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Functional equations and Green's functions for augmented scalar fields
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Certain noncanonical self-coupled scalar quantum field theories, previously formulated by means of functional
integration, are herein recast into the form of functional diA'erential equations for the Greens functional.
From these expressions the set of coupled equations relating the Green's functions is obtained. The new

equations are compared with those of the conventional formulation, and are proposed as alternatives,

especially for nonrenormalizable models when the conventional equations fail.

where, formally,

VC '+ nz'+X' C'

+ AC~)dx SC SX,

nc-=Ll de(x), uX-=]g dX(x),

h represents an external "source" field, and X' is
chosen so that S'(0) = 1. This formulation differs
from the conventional one in that the action is aug-
mentedbythe term —, JX' '4d axndX is treated as
an additional field variable. While this change in
no way affects the classical equations of motion, '
the extra term significantly changes the quantum
theory. A difference persists, in particular, even
for A. =O which gives rise to a (non-Gaussian)
pseudofree theory that is fundamentally different
from the conventional (Gaussian) free theory. Ar-
guments in favor of such an alternative approach
to scalar field quantization were presented in Ref.
l.

The auxiliary field X may easily be integrated
out to yield the formal expression

s ]i)=m'f exp(if i o~»

— f [][(ve)' » m*i']»»e') dx) n'i,
(3)

I. INTRODUCTION

In an earlier paper' an alternative, noncanonical
("augmented") formulation of scalar field [luanti-
zation was proposed that was particularly intended,
but not exclusively so, for nonrenormalizable
fields. In the familiar but formal language of
Euclidean-space functional integration the rele-
vant expression for a quartic self-interacting
scalar field in n space-time dimensions was taken
as (dx-=d "x)

s'(h)-=of f exy(i f Md»

where 01' is adjusted so that S'(0) = 1 and

u C-=I dc(x) ic()i.
The formal nature of these expressions is nowhere
clearer than in this expression for O'C, which is
formally nonintegrable for each x at C =0. In Ref.
1 this situation was rectified in the course of giving
meaning to (3) by means of a lattice-space formu-
lation in which the space-time continuum is re-
placed by a uniform lattice of points of elementary
cell volume 4. In this prescription the field mea-
sure (4) is taken as

H di. fl e,l""
where k (an n-fold index) labels a lattice point,
and the dangerous exponent of unity is replaced by
(1—2bn) Here, .b denotes a necessary but arbi-
trary positive constant with dimensions (length) ".
The same parameter b also enters the proper
formulation of local field powers for these models.
In Ref. 1 units were generally chosen such that
b= j..

The lattice-space approach was discussed at
some length in Ref. 1, and it is our purpose here
to reformulate the quantum theory of augmented
models in another fashion amenable to general
study. The formulation considered here is analo-
gous to the well-known functions, l differential char-
acterization of the Green's functional, i.e., the
generating functional for the time-ordered vacuum-
expectation- value Green's functions. Coupled
Green's function equations follow directly from
this study. To conform with standard practice we
derive these relations in Minkowski space-time
rather than Euclidean space-time. The conven-
tional treatment of functional differential equations
for the Green's functional is well studied in a for-
mal fashion and summarized in many field theory
texts. ' For pedagogical reasons we carry out our
analysis at a comparably formal level.

It may seem curious to develop differential equa-
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tions for the augmented Green's functional when
the formal functional integral for its expression
came first, but this approach has the decided ad-
vantage of dealing with the result of such an inte-
gration, thereby sidestepping the need to introduce
strange "convergence factors" [as in (5)] so as to
represent that result by quadrature. In other
words, the regularization that (5) represents and
which is needed as a step in giving meaning to the
functional integral (3) is replaced by a regulariza-
tion of the functional differential equation for the
Green's functional, and that regularization is of a
more familiar kind (and is thus more palatable).

