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The renormalization of the vacuum expectation value of the stress-energy tensor of a scalar field propagating
in a curved space-time with an arbitrary metric was discussed in a previous paper. A new regularization
scheme was introduced which employs a continuation in the dimensionality of space-time implemented with a
proper-time representation of the Green's function. Here we present a more general formulation of this
method which clarifies its basic features and which explicitly displays the stress tensor as the metric functional
derivative of the one-loop action functional. We apply this more general formulation to both the scalar field
theory and to the electrodynamic, Maxwell theory. Although the trace of the stress tensor formally vanishes
both for the massless scalar field and for the Maxwell field, the trace of the renormalized vacuum expectation
value of the stress tensor does not vanish for either theory. These finite-trace anomalies cannot be removed by
adding a finite local counterterm into the Lagrange function. The anomalies are intimately related to the
infinite scalar counterterms that are needed to render the action finite.

I. INTRODUCTION AND SUMMARY

The vacuum expectation value of the stress-en-
ergy tensor' and the corresponding one-loop action
functional were studied in a previous paper2 (which
we shall refer to as I) for the case of a scalar field
propagating in a space-time with an arbitrary met-
ric. A renormalization scheme was introduced in
that paper which employs a continuation in the
space-time dimensionality accomplished with the
use of a proper-time representation. " This new
method is well defined and free of ambiguity. ' It
yields an explicit stress-tensor trace anomaly of
the kind which Deser, Duff, and Isham indicated
should exist. The previous work relied heavily on
DeWitt's' explicit "WEB" construction of Schwing-
er's' proper-time representation. Here we shall
present the theory in a more general, formal man-
ner. We need the WKB construction only to exhibit
functional dependence on the space-time dimen-
sionality and for the explicit calculation of the re-
normalization counterterms and the anomalous
terms in the stress-tensor trace. This more for-
mal presentation clarifies the basic elements in
the dimensionally continued, proyer-time renor-
malization scheme. Moreover, it exhibits the
vacuum expectation value of the stress tensor di-
rectly as the metric functional derivative of the
one-loop action functional. This necessary con-
nection, which guarantees that the stress tensor is
conserved, was not made clear in paper I. In the
present work, we shall apply the renormalization
scheme to the case of the electromagnetic, Max-
well field as well as to the scalar field. The trace
of the stress tensor as calculated naively from
the Lagrange function appears quite differently in
these two cases. The Lagrange function for a

massless scalar field can be chosen so as to pro-
duce, naively, a traceless stress tensor in a
space-time of arbitrary dimensionality as a con-
sequence of the dynamical field equations. Qn the
other hand, the trace of the stress tensor of the
Maxwell field naively vanishes only in four dimen-
sions, and then it vanishes as a consequence of the
algebraic structure of the Lagrange function.
Nonetheless, our renormalization scheme gives
similar trace anomalies for these two theories.

We discuss the scalar theory in Sec. II. Although
this discussion clarifies the work of paper I, it
does not altogether supersede that paper which, in
addition to containing various descriptive and cal-
culational details omitted here, carries out the
dimensional continuation with the Lagrange func-
tion chosen so that the naive stress-tensor trace
identity holds for arbitrary space-time dimension-
ality n. Here we fix the theory so that this identity,

(2 5)

holds only at n =4. We do this not only so as to
make the scalar case parallel more closely the
Maxwell case, but to simplify the theory, as was
already remarked upon in paper I. We show in
Sec. II that the one-loop action functional has the
dimensional-continuation limit in four dimensions

W'("=" = —+I. d'x v'-g e'"+W"=~1

(2.45)

where the renormalized action functional Q',";,„
possesses a well-defined proper-time representa-
tion. The infinite counterterm involves
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g„„(x)-)(x)'g„„(x).
Moreover, the quantity

4R R» +R2
P&XK P ll

(1 2)

(1.3)

is a topological scalar in the sense that its space-
time volume integral is invariant under any metric
variation,

d'x v'-g a =0. (1.4)

Expressing 5 in terms of these quantities, gives

(O) P&X, K

(4 )2 [120 (CP v) KC" "-
2 G)

+
' R:u+ —,'m ].t

(1.5)

The topological scalar Q and the total derivative
R &'" can be omitted from the infinite counterterm
since they do not contribute to its metric variation.
We see that the massless theory is renormalized
by an infinite counterterm containing the square of
the Weyl tensor. This counterterm is invariant
under a conformal transformation (1.2) of the met-
ric tensor. The massive theory requires a further
renormalization involving m4 which corresponds to
an infinite renormalization of the cosmological
constant in the Einstein Lagrange function. The
renormalized action can be expressed as the
space-time volume integral of an effective, one-
100p LagrBJlglRl1

gp(n=4) — (d4X) y g g(n=4) (2.46)

with the effective Lagrangian written in a proper-
time representation,

00
8 3

@~=4)= —' e")— —' ids(lne is)1 ron 4 (4V)2 4

x [e "y'(x, x; is)], (2.47)

e —
( ), [„,(R„„„„R -R„„R +R „)+-, ].

(1.1.24)

(Here and subsequently we use equations with a
prefex I to label the corresponding equations in
paper L) Note that although m2R is of the proper
scale dimension, it does not appear in the infinite
counterterm. In order to examine the structure of
the counterterm more closely, we note that the
Weyl tensor

C PKv R 2 Kv 2(6 KR2v 6 vRqK -g0 RKv+g2v R „)
(1.1)

is not altered by a conformal transformation of the
metric tensor,

where E(x,x;is) is a weight in the proper-time
representation of the scalar field Green's function.
Here ~ is an arbitrary, auxiliary scale mass which
must be introduced in the dimensional-continuation
process so as to keep the integrand at a fixed scale
dimension appropriate to n =4 before the limit n.

