum
stochastic processes proved in the Appendix:

Pr(qtpitit ' ' r qr tpr itr it qrPrtr -i} -(6(-qr qr-i-}6(pr Pr-i) r-tpr- (qlp it i'itt'qr iPt itr-i) t-
where the nonlocal phase-space product „, is defined as follows:

~( ",q, P, ,). ,ft(", q, p„)

(2.24)

+(qr-tpr-itr ii qr ipr it qr ipr-i}+( --t-qr-tpr-i} -( t qr-iPr-i)d'qr-i dPr-i '
OQ

~ ~ ~ ~ ~ ~ ~ ~ ~ ~
~

~00
(2.26)

In (2.25), we have suppressed the other phase-space variables in A( } and 8( ) for convenience, and the
kernel K( ) is given by tbe formula

(qr ipr itr ii qr-iPr-it -qr-i-Pr--i) =
~ (qr-it Pr-it tr-i) (qr-it Pr-it tr-i) (qr-it Pr-it tr-iH ' (2.26)

Since the time-dependent representation operators h(q, p, t) and E(q, p, t) are given by (2.10) and (2.11), it
can be shown from the cyclic invariance of trace, that the kernel K(q„,p„,t„„q„',p„' „q„",p„",) is indepen-
dent of the time t„„and can be expressed as

&(qr-tpr-ii qr-tpr-it qr'-iprr-i} = Tr~ (qr-it Pr-i) (qr-itPr-i) (qr-it Pr'-i}I ' (2.2V)
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A common feature of all the phase-space representation schemes of quantum theory is that the algebraic
relations of quantum theory are transcribed in terms of nonlocal products of the phase-space representa-
tives. For example, in Refs. 8, 13 a nonlocal phase-space product is introduced, which corresponds
to the product of two quantum-mechanical observables. The phase-space product (I„,that is defined by
(2.25)—(2.28), is different from the product S introduced in Refs. 8, 13, mainly because of the different
representation schemesbywhichthe multitime distribution functions (2.18) and (as we shall see), the con-
ditional distribution functions are obtained from the density operators.

The results we have established so far are summarized in the following proposition.
Theorem 2.1. The multitime phase sPac-e distnbution functions p„(qp, t„.. . t q„p„t„) of a quantum sto-

chastic Process satisfy the folloxving consistency relations:

(i) Pt(qPi'tlt ' ' ' t qrPrtr) Pr(qrPrtrt ' ' ' t qlPltl)t

for arbitrary functions g, (q;, p,);.
for alii ~ r;

( ) f r'qipi it ' ' ' t qr-iPr-i r- it qrprtr-i ~ i (qr qr-i)5(Pr f r-i) r-Pr-i(qiPi it ' ' t 'qr-iPr-itr-i) ~

At this stage, we should make it clear that we have only obtained a description of a quantum stochastic
process in phase space in terms of a given set of multitime distribution functions which satisfy the con-
ditions (i)-(iv). A complete mathematical characterization of these multitime distribution functions is a
nontrivial problem, as may be inferred from the fact that even in the single-time theory a complete char-
acterization of the distribution function, has been accomplsihed only for a few special cases." However,
for the purposes of the present investigation it is sufficient to specify a quantum stochastic process in

phase space in terms of a set of multitime phase-space distribution functions that satisfy the conditions

(i)-(iv) of theorem 2.1.
We now proceed to define the conditional distribution functions ui„(q„p„t„1q„Ji„,t„„.. . ) implicitly, by

means of the relation

pr(ql&ltlt ' t qrprtr) ~r-i (qrprtr 1qr-ipr-ltr-it ' ' t qlpl 1) r-l, .. . , 1pr l(qlpltlt ' '-' t qr 1pr ir 1)t---
where the multivariable nonlocal product (3„,„, , is defined by the relation

+( qlPlt ' ' t q iP i)St' l, ... ,l (qlPlt ' ' t q iPr i)

(2.28)

"1,"~,
, ...K(Q it qiPlt 4 j+) +(qlPlt ' t q -P i) (ql~Pit ' ' t qr--iPr i) ql~Pl dlr iPr-1t-

aOO

(2.29)

where the kernel K( ) is given by (2, 27).
In order to enumerate some of the properties of the conditional distribution functions, we require the

following properties of the kernel K( ), which can be readily deduced from the definition (2.27):