The functional differential equation for the aug-
mented models is treated in Sec. II, and the coupled
Green's function equations are presented in Sec.
III. Our results are summarized in Sec. IV.

II. DERIVATION AND ANALYSIS OF FUNCTIONAL

DIFFERENTIAL EQUATIONS

In order to appreciate the equation obtained later
for the augmented model we first rederive the
standard functional differential equation for the
conventional models. The conventional Green's
functional is formally given by

Z(h) =-e( ( exp(i f hd dx

+2 2 ~ S2

—ed') dx) eld,

normalized so that Z(0) = 1, and where g)Q is as
given in (2) and has the formal property (transla-
tion invariance} that

(7)

for arbitrary A(x). Conse(luently, it follows that
an expression of the form J EfQ+A)Sg is inde-
pendent of A and thus

Z'(h}=ed ( exp(i J ed deci J{-[(e„d)'-Id']

—hd )dx)hl'd,

(ii)
normalized so that Z'(0) =—1, and where S'p is as
given in (4) and has the formal property (scale in-
variance} that

O'SQ = O'{t}

for arbitrary S(x) &0. Consequently, it follows that
an expression of the form fE'JSQ IO'(f) is indepen-
dent of S and thus

Applied to (11) this identity leads to the formal
differential equation

(illh(x)) (ieh(x}) *(illh(x))

4y g~ A =0 ]4

which is a relation for the augmented model
analogous to (9). Of course, each of these e(lua-
tions is highly formal, and their proper formula-
tion needs suitable regularization and renormali-
zation.

Note that by operating on (9) with 6/i6h(x) we
find the relation

~

gg
@ + ~

Q@
+Q ~

4-
-4x . Zh =0. 15

The difference between (14) and (15) lies in the
first term, and the difference in the formal opera-
tors is "just" i5(0). This seemingly small differ-
ence actually has rather profound consequences,
which have to do with prescriptions for operator
products, renormalization, etc.

E(y+ A) a&@ = 0.
A=o

(8) Free and pseudofree models

Applied to (6) this identity leads to the formal dif-
ferential equation

h(x)-Z, (.,
'

) -eh(. ,„' )* Z(h)=O, (9)

where

(10)

This is the standard functional differential equa-
tion for this model. '

For the augmented model, on the other hand,
the Green's functional Z'(h) is formally given as

Z, (k) = exp i —', h(x)(K„—i0) 'h(x)dx (16)

which characterizes the conventional free theory.
For the pseudofree model the Green's functional
Z,'(h) satisfies

+then A. =O, (9) and (14) relate to the free theory
and the pseudofree theory, respectively. In this
case the solution Zo(k) of (9) is given by
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Unfortunately, no specific expression for the solu-
tion Z,'(h) is known, but it is nevertheless a func-
tional of basic importance. To see this one need
only recall the formal relation of the conventional
approach given by

4
Z(h)=%exp —iX ( —. dx Z,(h),

exist for the augmented formulation based on (14)
for X~ 0,' and it suffices for present purposely to
examine the case X= 0, as in (1V). With E„re-
placed by m' —or more generally and yroyerly by
m, ', a parameter to be determined —(17) becomes

(2o)

where N restores the normalization, that connects
the interacting and free models, and generates on
expansion in A the conventional perturbation se-
ries. ' In like manner there arises the analogous
formal relation

4
Z'(h) =N'exp —iX —. dx Z,'(h), (19)

with lV' chosen for normalization, that connects
the interacting and yseudofree models. Evidently,
expansion in X of (19) generates some sort of per-
turbation series for the interacting augmented
model, but the nature of this perturbation series
is not immediately evident. In the conventional
case it is the Gaussian character of Z,(h) that ulti-
mately leads to local products defined as Nick
powers, to a Feynman diagrammatic representa-
tion of the perturbation series, and to the usual
renormalization prescriptions. In the augmented
case Z,'(8) is non-Gaussian and so the conventional
rules are unlikely to be applicable. Nevertheless,
the proper rules to define local fieM products so
as to build the interaction are implicitly contained
in the pseudofree functional Z,'(h) (because it im-
plicitly defines a field operator representation and
consequently its local powers). The determination
of the prescription for local products is an im-
portant by-product of the study of the equation for
the pseudofree Qreen's functional.