-4 is taken. A change in this scale mass produces
the proper-time integral of a total derivative with
only the lower limit of the integration contributing.
Since

1 1
ft(0) [e-m isy(x x.ie)]

2 (4m)2 sis 7
s=0

(1.1.24)

such a change is accounted for by a finite change
in the finite constant I 4 which appears in the in-
finite counterterm displayed in Eq. (2.45) quoted
above. ' [The constant 1,4 accounts for the deriva-
tive with respect to n of various dimensional-de-
pendent factors such as (4m) " '.]

The vacuum exyectation value of the stress-en-
ergy tensor is given by the variational derivative
of the action functional with respect to the metric
tensor. Thus, the proper-time representation of
the renormalized action yields the renormalized
stress-tensor representation

(T'"(x))'" '=— T""(x ie)
1 1 a
8 (40)' sis

1 1
4 (4~)2

00

2 ~ ~ »x ids(in' is) . 1'"'(x;is),
Qzs

F"'(x;is)g„„(x)=-2(is)'is . (is) 'e "&(x,x;i&)

-m is-2m2ise " "E(x,x;is). (2.58)

When the right-hand side of this identity is put into
the yroyer-time integral for the renormalized
stress tensor, Eq. (2.52), one finds a quantity
which can be integrated by parts to get an integral
of a total derivative. This trivial integral yields
the counterterm scalar 6', 0) shown in Eq. (L1.24)
plus a term that cancels the trace of the first term
on the right-hand side of Eq. (2.52). There re-
mains a proper-time integral which represents
the renormalized vacuum expectation value of the
square of the scalar field. Hence,

(2.52)

which is automatically conserved. The trace of
the stress-tensor weight can be obtained by com-
puting, with an operator technique, the effect of a
conformal transformation of the metric, Eq. (1.2),
and we find that
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(T""(x))~",„~gp, (x) =6~ ~(x) -m (y (x))~",„@ ~

(2.53)

2 4 2

( )]i)2

gpss(x)

( )
(d x) v -gR

1
[-g(x)]'~2 5~(x)

=-12R „:",
which obviously does not cancel the expression
(1.5) for 6".

This is the anomalous trace identity which violates
the naive expectation, Eq. (2.5). The anomaly'
6~" (x) cannot be removed by an additional renor-
malization with a local counterterm. On dimen-
sional grounds, such a counterterm would involve
only R „b z R " y, R 8 R "~, and R ', or equivalent-
ly, the square of the Weyl tensor, Q„& z

t"" y, the
topological scalar, G, and R'. Because of its con-
formal invariance, an action formed by the space-
time volume integral of the square of the Weyl
tensor yields a traceless stress tensor. The topo-
logical scalar produces a vanishing stress tensor.
Thus, only R' remains as a possible counterterm
with which the anomaly 6 could be removed by an
additional renormalization. However, since under
an infinitesimal version of the conformal metric
transformation (1.2)

5(v'-gR ) =-v'-g 125K. q'"R,

we find that

(1) 13 a Bye 44 a86
(4 )2 ( esp R ~s&$R + goR ~SR

——'R'- —'R:")
36 10,(X (3.51)

This can be expressed in terms of the square of
the Weyl tensor (1.1) and the topological scalar
(1.3),

(1) I
(4~)2 (so& erat'& isoG xoR, n'

Thus, since G andR ' can be discarded, the
counterterm is invariant under a conformal trans-
formation of the metric tensor. The action can be
written as the space-time volume integral of an
effective Lagrangian, with the Lagrangian ex-
pressed in a proper-time representation

The situation with regard to the Maxwell field is
discussed in Sec. III. The Maxwell Lagrange func-
tion must be supplemented by a gauge-fixing term
to make the Green's function well defined. We do
this initially with an arbitrary "$-gauge" fixing
term. Gauge invariance is restored with the addi-
tion of an anticommuting, scalar, massless "ghost"
field. We prove that the proper-time weight of the
one-loop action functional is not changed by a vari-
ation of the ( parameter. We then work entirely in
the g =1 gauge as this simplifies the development.
We again have a renormalization of the action func-
tional with the structure exhibited in Eq. (2.45),
but with a different counterterm,

1 Oo 3
Z'g:„'(x) =

(4 )2 f2(x x)
(

)2-,
' ids(in~ is), [E"„(xx is) 2E(x x is)]

~ 0
(3.53)

Again, a finite change in the auxiliary scale mass
z can be compensated for by a finite change in the
infinite constant that multiplies the counterterm
scalar 6 ' . The proper-time integral now involves
the weight functions in the proper-time represen-
tations of the Green's functions for both the vector
potential and the scalar "'ghost" field. The term
involving f,(x,x) in Eq. (3.53) arises from a de-
rivative witb respect to the dimension n acting on
the weight Ll „(x,x; is), a derivative that arises
when the residue of the dimensional pole 1/(4 n)-
is expanded in powers of (4 —n) and the limit n-4
is taken. The proper-time weight E"„(x,x;is) for
the vector field gives an explicit n dependence be-
cause it has a term involving 5", whose trace pro-
duces a factor of n. This is in contrast to the scal-
ar theory where the proper-time weight contains
no explicit dependence on the space-time dimen-
sionality n. [The terms in Eqs. (2.4V) and (2.52)
in addition to the proper-time integrals did not

come from a derivative with respect to n. They
were separated from the infinite counterterm so
that the trace identity (2.63) would be valid with-
out any additional finite renormalization. ] We
have, explicitly,

f2 = iso R n8ya R zso R asR+gyp 1 n8

+ —R ——R2 1 n
72 30,n (3.49)

or

(1.9)

Although the contribution of f, in Eq. (3.53) could
be removed by a finite renormalization, this would
spoil the conformal invariance of the counterterm.