K*(qP;q'0', q" 0")=K(qP q'0', q" 0") (2.30)

K qP; q'P', q"P" dqdP= 5 q" —q' 5 P" —P', (2.31)

K qp; q'P', q "P"dq'dP' = 5 q —q" 5 P —P' .
w OO

The following two relations follow from (2.32):

1Sr-l, ..., i+(qiPit ' ' t qr iPr 1) +(qtPlt ' ' t qr iPr-i) t-

A. (q„Jtr i)S„ i iB(qPi . . . q iP„ i)=A(q„ iP„ i)S„ iB(qiPi . . . q„p„ i) .

(2.32)

(2.33)

(2.34)
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We will now list a few of the properties of the conditional. distribution functions ao, (q„p„t„~q„p„,t„„.. . ,
q,p, t,). Since these are defined implicitly by Eq. (2.28}, we can at once deduce from (2.22), (2.24) and
(2.33), (2.34) that they satisfy the constraints

(2.35)

and

(ii) w„,(q„P„t~q„P„,t, . . . , qP, t, ) = 5(q„-q„,)5(P„-P„,). (2.38)

(iii) However, unlike classical conditional distribution functions, w„are not constrained to be non-nega-
tive. This fact that sv„are not necessarily non-negative turnsout tobe of much importance in a discussion
of the stochastic equations for the multitime distribution functions.

(iv) Finally, we can obtain integral relationships connecting the multitime distributions corresponding to
different times. On integrating (2.28), and using (2.31) and (2.32), we obtain the formula

Pr 1(qlplt-l& ' i qr-2Pr-2tr-21 qpt}

~r-1 + ~ ~r-1~r-1~r-1t ' ' l @l~l~l~~r-2, ..., 1~r-l ~1~1~1& '
& ~r-l~r-1~r-1 ~r-1 ~r-1 '

Carrying out successive integrations, we finally obtain a relation that is valid for classical multitime dis-
tribution functions also:

P(q P }= ' ' ' ~ 1(qptlq -ape-1 r-lt ' }Pr x(qd ztl& '-' t qr 1pr-ltr-1) q-l
' ' 'dpr-x '

waO mco

(2.38)

The special significance of Eq. (2.38) lies in the fact that the conditional probability and the multitime dis-
tribution function are multiplied locally as in classical probability theory.

Now that we have defined the conditional distribution functions we can arrive at a natural definition of a
quantum Markov process as one for which the relation

~r-x(qrprtr I qr-zpr-ztr-is ' ' ' v q,p, 4) ~(qrprtr l&r-pr-ytr-z) (2.39)

is satisfied for all r In cla. ssical probability theory the conditional probabilities were defined with a
specified time ordering which was also utilized in the definition of Markov process. Since, for a quantum
stochastic process, all the different time orderings yield different (and independent) multitime and con-
ditional distribution functions, we require that Eq. (2.39) be satisfied irrespective of the time ordering
in order that a process be Markovian. Using (2.25) and (2.34), we can obtain an equivalent characterization
of a quantum Markov process, that the relation

P,(qd, t, . , q,P,t, ) = ~(q,p, t, l q, d, ,t,}, ~(q, d,-,t,-, I q, d, .t,-.}, -." d «A4» (2.40)

should be satisfied for all x, and all times (t„.. . , t„).
Having arrived at the definition of a quantum Markov process, we now proceed to obtain the central re-

sult of this section, which is that the Hamiltonian evolution of closed quantum systems (the case we have
considered so far} gives rise to a quantum Markov process in phase space. For this purpose we state
first the following relation established in the Appendix, and which depends crucially on the Hamiltonian
evolution of the system as described by Eqs. (2.1)-(2.4) and (2.10)-(2.14):

p„(q,p,t„,q„p,t,)={&r[&(q,p, t,)~(q, ,p,- t, )9, d, ,(qd, t, " q, d,-,t, » (2.41)

for all z and times lt,.). Setting r = 2 in (2.41), we can immediately identify the conditional distribution
function as

(qg, t,
I q,P,t, ) = Tr[b, (q„P„t, )Z(q„P„t, )] .