Independent-value models

Independent-value models —which may be for=
mally characterized as covariant models stripped
of all space-time gradients —are rel'evant to the
present discussion (at least mathematically) and
serve to illustrate the kind of renormalizations
that arise. Elsewhere' we have provided a careful
and divergent-free formulation of indeyendent-
value models; here it is instructive to treat them
heuristically and intuitively, but still basically in
a correct fashion.

For the independent-value models the only
change from a formal point of view that is necces-
sary to make contact with our previous discussion
is the replacement of E„=— „+m' simply by m'.
In this case, it is known that there is no solution
for the conventional formulation in (9) unless
X=—0.' Qn the other hand, valid nontrivial solutions

This relation is formal as it stands and requires
renormalization; this is evident from the fact that
symmetry demands a solution in the form

t'(h) =exp Ii J w, [A(x)]dxI, (21)

with the condition that W, [0]-=0. To make sense
of this equation the second term in (20) needs a
multiplicative renormalization to counteract the
infinite factor 5(0) that would otherwise arise. This
multiplicative renormalization —in other words,
the definition of the local square of the field in
the present case—has two consequences. The
formal mass renormalization mo' =m'/5(0) is
strictly speaking unacceptable on dimensional
grounds if m, and m both have mass dimension
one; instead, the relation mo'=bm'/5(0) must be
used where b is an arbitrary positive constant of
dimension (length) ", the arbitrariness of b just
reflecting the arbitrariness in the finite scale that
exists after an infinite rescaling. This is the same
parameter that was already introduced in relation
to (5). (Of course, one could always arrange to set
b = 1.) The second feature of an infinite multipli-
cative renormalization is that only truncated (con-
nected) functions enter the differential equation;
the nontruncated parts are scaled to zero by the
renormalization. One further point in the renor-
malization is needed in the form of subtracting the
vacuum expectation (like normal-ordering) of the
mass term since (20) is superficially inconsistent
at h(x) =-0. Such an extra term actually has its
origin in the S dependence of X' that should be
taken into account in deriving (14) from (11) and
(13). Thus we are led to the more proper relation
for (20) given by

fm'
i 6h(gx 5(0)

'
i5h(x) (22)

Here:: denotes subtraction of the vacuum expec-
tation, and is interpreted as

~ eg @+0

(23)

Insertion of expression (21) into the properly in-
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terpreted differential e(luation leads (with W, [h]
-=dW, [h]/dh, etc.) to

h(x) W,'[h(x)]+ ibm'(W,"[h(x)]—W,"[0]]= 0 . (24)

Here at last is an equation devoid of any formal
character. The linearity of (24) just reflects the
fact that only truncated terms survive the renor-
malim ation.

A solution to (24) is sought such that Wo[- h]
= W, [h] and W, [0] -=0, and it is straightforward to
see that the desired solution is given by

t. h(x) o

W, [h(x}]=W,"[0] dv duexp[i —'(v -u )/bm ].
40 0

(25)

The coefficient Wo [0] is left arbitrary but it is
convenient (and consistent with previous choices')
to choose W,

"[0]= 2/m', in which case it follows
that

h(x) /(bnt2) t s
Wo[h(x)] = 2b ds dt exp[i-,' (s' —t ')],

0 0

(26)

an expression that coincides with solutions pre-
viously given after translating between Minkowski
and Euclidean space-time. "We remark that in
the Euclidean space form the relevant expressions
define a positive-definite characteristic functional
and thus the model possesses an underlying sto-
chastic interpretation.