The renormalized stress-tensor for the Maxwell
field satisfies a proper-time representation of the
same form as that for the scalar field given in Eq.
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(2.52) above. The ghost field contributes an effec-
tive total proper-time derivative which could be
deleted without altering the renormalized stress
tensor. The ghost field contribution to the action
functional, however, must be retained. We see
that the ghost field plays the role of an integrating
factor in constructing the action from its vari-

ational derivative, the stress tensor. Moreover,
the ghost field contribution to the stress-tensor
proper-time weight must be retained if this weight
is to be conserved. The trace of the renormalized
stress tensor can be computed in a manner parallel
to that used in the scalar field case discussed
above. We find the anomalous trace identity

(3.69)

As remarked before, the metric derivative con-
tribution could be omitted if a finite counterterm
were introduced which is not conformally invari-
ant. Using Eqs. (1.9) and (1.7), we can write Eg.
(3.69) as

(T""(x))',";„"g„,(x) =6'" (x)+ ), —,'R „:"(x).

(l.10)

Since 8(') (x) contains terms other than R „'", it
cannot be removed by the addition of a local coun-
terterm. '

Appendix A describes the connection of the scal-
ar field stress-tensor weight 7"'(x;is) to the
Green's function weight E(x,x; is) and discusses the
relationship of the weight T ""(x;is) to that used in

paper I. Appendix B contains some technical de-
tails on the proper-time construction of the vector
field Green's function. Appendix C describes the
connection of the Maxwell field stress-tensor
weight with the vector and "ghost" Green's func-
tion weights.

II. SCALAR FIELD

= n-2
4(n —1)

(2.6)'

The parameter ] was held to the functional depen-
dence on n given by Eq. (2.6) for the most part in
paper I so as to maintain the formal trace identity
(2.5) throughout the dimensional continuation in-
volved in the renormalization process. However,
as was already remarked in I, the dimensional .

continuation process is simplified if $ is held fast
at its limiting value and not treated as a continuous
function of n. With this prescription, the formal
trace identity (2.5) is violated except at the limit
when z takes on its physical value. Nonetheless,
as shown in I, this prescription does yieM the
proper renormalized stress tensor. In the present
work we shall consider only the dimensional con-
tinuation to our space-time of v =4 and keep

(=6 (2.7)

fixed appropriate to this dimensionality. In addi-
tion to being the simpler method, it is also akin to
the case of the Maxwell field where the stress ten-
sor is traceless only at n =4.

We shall need the Green's function
The scalar field Lagrange function

g = —
~ Q p Q

' "—
~ $RQ —

2 m (f)

yields the field equation

and the stress tensor

(2.1)

(2.2)

(2.6)

which obeys

[-s„v'-gg"'s„+v'-g ( —,'R + m')] C(x, x') =5(x -x'),
(2.9)

or, in an operator notation,

where

G G=l ~

It is convenient to introduce

(2.10)

(2.11)
G""=R~' -'g"'a (2.4)

is the Einstein tensor. As shown in paper I, the
trace of the stress tensor obeys the formal iden-
ti

because it is a biscalar density which, under a
coordinate transformation, transforms in the same
way as does the scalar product

(2.5)

for a space-time of arbitrary dimensionality n if
the parameter ] is given by

(x i
x') =5(x -x').

Now, on going to the operator notation

(2.12)

(2.13)
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we have

(2.14)

where the inverse operator & has the coordinate
representation

a =-(-g) ' '6„(-g)' 'g""6„(-g)'i'+-,'ft + m'.

(2.is)

The proper-time representation is obtained by
writing

continuation can be performed so that the inte-
grand in Eq. (2.17) vanishes rapidly as s-~. The
representation yields a vacuum expectation value
of the time-ordered product of two scalar field
operators. If the metric tensor can be expanded
about the Minkowski metric with space-time as-
ymptotically flat, it yields the value in the vacuum
state characterized by vanishing asymptotic energy
and momentum.

The transformation function (2.18) obeys the
"Schrodinger" equation

so that

-1 gds ~-tsH
0

(2.i6) — . &x, s~x, o&=ff&x, s~x, o&,
8

with the boundary condition

(2.19)

G (x,x') = f )as (x, s
l
x', o),

0
(2.17) s-0: &x, six', 0&-(xix'& =5(x —x'). (2.20)

where the proper-time-dependent transformation
function is given by

(x, s)x', 0& =(x( e ""~x'&. (2.18)

This representation tacitly assumes that the real
mass parameter m2 is considered as the limit of a
complex mass, m'-m'(1 -ie), e-0' or (as is
needed in the zero-mass case) that an analytic

For the construction of the stress tensor and ac-
tion functional by means of the dimensional-con-
tinuation method, we will need the short-distance
limit of the transformation function for arbitrary
space-time dimensionality n, with its analytic
character in the proper time s displayed explicitly
for small s. These requirements are met by the
WEB construction