From (2.41) and (2.42) we can readily deduce the relation

P.«d. t q,P,t,)=~(q,p, t, ~q, d, ,t, ,), , " , p(q„p„t,),

(2.42)

(2.43)
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which establishes the following result:
Theorem 2.2. For a closed quantum system

undergoing Hamiltonian evolution, the multitime
phase sp-ace distribution functions (Z.28) charac
terize a quantumq3farkov process in phase space.

This result shows that there exists a close sim-
ilarity between the stochastic phase-space for-
mulation of quantum theory outlined above, and
classical statistical mechanics; for, it can be
shownq that the Hamiltonian evolution of the closed
classical system can be formulated as a classical
Markov process in phase space. " Theorem 2.2
also shows that the definition of a quantum Markov
process that we have employed [see Eil. (2.39) or
Eg. (2.40)] is the most appropriate one for a dis-
cussion of quantum theory in phase space. and

&'(q, p; Q, P)=&(q, p;Q, P), (3.5)

tively to the set of all phase-space variables of
the reservoir R. If f&(q,p)].is a family of repre-
sentation operators for S~' and f4(Q, P)}is a fam-
ily of representation operators for 8, then we can
consider operators

&(q, p; Q, P) = &(q, p) ~(Q P) (3 4}

(a(q, p; Q, P}] is a family of representation opera-
tors for the composite system SSR. In Eq. (3.4)
the symbol (3 stands for the tensor product of oper-
ators. From the relations (2.11) and (2.12), which
are satisfied by b'oth &(q, p) and &(Q, P), we obtain
the following equations:

III. STOCHASTIC DESCRIPTION OF OPEN SYSTEMS &(q, P; Q, P) dqdPdQdP =I,
wqqO

(3.6)

H=Hs SH~, (3.1)

which is the tensor product of Hs and H„. The set
of all dynamical variables of the composite sys-
tem (which we shall denote by SSA), will be the
set of all self-adjoint operators on H.

Corresponding to each state of S(3}R, charac-
terized by a self-adjoint, positive, trace-class
("density"} operator p on H, we can associate the
reduced operators

An open system is one which is coupled to another
(usually large) system called the reservoir. " If
Hs and H„are the Hilbert spaces suitable for a
quantum-mechanical description of the system and
of the reservoir, respectively, then for a complete
description of the composite system, we have to
consider the Hilbert space

where I is the unit operator in B(H). Ai. so, the
orthogonal family of operators E(q, p; Q, P) can be
obtained from the formula

t(q, p;Q, P)=&(q, p)&(Q, P),
and we can easily deduce the relation

Tr[&(q, p;Q, P)S(q, p';Q', P')]

(3.7)

= ~(q -q')~(P -P')~(Q -Q')~(P -P') (3 8)

Relations (3.5) —(3.8) show that the family of opera-
tors (&(q, p; Q, P)] gives rise. to a phase-space
representation of the composite system S8B. In
fact we can readily deduce relations analogous
to (2.5)-(2.9) in the same way as in Sec. II. In
addition we have the following equations:

ps = Trap (3.2a) & q, P;,P d dP=& q, p SI~, (3.9a)

pe= Trsp~ (3.2b)

where Tr„and Trs denote the partial trace opera-
tions. It can be shown that ps and p~ are density
operators on Hs and H» respectively. %e shall
consider the situation where the composite sys-
tem S(SR is isolated and undergoes Hamiltonian
evolution. 'The total Hamiltonian H is assumed to
be of the form

A A

H =Hs+Hz+Hsz ~ (3.3)

where Hs and H„are the free Hamiltoniansof Sand
8, respectively, and H» is the interaction Hamil-
tonian.

Throughout this section, we shall make use of
the following notation. The pair (q, p) refers col-
lectively to the set of all phase-space variables
of the system S and the pair (Q, P) refers collec-

~" J (q, q; qq, g q qr, qq(q, q)q, q=(3.9b)

where the unitary operator

It(t} e (i/qq)Hq (3.11)

depends on the total Hamiltbnian. The time-de-
pendent representation operators satisfy relations
analogous to {2.12)-(2.14}. We may also define

where I„and Is are unit operators on H~ and Hs,
respectively.