While our derivation of (26) has been formal,
one could and should imagine regularizing an equa-
tion such as (22) by a high-momentum cutoff which
is removed at the end of the computation. This
regularization is implicit in our analysis.

Finally, we remark that the solution deter-
mined for the pseudofree independent-value model
does indeed implicitly contain the essentials needed
to define local products for this model. More-
over, with this prescription an approach such as
symbolized by (19) can actually be employed to
introduce a quartic interaction. These matters
are adequately discussed in Ref. 3 and are not
treated here.

+~ 2 ~ m+X

—~(")&) &4'&x

(2V)
where in addition to h we have introduced a
"source" field w for the field variable X, where
5V is chosen so that Z'(0, 0) = 1, and where S(t) and
SX are as defined in (2) and have the formal pro-
perty that

s(y+A)=ny, m(x+M)=rx (28)

for arbitrary A(x) and M(x). It follows that an
expression of the form fE'(/+A, X+M] SQSX is
independent of both A and M, and thus

f&'4+A x]&4&x
4~0

(29)

fI' f4') x+M]. &4 &xibM x N~o

Applied to (2"t) these identities lead to the formal
equations

g' h, w =0

the particular point x. In studying the independent-
value model this potential ambiguity was absent by
virtue of the special symmetry of the model as
exemplified by (21). For the relativistic case
this possible "loss of information" may be serious,
and thus we now derive coupled equations where
no "loss of information" occurs.

For that purpose consider the augmented Green's
functional

Z'(h, M) =-DV f exp(i J (h(+wX)dx

Coupled differentia equations

It is interesting, and at first pight somewhat
surprising, that the basic differential equations
(9) and (14) are of different order To compare.
the two e(luations, as in (14) and (15), it was in
fact necessary to take an additional functional
derivative of (9) at the same point x. Generally
speaking there is "leis information" in such a
higher-order equation. For example, to arrive
at (15) the right-hand side of (9}could have been
anything that did not depend on the function h at

w(x)- (.q~ ) (.q ) s'(h, n)=0. (32)

As may be expected, a careful formulation of such
equations entails regularization and renormaliza-
tion. Given a solution Z'.(h, a)), the functional of
interest is given by

Z'(h) =- Z'(h, 0),
which according to (2V} represents the Green's
functional for the augmented ((t)~)„model.



JOHN R. KI AUDKR

The coupled equations (31) and (32) characterize the functional Z'(h, nr) at the same "information level"
as (9) characterizes Z(h). To see this more clearly we may derive another relation by acting with 5/i5h(x)
on (31) and with 5/i5te(x) on (32), specifically at the same point x, and then subtracting. The result is
given by

(34)

W'hen this expression is evaluated at m=-0 the second term makes no contribution, and consequently the
single differential equation (14) for Z'(h) that was based on the scale invariance of S'(t) is recovered. We
emphasize again that relativistic models may require the "information level" contained in the augmented
set of equations (31) and (32) in contrast to the "lesser information" in (14).

III. DERIVATION AND ANALYSIS OF GREEN'S FUNCTION EQUATIONS

In principle, it is a straightforward matter to derive coupled Green's function equations from an equation
such as (14) for the Green's functional. By definition,

Z'(h) =- Q (m! ) i ' G' (x„x„.. . , x„)h(x,)h(x, ) .h(x„)dx,dx, dx
m=0

with G,'=—1, and

(x«'(d)=- g (m!) '!-J" J G' (x„x„.. . , x )(dx, )(dx, ) (dx )dx,dx, dx. ,
m=1

(35)