„~, [-g(x)]' ~' (x,x') [-g(x')]' E(x,x';is) exp — '. -m'is .
2zs

(2.21)

All the functions which appear here are symmetri-
cal under the interchange of x and x'. The biscalar
o (x,x'), the "world function, " is equal to one-half
of the square of the distance along the geodesic
between x and x'. It may be defined locally by a
differential equation of the Hamilton- Jacobi form

(2.26)

To derive the differential equation obeyed by ~'/',
we first differentiate the "Hamilton- Jacobi" equa-
tion for the world function with respect to x and x':

pic 5 uv
ug / ~0' y pi+& ug 8P& f&t Bi ~

ua'' =2{7
q (2.22) (2.27)

&.u =~, u' (2.23)

and the coincident coordinate boundary conditions We then contract this equation with the inverse of
the matrix 0 ~ 8, and use the variational formula

&, u ~ gu~= (2.24)

5lndetX =trX '5X

to secure

(2.28)

Here we use a suffix to denote a derivative with
respect to the variable x, and a primed suffix to
denote a derivative with respect to x'. Note that
o (x,x') has no explicit dependence on the space-
time dimensionality n. The biscalar b, ')'(x, x') may
be defined in terms of the Van Vleck determinant

[-g(x)]' 'a(x, x') [-g(x')]'i'=-det[-v „„(x,x')],
(2.25)

which shows that it also carries no explicit de-
pendence on the dimensionality n. Using Eq. (2.24),
we see that this defintion implies the coincident co-
ordinate limit

n=(c „g"")„
+g „g""s„in[-det(-(y „8.)]. (2.29)

Writing the determinant scalar density in terms
of the biscalar ~' ' enables the ordinary deriva-
tives above to combine into covariant derivatives,
and we get

~g 1/2 g 1/2; u +2~l/2, u
, u uO (2.30)

'The biscalar g' could have been defined simply as
the solution to this differential equation with the
boundary condition given by Eq. (2.26). This would,
however, have obscured the fact that ~ contains
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no explicit n dependence. We can now substitute
the WKB structure (2.21) into the Schrodinger
equation (2.19) and use the differential equations
(2.22) and (2.30) obeyed by o and b, '~' to derive the
weight function equation

or

5" =--'z . Tre ""zds
2 zs t

0

W, = (d "x)d-gZz.

(2.37)

(2.3S)

~~=2i lnDetQ ~t

or the variational equivalent

(2.33)

(2.31)

The factor i(4nis) "~z in the WKB construction
(2.21) has been chosen so that it yields a repre-
sentation of the 5-function boundary condition (2.20)
for small s or, equivalently, by the condition that
the Green's function approach the flat-space
Green's function in a short-distance limit taken in
a locally flat frame as done in paper I. This de-
termines F(x, x; 0) = 1. The s- 0 limit of Eq. (2.31)
requires that F(x, x'; 0) is a constant He.nce

F(x„x'; 0) =1.
The differential equation (2.31) and the boundary
condition (2.32) for the weight F make no reference
to the space-time dimensionality n, and F has no
explicit dependence on n. The only explicit depen-
dence on n in the WKB construction (2.21) appears
in the overall factor of (4mis) "~'.

The one-loop action functional W, [g &] has the
formal (divergent) definition

where the one-loop effective Lagrangian g, is
given by

e

(x( e ""~x)
2v'-g is

1 " zck m2. ,
(4 )„y2 )z y2

e F( x~ xz~s) q

0

(2.39)

with the last equality following from the WKB con-
struction (2.21).

The renormalized action is obtained by a continu-
ation in the dimension n. This is accomplished by
exhibiting the explicit n dependence in the proper-
time representation,

Tre ""=i(4zzis) "~'ze(is), (2.40)

and by observing that the weight w (s) is finite and
differentiable at s =Q. We begin the dimensional
continuation to n =4 from sufficiently small values
of n so that three integrations by parts can be per-
formed with no contribution from the s =0 end
point,

6TV =—'i TrG5G (2.34)

with the boundary condition that W, vanish in flat
space-time. Recalling the definitions (2.11) and
(2.14) of G and its inverse H, and using the proper-
time representation (2.16) gives

5Wz= —,'i ids Tre ""I5H+—,'[5 in(-g)]H
0

+H-,' [6 ln(-g)]] . (2.35)

Using the cyclic symmetry of the trace, the two
terms involving the variation of the determinant
of the metric tensor g can be expressed as the
proper-time integral of a total derivative, an inte-
gral that vanishes in the dimensional-regulariza-
tion scheme:

% ZS (2.41)

n-4:

We now introduce an arbitrary, auxiliary scale
mass x so that the weight zo(is) keeps a fixed scale
dimension appropriate to n =4. This is effected by
the replacement

= 1-(-,n-2) lnz zs
1 2

(is)"~' ' (Iz'is)" ~' '
(2.42)

in the integrand above. After integrating the total
derivative contribution, we can pass to the n 4
limit and obtain

,'i ids . Tre ""-,' [6 ln(-g)] =0-.
9zs

(2.36) g ~" @= — —+I +—' — zg js

[A formal evaluation of these terms would give-TrGH5 ln(-g)-5~"~ (0)f(d"x) 6 ln(-g) which would
be deleted by a partial renormalization. ] The vari-
ational relation (2.35) for the one-loop action func-
tional can be integrated to give the formal expres-
sion where

1 1 Q ()
ze (is)

2 (4v)' sn eis

ids(inc'is) . zo (is), (2.43)
47' ' ' 8zs
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(2.44)