The time-dependent representation operators
h(q, p; Q, P, t) are defined in the usual way [see
Eqs. (2.10), (2.11)], as follows

&(q, p. Q, » t) = U '(t)t (q p; Q P)U(t) (3»)
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the reduced (time-dependent) representation oper-
ators b,(q, p, t) and 4(Q, P, t) via the relations

= II '(t)f&(q, P) +I/II(t), (3.12a)

= fl '(t)(I (3) &(Q, P)]U(t). (3.12b)

It may be noted that both &(q, p, t) and &(Q, P, t)
are operators on the Hilbert space II =H~ SII~.

A stochastic phase-space formulation of the com-
posite system S(3R can be obtained by considering
the multitime phase-space distribution functions

p„(q»P,Q,P,t». . ., q„p„Q+„t„), which are defined
in the same way as in Eq. (2.18), by the relation

P„"(qd, Q,P,t„.. . , q„p„Q+„t„)
= »[P&(q„p,; Q„P„t, ) ~ ~ ~ t (q„,p„,Q„,P„, t„)].

(3.13)

Since the system 88 is assumed to be isolated
and undergoing Hamiltonian evolution, the multi-
time phase-space distribution functions (3.13)
satisfy al.l the consistency relations enumerated
in theorem 2.1. In addition, they also fulfill the
conditions of theorem 2.2 and, therefore, charac-
terize a generalized Markov process in phase
space.

Any time-dependent correlation function of the
observables of the composite system SB can be
calculated by a relation of the form (2.16); for
example, if Q»] is an arbitrary set of observables,
we have the relation

(j,(t,) g „(t„))

where

g ,(q, P„Q, P, ) "g,(q„p„Q„P,)p,
'

(q,p,Q,P,t„",q,p,QP, t,)dq, dp, "dQ,d „
moo

(s.14)

g»(q», p», Q„P.) = Tr[g, (t;)Z(q», p, ; Q», P», t»)]

= »[g;(0)&(q, P;; Q, P;)] (3.15)
In particular, we may consider a set of observables (g;j, which at time t=0 refer to the system S alone,
i.e., they satisfy the condition

g»(0) =g; (0) g)IR,

where g,'(0) is an element of B(Hs). For such observables, we also have the relation

Tr[g»(o)~(q» P», Q» P»)] = Trs[g» (0)~(q», p»)]Tr &(Q», P»)

= »s[g» (0)~(q» P»)]

(s. i6)

(s.iv)
where we have made use of Eq. (2.7). Substituting (3.1V) in (3.15), we deduce the following relation for the
time correlation function of a set of observables (g»] that refer to the system S alone at the initial time,
i.e., satisfy Eq. (3.16):

(( ) »")»,( )) .f)"f e(s ()"=):,Ie„, a„,)u,,'(ed A, ",q,u, &,)de, " d(„
ere

g'»(q»»») = Trsm» (0)~(q» P»)l

(3.16)

(3.19)
and

P,'(qP, t„. , q,P,t ) =
aOO

p„(q,p,Q,P,t„.. . , q„p„Q+„t„)dQ,dP, dQ dP . (3.20)

By using the relation (3.12a) which defines the
reduced representation operators b, (q, p, t), the
distribution functions p„can also be expressed in
the following form:

P, (qgp»t» ~
~ qpprtr)

=»[P&(q, P, t, ) '''&(q„p, t,)] (3 21)

Equation (3.18) demonstrates that all the time
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correlation functions of observables that refer
to the system S alone initially, can be evaluated
as phase-space averages with respect to the "re-
duced multitime distribution functions" p~ given
by Eqs. (3.20) and (3.21). Therefore the multitime
distribution functions p~ completely characterize
all the statistical features of the evolution of the
open subsystems S. We therefore take Eqs.
(3.18)-(3.21) as the basis for a stochastic formu-
lation of open quantum systems in phase space.
In the rest of this section, we shall investigate
some of the properties of the multitime distribu-
tion functions (3.20), and the generalized stochas-
tic process they characterize.

The single-time distribution functions P (q, P, f)
is given by the relation

P'(q, P t)=»[P&(q P f)]. (3.22)

Using Eq. (3.12a), we can express (3.22) in the fol-
lowing way:

p'(q, P, t) = Tr[pU '(tHn(q;P) ef„&U(f)]

= Tr[p(t)f&(q, P) Sf„j], (3.23)

where

p(f) = U(t)pU '(t).