(36)

where the superscript T denotes "truncated. " In-
sertion of (35) or (36) into (14) generates an infi-
nite set of coupled equations for G' or G'~, re-
spectively. Proceeding straightforwardly, one
would determine a linear set of equations relating
the Green's functions, and consequently a nonli-
eea~ set of equations relating ihe trunacted Green's
functions. However, experience with equations
such as (14) strongly suggests (as was the case for
independent-value models) that multiplicative re-

normalization factors lead only to connected con-
tributions from the higher-order functional de-
rivatives. Exploiting this feature at the outset one
effectively arrives at a linear set of equations re-
lating the truncated Green's functions. While this
expected behavior can only be postulated, it can
certainly be checked subsequently for consistency
given a specific solution. Adopting this conse-
quence of the anticipated renormalization we find
for (14) the coupled set of equations

haft

i 6(x —x„) G' (X„.. . , X )+K„G'r.,(x, x*,x„.. . , x )+4XG'r, (x, x, x, x, x„.. . , x )=0,

which holds for all even m ~ 2 (for odd m, G'„r =—0
by symmetry). Here x* denotes a "second" vari-
able that is set equal to x but only afte~ the opera-
tion E„is carried out on the "first" x variable.
For simplicity expected multiplicative renormali-
zations in K„and A. are omitted, but the vacuuni
expectation of the two latter terms in (14) have
been subtracted off [cf. the discussion regarding
(22)]. This equation is homogeneous, but an over-
all scale factor can be adopted through a suitable
normalization of G,' [cf. the discussion regarding
(25}].

For A=0, (37) reduces to the coupled Green's
functions for the pseudofree model. To focus on
their importance and to simplify notation we set
g —= G'~(X=0} for the pseudofree model, and there-
fore we find the fundamental relations

i Q 5(x-x„) g (x„.. . , x )

+K„g „(x,x*,x„.. . , x ) = 0 (38)

for all even rn ~ 2. Again, expected multiplicative
renormalizations are not included. Assume,
somehow, that a solution to (38) were found. Then
it is conceivable that starting with that solution
some iterative procedure could be devised on the
basis of (37) to formally solve the quartic inter-
acting case. This approach has every reason to be
considered seriously.

But the question naturally arises whether (38)
actually determines the pseudofree truncated
Green's functions g, or whether (37) actually de-
termines them in the interacting case. Concern
on this point was expressed in the last section and
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it arises here because in (3V) and (38) x* is not independent of x.

Coupled Green's function equations

Equations that fully determine the Green's functions follow from the augmented set of functional equa-
tions (31) and (32). The structure of these equations lends itself to an initial description linear 'in the
Green's functions (rather than the truncated functions). Thus 1st us introduce the definition

00

g'(h, m}-=Q (m!n!) 'i '" . G'„„(x„.. . , x;y„.. ., y„)
m, n=O

x h(x, ) ' ' h(x„)a)(y,) ~ ~ m(y„)dx, dx„dy, dy„,

with G,', =—1, whereupon (31) and (32) become

m
j:/ Wr I I ~ 5 TW5(x xrl+m ) n'(x) i ' ' '

& xi! ' ' '
& xmi yl& ' ' ' i yn) + ~n&m+). n(x& xl i' '.''& xmt y) i ' ' '

& yn}r~ m-, n~ r m n& x m+, n
r=

(39)

Awj ~ ( -0+~ y] ~2Py+]0 ~ ~ ~ P+ 9+0+P3]P ' ~ &3nI+~"~m+3vnh 0 ) 0 10 ' ' ~ 0 m%3]P

for odd m & 1 and even n & 0, and

(
Z ~P'- X&~~m n-14+1& ~ ~

& +meal& ~ ~ ' &Is& ' ' ~
& ~n&+ ~m+2 n+14+&+&+1~ ~ ~ ~ &+me+s Vl& ~ ~ ~

& Xn/ (41)

for even m & 0 and odd n & 1, and where x„signifies
that the symbol x„ is omitted, etc. Of course, re-
normalizations are undoubtedly required for these
equations. And it is our expectation that certain
multiplicative renormalizations enter in a highly
nontrivial fashion. For, as we have seen, the
coupled set of functional differential equations (31)
and (32} imply the "higher-order" equation (14);
and thus (40) and (41) must conspire to imply the
validity of (3V). A study of the coupled 'equations

(3V) and (40) and (41), and their interrelationship,
is of prime importance in understanding augmented
quantum field theory.