6"= —
2 . [e "E(x,x; is)]

1
2 (4)))' sis s=O

)2 [y (RB)o(py R R))p R +R )) )+ 2@i ]

(L 1.24)

The term with the factor [1/(4 —n) +I,4+ —,'] diverges
in the n-4 limit. As we shall soon see, this term
involves the space-time volume integral of quan-
tities that depend locally upon the metric tensor.
Hence this infinite term can be discarded if an in-
finite but local counterterm is added to the La-
grange function, and a finite, renormalized effec-
tive action is secured. Note that a change in the
arbitrary, auxiliary scale mass z-~' is accomo-
dated by a finite change in the infinite counterterm
involving L4-L4+ln()('/)(). The

weighted)

(is) has no
explicit dependence on the dimensionality n and the
dimensional derivative term in Eq. (2.43) vanishes.
We have displayed this potential contribution in Eq.
(2.43) so as to record a result of general validity
which will be needed below.

We can write the action W, as the space-time
volume integral (2.38) of the effective Lagrangian
S„and write the Lagrangian 2, in terms [Eq.
(2.39)] of the proper-time weight E(x, x';is) of the
Green's function. As shown in paper I, the weight
E(x,x'; is) can be expanded in a double power ser-
ies in (x -x') and s, with the coefficients deter-
mined by the differential equation (2.31) obeyed by
E(x,x';is), to determine

with a scale dimension of mass squared (where
the counterterm involves not the second but the
first proper ti-me derivative of a weight function).
We have done this so that the trace of the counter-
term is precisely -m' times the counterterm of
the vacuum expectation value of p' —so that the
formal trace identity (2.5) holds for the two coun-
terterms.

We" turn now to the renormalization of the stress-
energy tensor. Since the stress tensor is formally
defined in terms of the metric variation of the field
action, which can be written as the operator scalar
product

(2.48)

we have the formal identities

W~ ~

5

5g„,(x)

Accordingly, if we define

(2.48)

[-g(x)]'~' T"'(x;is) =2 n)(is),5

5g„„(x)
(2.50)

the dimensional-continuation limit (2.43) yields
immediately the proper-time representation of the
renormalized stress-energy tensor,

(T""(x))'="=( +I, , — . T"'(x;is)1 1
4-n 4 (4v)2 2 sis

Thus the dimensional-continuation limit (2.43) can
be written as

with

+ (TP (x)))j(n=4) (2.51)

(2.45)

where the renormalized one-loop action is given by
1 1
4 (4s)'

s=O

with

(2.48) 00
2- 8 vids(ln)('is) . — T"'(x; is) .

0 8zs
(2.52)

1 oo 9g'"=@=-'6&'& — —' ids(in~'is)I ren 4 (4&)2 4
0 Q2S

x [e "E(x,x; is)]. (2.47)

Here a term —,'6 has been placed in the renor-
malized Lagrangian which could have been included
in the infinite counterterm. We have made this
separation so as to make the numerical factor
[1/(n —4) +L4) in the counterterm correspond to
that which appears in the renormalization of a field

T ""(x;is).„=0. (2.53)

Hence, the proper-time representation (2.52)

This exhibits the renormalized stress tensor as
the metric tensor variational derivative of the re-
normalized one-loop action. Since the weight w(is)
is a functional of the metric tensor g„s(x), which
is invariant under general coordinate transforma-
tions, the definition (2.50) implies that the stress-
tensor proper-time weight is conserved,
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g„s(x)-X(x)'g„s (x) . (2.54)

The terms involving derivatives of A, arising from
the gradient operators in Eg. (2.15) are canceled
by terms involving derivatives of A. which are pro-
duced by the transformation of —,R, and we have
the operator transformation law

H[X'g„,] =X 'H[g, ] X-'-m'(X '-1).
Now

(2.55)

yields a conserved renormalized stress tensor.
To compute the trace of the stress tensor, we

note that with n =4, the operator 0, which has the
coordinate representation

H =-(-g)' 's (-g)'~'g"" s„(-g) ' '+ —,'ft + m',

(2.15}

transforms simply under a space-time-dependent
conformal transformation of the metric tensor,

which give

[-g(x)]' 'T""(x;is)=i(4mis)'is Tre ""2
6a

5g„,(x)
'

(2.56)

Hence

d x' -gx T" x;is gp„g 5A, g

= —i(4))is) is Tre ~'"(5XH +H5A-m 2. 5A.) .
(2.57)

The cyclic symmetry of the trace enables the first
factor of II to be placed adjacent to e ""so that
the two terms which involve a factor of 0 can be
expressed in terms of a proper-time derivative
acting on e "~. We can now make use of the WKB
construction exhibited in Egs. (2.18) and (2.21) to
secure

[-g(x)]')' T ""(x;is) = 2 w (is),
5g„„(x)

(2.50) 1'""( xis)g„„(x)=-2(is)'is . (is) 'e ""'F(x)x;is)

with

Tre ""=i(4wis) 'M (is), (2.40) This gives

—2m ise " "F(x,x;is). (2.58)

~I

~

~
~ ~

~I

I

u v
~
s~~

~
0

~~ ~ 2 ~I

~

~ ~2
~ s

t tI

I

~s

2
"7"( xis)g„„(x) =-4m' . e " "F(x,x;is)

9ZS s=o ~'4s
(2.59)

~ 2 ~ m2fg

( T""(x;is)g„„(x)=-2 . is . . +m' . e "F(x,x;is) -4m2 . e ™"F(x,x;is)./is Qss Bzs Qss /is BZS

(2.60)

Using these results and the integral

ids(lna'is) . is . —f(is) =f(0),r 8 . 8

92s Bzs
(2.61)

the trace of the renormalized stress-tensor proper-time representation (2.52) is now easily calculated:

(&""(x)&'"="g (x) =—1 1 g

2 (4w)' Bis
e " "F(x x is)

2 1 2
+m' 4, ids(invais) . e "F(x,x;is).