Equation (3.24) shows that the reduced single-time
distribution function is nothing but the phase-space
distribution function corresponding to the reduced
density operator of the system p, (t). The special
feature of Eq. (3.24) is that all the quantities on
the right-hand side refer to the Hilbert space H~
only. It might also be mentioned that in most of
the discussions found in the literature, " on
master equations for open systems, the result
expressed by our Eq. (3.24) is treated as an as-
sumption.

The reduced distribution functions p„of order
z&1 cannot be expressed in terms of the reduced
density operator p, (t) alone, as they also depend
on the correlations between the open subsystem S
and the reservoir R. We now proceed to show that
these distribution functions satisfy all the consis-
tency relations enumerated in theorem 2.1. This
result is derived using the fact that the composite
system SSR is a closed system, undergoing Ham-
iltonian evolution, and hence the multitime dis-
tribution functions p~ ~ satisfy the results con-
tained in the two theorems 2.1 and 2.2.

Integrating the relations analogous to (2.19) and
(2.22) for P

~ "with respect to the variables fQ t P'I
of the reservoir, we obtain the following formulas:

From (3.23) we obtain the relation

P'(q P f)=».[&(q P)Tr&b(f)H

=» s[&(q, P)ps(t)]. (3.24)

Pr (q1Pl 1t ' ' ' t qrPrfr) Pr (qrPrtrt t qtPtft)

(3.25)

J S s
Pr (qlP1 tt ' ' t qi iP/ 1i lt qiP-i it-qi+-1Pi+1 i+it ' ' t qi Pi Pr-i(qtPiftt t qj-tPi-gati-tt qittpittfi+tt ~ ~ ~ ) ~

(3.26)

The multitime distribution functions P„"also satisfy the following positivity condition analogous to (2.21)
that must hold with any choice of the function g, (q„P„Q„P,):

J g ,*(q,t P„' Q» P,) '' ' 'gr*(qrt Prt Qrt Pr~a&(q'tt Pit Qlt P1) gr'(qrt Prt Qt't r)
«OCI «00

(3.27)

In particular, if g, (q„p,; Q„P,) are functions of q„p, alone then we obtain the following positivity relation
for the reduced distribution functions p„:

(3.28)

We will now derive the equal-time relation for the distribution functions p„. For that, we again start
with the following relation for the distribution functions P~ " that is analogous to (2.24):
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sz
(qiplQ1Pltli ' ' ' i qr-iP» 1Q»-iP»-it» ii q»P»Q»»t»-1)

= (5(q„—q„,)5(p„-p„,)5(Q„-Q„,)5(P„-P„,)]S„,p„, (qdi, Q,P,t„.. . , q„di,Q„,P„,t„,)
~ '4 &r-a ~ Pr Pf -x r r-j. ~ +r +r-1

[ (q»-1» P» 1i Q»-li P»-1) (qr-1$ P» li Q»-1» P-»-1) (qr-i& P»-li Q»-1» ~»~ 1)]

x p» i (qipiQiPitii. . . , q» ip». iQ'»' iP» it» i)d-q»--idp» i' ' 'd-Q'»' idP»-i

Trl&(q, , .P;,Q, ,», ,)&(q, P;, Q, P,)&(q,", P,", Q,"., P,",)]
~OO ~Oo

x p» (qipiQiPitii . . i q»-apr-iQr-iP»-it»-i)dq»-idp»-idQ»-id

In simplifying the right-hand side of (3.29), we have used the explicit form of the kernel defining the pro-
duct S„,. Using the definitions (3.4) and (3.V) of the representation operators d, (q, p; Q, P} and Z(q, p; Q, P),
we obtain the relation

Tr[&(q, „P,„Q, „P,,)t (q„p;,Q„P,)t (q,"„P,", Q,", P,",)]
l&(q, , P, ,)t (q„p,)&(q,"„P,",)]T [&(Q, „P, ,)n(Q„P,)&(Q,"„P,",)] (3.30)

Let us integrate both sides of Eq. (3.29) with respect to all the variables (Q„P,), and substitute from Eq.
(3.30) and use the equation TrsE(Q, P) = 1, which follows from (2.V). We then obtain the relation