Conventional equations

The relation of (40} and (41}to the conventional
coupled Green's function equations for the (Q~)„
model is readily determined. On comparing (9)
and (31), and referring to (40), it is easy to see
that the Green's functions defined by

z(h)-=Q (m!)'i f f G„(x„.. . , x )
m=0

x k(x,) h(x„)dx, dx, (42)

with G, -=1, satisfy, by virtue of (9), the coupled
set of equations

+A"„G„„,(x,x„.. . , x )

+4XG „(x,x, x, x„.. . , x ) =0 (43)

for all odd I~ 1. These are the conventional
coupled Green's function equations for this, model,
and equations of this general type have been ex-
tensively studied. "

IV. SVMMARY

In this paper we have derived formal functional
differential equations for Green's functionals of
augmented quantum field theory, a theory that has
been proposed as an alternative approach notably
when conventional quantization techniques fail. One
advantage of the differential equation formulation
is that the strange regularization of the field mea-
sure (5}, which is unavoidably prominent in the
lattice-space formulation, need never be intro-
duced. Instead any regularization takes place
within the functional differential equations, and
as we have emphasized is of a fairly common va-
riety. The differential equation for the augmented
Green's functional, which was presented first,
followed from the formal scale invariance of the
basic field differential O'Q and was given in (14).
This relation is to be compared with (9}, which is
the conventional differential equation for such
models. A more equal comparison arises between
(14) and (15), a derivative of (9); thus (15) and
hence (14) may involve "less information" than ap-
pears in (9). Consequently, we derived the coupled
differential equations (31) and (32), which deter-
mine the augmented Green's functional without any
possible "loss of information. " Equations (31) and
(32) imply the earlier relation (14) for the aug-
mented models. While we have not launched into a
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discussion of the solution to these equations for
covariant models, the derivation of the solution for
independent-value models suggests the kind of ap-
proach that will be necessary.

The means to pass from the differential equation
for the Green's functional to the coupled equations
for the Green's functions is basically straightfor-
ward and well known. ' In particular, the derivation
of (43) from (9) for the conventional approach, and
of (40) and (41) for the augmented approach follows
long-standing procedures. On the other hand,
while the same procedures could in principle be
applied to (14), the very different character of
this equation along with the anticipated multipli-
cative renormalization suggests a radically dif-
ferent approach to the coupled equations for the
Green's functions. In this case only connected
components survive the anticipated infinite mul-
tiplicative renormalization and we arrive at the
coupled equations represented by (37).

A further comparison of the two types of coupled
Green's function equations we have discussed is
useful. On the one hand, (43) as well as (40) and
(41) represent linear and nonhomogeneous equations
for the Green's functions, and their scale is for-

mally fixed by the inhomogeneity, namely the con-
dition that G, =- G,', =- l. On the other hand, (37)
which incorporates some of the anticipated con-
sequences of multiplicative renormalization repre-
sents a lznem. and homogeneous equation for the
truncated Green's functions, and the overall scale
may be chosen as desired. This second type of
coupled equations is certainly not devoid of appli-
cation for it is exactly the relevant approach to
independent-value models. ' Moreover, it is not
inconceivable that starting with the independent-
value model solution the space-time gradients
could be restored by some suitable form of itera-
tion scheme or perturbation theory. '

In conclusion, it seems clear that the new cou-
pled equations proposed, as embodied in (37) and
(40) and (41), deserve careful study for potential
application to highly singular covariant (Q )„mod-
els such as the nonrenormalizable (n ~ 5) models-
and perhaps even to define new. noncanonical so-
lutions for renormalizable (n = 4) and superrenor-
malizable (n = 2, 3) models. Should such a study
show that a consistent formulation can be con-
structed, then these methods should be applied to
models of more direct physical interest.
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