4m '
QZS

(2.62)

The first quantity which appears here is precisely
the scalar 8"displayed in Eq. (I.l.24) which oc-
curs in the infinite counterterm needed to renor-
malize the one-loop action, Eq. (2.45}. The re
maining integral is easily seen to be the dimen-
sionally continued, proper-time representation for
the renormalized vacuum expectation value of the
square of the scalar field. Thus

(T""(x)),".„=@g„„(x)=g~" (x)-m'(y'(x)), ",=„@. (2.63)

This is the trace anomaly: The trace of the re-
normalized stress tensor does not obey the formal
identity (2.5) which would delete the anomalous
term 80 (x). The anomaly 80 (x) cannot be re-
moved by putting a local counterterm into the La-
grange function. [It should be mentioned that the
trace of the infinite counterterm needed to renor-
malize the stress tensor given in Eq. (2.51) is
easily shown to be exactly the infinite counterterm
which renormalizes (y').]
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The stress-tensor weight T""(x;is) can be ex-
pressed in terms of the Green's function weight
E(x,x';is). This is done in Appendix A. The
weight T""(x;is) used in the present work differs
from the weight T"'(x;is) used in paper 1 by a fac-
tor of e "and, more importantly, by the addi-
tion of a quantity that is effectively a total proper-
time derivative. This effective total derivative
does not alter (T"") but interchanges the roles of
divergence and trace in the two weights. Thus, the
divergence of the new weight T""(x;is) vanishes
and its trace for the massless theory is an effec-
tive total derivative, while the trace of the old
weight vanishes for the massless theory and its
divergence is an effective total derivative.

III. MAXWELL FIELD

We turn now to apply our proper-time, dimen-
sional-continuation method to the one-loop action
functional and stress-tensor vacuum expectation
value of a massless vector field, the electromag-
netic Maxwell field. A term that fixes the gauge
must be included in the Lagrange function so as to
make the Green's function, and the one-loop action
which involves the determinant of this Green's
function, nonsingular. Vfe shall initially use an
arbitrary "g-gauge-fixing term. " (Since the letter
g has already been used for an important param-
eter, we shall denote the gauge-fixing parameter
by g.) Gauge invariance is restored by adjoining
a massless ghost field to the Lagrange function,

1z=--'z""z — (~" )'-x' x
~ (3 1)

&"G„„,(x,x') =(iT(w„(x)W„,(x )))

=[-g(x)] ' 4 "'Gyp, (x,x') [-g(x')] '/'

(3.6)

G(x, x') =(zT(X(x) X'(x )))

=[-g(x)] '/'G(x, x') [-g(x')] '/',

which we shall express in terms of operators

"'G"„,(x, x') =(x, p, ~

~'G
~
x', p, ')

(S.V)

(3.8)

C(x, x') =(x
i Ci x') . (3.9)

C)~ C)G —y (S.10)

JIG =&.

Here of course

(xl 1I x'& =(xl x') = f(x -x'),
while with our index convention

(x, p. i li x', p, ') = (x, g i
x', p, ')

(3.11)

(3.12)

Here we have used a suffix (g) in order to indicate
explicitly that the vector-field Green's function is
calculated in a gauge fixed by the & parameter.
Note that the vector-field Green's function is writ-
ten as a mixed tensor with one upper and one lower
index so that contractions with these indices can
be treated as ordinary matrix multiplication. The
inhomogeneous Green's function equations now ap-
pear as the simple operator statements

=V"„,C(x-x). (3.13)

I'u~ Au. ~ A~. u Au ~ A~ u. (3.2)

The Lagrange function yields the field equations

Here )( is the non-Hermitian, anticommuting, scal-
ar ghost field and

The differential operator representations of the
operators ~ Il and B are obtained easily by writing
out the Lagrange function (3.1) in terms of ordin-
ary derivatives and then identifying the field equa-
tions:

Zu".„+-A.'.„'u =0,
t

(3.3) (Eiffel —
( +)-&/4S (+Pk+&8 gPB+nk)

X, u'"=o

and the stress-energy tensor

(3.4)

+ —(g"' [-,'(~'. ,)'+x'. , „a"]

+(x'"x "+x'"x'"-g""x',gx').
%e shall need the Qreen's functions

(3.5)

(3.14)

(3.18)

(-g) '"& (-g)'""'II" = —II(-g) '"&.(-Z)'"1

(S.18a)

& =-(-z) '"&.(-g)'"z"'8 (-z) ".
Since (g"~g"8 g"Bg"~) i-s antisymmetrical in

both the index pairs (p, n) and (A. , P), we have the
divergence conditions
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Zg, =-,'z Tr C&CO C&G-'-i Traea-', (3.22)

(()HP g&1.( g)1/4 () ( g)-1/4 gllX, ( g) 1/41

&&&„( g) / H ~

(3.17a)

We introduce a symbol D which is represented
with the appropriate factors of (-g)"/' and g"" ac-
cording to where it appears so that these diver-
gence conditions can be written in a simple oper-
ator form