P (qip» ~ ~ q. lp. lt, l-q,p-,t, -i) ={6(q, q, ,)6(p-, P, ,H, ,-p,'1(qd iti, , q, d, it, 1) (3.31)

where the product (I„,is defined in the usual way in terms of the kernel

+(q» ip» li qr-ip-r-ii -q»-1P»-1) T 8[ (q»-lip»-1) (q»-iiP»-1) (q»-li pr-1)] ' (3.32)

Having obtained relations (3.25), (3.26), (3.28),
and (3.31), we have established the following re-
sult:

Theorem 3.1. The reduced multitime Phase-
space distribution functions ps satisfy the con-
sistency relations (i) (iv) of th-eorem Z.f.

This theorem shows clearly that the consisten-
cy relations (i)-(iv) are characteristic of all gen-
eralized stochastic processes, be they generated by
evolution of isolated systems or of open systems.
However, the proof of theorem 2.2 cannot be car-
ried over for the case of multitime distribution
functions ps of an open system. The non-Markov-
ian character of the generalized stochastic pro-
cesses induced by the evolution of open systems
is also reflected by the fact that the stochastic
equations for reduced distribution functions such
as ps(q„p, t) (usually referred to as "master equa-
tions" in physics literature), turn out to be inte-
grodifferential equations. 'The fact that the re-
duced distribution functions of a Markov process
do not in general characterize another Markov
process is also well known in classical probability
theory.
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APPENDIX: PROOF OF RELATIONS (2.24) and (2.41)

In this Appendix we shall deduce the relations
(2.24) and (2.41) which are essential in the proof
of theorems 2.1 and 2.2. The relation (2.41) es-
tablishes the generalized Markov property of the
multitime distribution functions (2.18), generated
by the Hamiltonian evolution of a closed quantum
system.

.We start with the following expression for the
multitime distribution functions p„(qp, t„.. . , q„p„t„):

P,(quit, i . , q,P,t,)

= Tr[nt (q„p„t, ) ~ ~ t (q„,p, t„)] (A1)

We shall use the following relations for the time-
dependent representation operators (n(q, p, t)j
and the orthogonal family (E(q, p, t)], which follow
easily from their definition [cf. (2.10) and (2.11)]:

Tr[t(q P t)t(q' P' t)]=6(q-q')6(p-P') (&2)

», ga)=jf »rid~(q, », ~)I

x Tr[B&(q, p, t)]dq dp .
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Using the equation (AS) for t= t„„Eq.(A1) can be expressed in the form

a,(aa, &, " ar, &,) f =»(~(a, „a,„a)~,(a, r „a,)„~(a!'„a,"„a,,))

x Tr [pea (q„p„f, ) ~ ~ ~ ra (q„„p„„t„,)ra (q,"„P„"„t„,)]dq„",dp

prom (2.6) and (2.15) the following relation can be obtained:

(A4)

&(a„a„t) f=&( 'ar!.„&,,)»Ia(a, r, &)a(a,' r,'»&, .))aa' .arl- (A5)

Substituting (A5) in (A4), we obtain the relation

Pr(q P, fl& ~ ~ ' a q Prtr)

Tr[~(qr „pr )a &r-y)~(qr yapr--za tr )) (qr lapr )a r-))]

x 'rr[&(q„a p„, tr)&(qr', a P~„tr, )]pr g(qgpgtga ) qr-4-x r-i) qr'-i"pr-i"qr-~ Pr-~.

If we recall the formula for the kernel K(q„,p„,t„„q„',p„' „q„"p„",) of the product 8„,[see (2.26)], then

Eq. (A6) can be expressed in the form

p, (q,p,&„",q,p, t,) = Tr[&(q„p„t, )&(q, , P, „!,,)1(3, ,P, , (q,p..t„.. . q, ,p, ,f, ,). (A7)

Equation (A7) is the same as the Eq. (2.41). If we set t„= t„„and use (A2), we obtain the equal-time rela-
tion (2.24), viz. ,

P,(qp, &„. , q, J, ,f, „qP,&, ,)=(&(q, q, ,)5(p, -p,-,) d, ,(qp, t„",q, p, ,t„,)
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