D "'H = —HD
1

(3.16b)

G-1 ( )1/4H( g)1/4 (3.23)

(((')G 1)P-P' —
( g)1/4 ((')HP g~P'( g)1/4 (3.24)

where the first trace includes a diagonal sum over
tensor indices as well as the diagonal coordinate
integration. We proceed exactly as in the develop-
ment used in the scalar field case, E(ls. (2.34) to
(2.3V). We write the Green's functions G and G in
terms of the operators t" and G and then represent
these operators by an exponential proper-time in-
tegral. Since

H= 2DD
gP

(3.18)

"'HD = —Da .1
(S.IVb)

The dependence of ~ H on the gauge-fixing param-
eter g is also simply expressed in terms of these
D symbols. The ( variation of E(l. (3.14) gives, in
operator notation,

the variations 5~~ 0 ' and &G
' involve variations

of (-g)'/4 and g'" in addition to 6 @H and 6H. How-
ever, the variations of (-g)'/' and g""' appear as
proper-time total derivatives [cf. E(l. (2.36)] and
they give a vanishing contribution in the dimen-
sional-regularization scheme. The proper-time
representation of the variational formula (3.22)
may now be integrated to get the formal expres-
sion

where the D which stands on the left in this equa-
tion is identical to the D operation which appears
on the left-hand side of E(1. (3.17b), while the D
which stands on the right in this equation is iden-
tical to the D operation which appears on the left-
hand side of E(l. (3.16b). Thus, for example,

H6 H = —DHD, (3.19)

where the D symbols on the right-hand side of this
equation are represented by the quantities on the
right-hand sides of E(is. (3.16a) and (3.17a). We
shall need a final property of the D symbols. If
we have the operator trace (including index sum-
mation) of an expression of the type illustrated in
E(l. (3.19), we can move the D symbol on the right
to the extreme left by using the cyclic symmetry
of the trace, and the index summation contained in
the trace tHen produces

W —— . T
0

oo

+z . Trem -isH
iS

(3.26)

We can now show that the action is independent
of the gauge-fixing parameter g. Using E(l. (3.18)
we have

6W~= 2 2i ids Tre " —DD. (s.a6)

Expanding the exponential in a power series and
using E(I. (3.17b) repeatedly gives

e-isg) H D =De-i(8!~)H (3.27)

The cyclic symmetry of the trace can now be ex-
ploited to place the D symbol on the extreme right-
hand side in E(l. (3.26) over to the left where, in
view of E(I. (3.27), it becomes contracted with the
other D symbol to produce -H [E(l. (3.20)]. Thus

D =-H ~
2 (3.20)

With these notational developments in hand, we
can now turn to discuss the one-loop action func-
tional for the Maxwell field system which has the
formal representation

pe — ~~ ~ zd g TrHe-$(s/g H

1 ~ ~ p
2 z zds . ~

&&eezs'

W, =-2'i l Det~'a-'-i l Deta-'. (3.21)
—0 (3.28)

Here the ghost contribution appears with a relative
factor of 2 and the opposite sign because the non-
Hermitian ghost field is equivalent to two Hermi-
tian, anticommuting fields. A metric variation
gives

Since we have now proved that the action is in-
dependent of g, we shall henceforth restrict our
development to case P = 1 which will simplify our
work, and we shall omit the suffix (t'). With f = 1,
two of the derivatives in the operator H displayed
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in Eq. (3.14} cancel one another except for the
order in which they operate. Hence, with & = 1,
H has the coordinate representation

( g) 1 l4s g p&g us( g)1l2s ( g) 1 l4g

(3.29)

To proceed with our renormalization method, we
need %KB constructions for the vector and scalar
ghost field proper-time transformation functions.
'The ghost field transformation function is essen-
tially identical to that described in Eqs. (2.18)
through (2,32) in the preceding section except that

&x, p, s ~x', p, ', 0&= &x, p,
~

e "-"~x', p'&

obeys the Schrodinger equation

8
. &x, p, , six', p, ', 0)=H'„&x, v, six', p', 0&

and has the WEB construction

(3.31)

the mass rn should be taken to vanish and the scal-
ar curvature term —,'R should be omitted from Eq.
(2.31). The vector-field transformation function

&x, p, , s ~x', p', 0& = . „„[-g(x)P~'&'~'(x, x')[-g(x')]'~'E'„(x, x', is) exp— (3.32)

Inserting this construction into the Schrodinger equation (3.31) with H „given by Eq. (3.29) yields, on taking
account of Eqs. (2.22) and (2.30), the weight equation

gu E +
1 c.xEu g z/2Ev

ZS— ZS
(3.33)

The weight function E „,(x, x; is} is regular at s= 0 with the coincident coordinate limit

E „,(x, x;0)=5

required by the boundary condition

s-0: &x, p, six', p, ', 0&-5'„S(x—x').

Hence, the s = 0 limit of the weight equation (3.33) requires that

o"(x, x')E'„,(x, x', 0),= 0,

which together with the coincident coordinate limit (3.34) identifies

E'„,(x, x', O)=c „,(x, x'),

(3.34)

(3.35)

(3.36)

(3.37)

where" 5",(x, x') is the parallel displacement bivector along the geodesic defined by the world function
o(x, x'). It is convenient to write

E",.(x, x'; is) = 5",,(x, x')E (x, x', i s) +7",,(x, x', is),

where E(x, x'; is) is the scalar field weight defined by Eq. (2.31) with the —,'R term deleted,

(3.38)

&12 (~ ;}
ZS ZS ' gl/2 (3.39)

with the boundary condition

E(x, x', 0) = 1.
Substituting the decomposition (3.38) into the weight equation (3.33) gives

(3.40)

which defines 5' „,when subject to the boundary condition

(3.41)
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(3.42)7'„,(x, x'; 0) = 0 .
The first two terms of the power-series develop-
ment in s of the coincident coordinate limit
E', ,(x, x;is) will be needed for our work They
are computed in Appendix B. The decomposition
(3.38) is convenient because, as shown in Appen-
dix B, the index contraction E o(x, x;is) is in-
dependent of the dimensionality n (at least for the
first two terms in s that we will need).

The WKB construction (3.32) for the vector-field
transformation function and the similar construction
for the scalar, ghost field transformation function ex-
hibited in the preceding section in Eq. (2.21) [but
with the —,'R term omitted from Eq. (2.31) which
defines the weight] enable the formal expression
(3.25) for the one-loop action functional to be writ-
ten in terms of an effective Lagrangian,

Thus, the proper-time weight of the action,

w(is) = -i(4&/is)" /'(Tre ""—-2 Tre "s),
can be expressed as

tt(tt&= f (d x&( tt"(x&]"-][a"*„(x,x;ts&

(3.46)

+ (n —2)E(x, x; is)]. (3.4V)

1 Mls
(A %tt/ 2 I 'll+tt/2 [ tl(xt ~t ~
477) 0 ~SSg

2E-(x, x; is)]. (3.44)

The decomposition (3.38) now displays all the de-
pendence on the dimensionality n explicitly,

i " ids
(~ hatt/2 I ~ 11+tt/2[~ tt(xt xt
4K) 0 (2S)

+ (n —2)E(x, x; is)] . (3.45)

with

d "x -g+, , (3.43)
The dimensional continuation discussed in the pre-
ceding section gives the limit

(„,) 1,& 1 1 8 ' y y a
4: W&"="=

4 -+4+-")
2 (4,). .. w(w) —

2 (4 ), ( . w(xs)

ids(ln/(:"is) — . - w(is),
4&/

' ess- (2.43)

where it is understood that the weight w(is) in the infinite counterterm and in the integral is to be evaluated
at n = 4. The counterterm involves

]. 8
[E'„(x,x; is)+ 2E(x, x; is)] =f,",+2f, .

2 ~SS 0
(3.48)

,. In Appendix 8 we evaluate the coincident coordinate limit
1 V 1 P pO 1 tvf, „,=~2R

&,R„, —,RR o, ——,R „,—.~ ——„R I/&„R„,

while f, is the $ = 0 limit of the formula (A24) given in the Appendix of paper I,

Hence,

(B20)

(3.49)

w.'"="= +I. +-,' (d'x)~+8(»+ w( =&&

1 rent (3.50)

where

(4 )2 ( too RO/t&oR
" + ooRttt/&R —~soR toR, (tt

The renormalized, one-loop action functional nov appears as

(3.51)

gr& n=4) y 4,~ g (n=4) (3.52)

with
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40 8 3

&I",„'(x)=-
4 ), f, (x, x) —

4 ), & ids(lm'is) &. [F",(x, x;is)+2E(x, x;is)].
0

(3.53)

The construction of the renormalized vacuum expectation value of the stress-energy tensor for the Max-
well field parallels that of the scalar field discussed in the preceding section, Eqs. (2.48)-(2.52). With the
definition

[-g(x)]'i'T""(x;is) = 2 w(is),
5g„„(x)

(3.54)

the dimensional-continuation limit (2.43) gives

(T""(x))'"~''= +I + —,
' — . T""(x is) +(T'"(x))'"="1 j 1 1

4 —n 4 ' (4v)~ 2 sis ren

with

(3.55)

(n4) 1 1 ~ 8 —iv(T )ren =-
2 (4 )2 s s T (xiis)

1 1 . 8
ids (1nx'is), T""(x;is) .

a=0- m=4 «)' ~ZS
(3.56)

This exhibits the renormalized stress tensor as the metric variational derivative of the renormalized one-
loop action. Since the weight w(is) is a functional of the metric tensor g 6(x), which is invariant under
general coordinate transformations, the definition (3.54) implies that the stress-tensor proper-time weight
is conserved with n arbitrary,

T"(x;is),„=0. (3.57)

Hence, the proper-time representation (3.56) yields a conserved, renormalized stress tensor. Note that
Eq. (3.53) ean be used to express the dimensional derivative contribution to the renormalized stress ten-
sor as

8 [ 8 T~ "(x;is)
2 (4v)' &n sis s=0-' n=4

(3.58)

Vge compute the trace of the Maxwell stress tensor with the method used in the preceding section for the
scalar case. We consider the conformal metric variation

5g,~(x) =25K(x)g ~(x). (3.59)

On referring to the coordinate representations of the operators H (with r = 1) and H given in Egs. (3.14)
and (3.15), which display the metric tensor explicitly, we see that at n=4

5H = -25M —25AI)D+ 4D5A.D —2DDQX (3.60)

5H = -25AH —2D5M —2H5A, .
It follows from Eqs. (3.54) and (3.46) that

6H sH 5H[- (gx)]'~'T""( xis) = i(4vis)'is Tr e "-"2 —2 Tre " 2
5g„(x) 5g, „(x)

Hence

(3.61)

(3.62)

—2Tr e '"(MH+D5ADyH5A)].

Now Eq. (3.27) and the discussion preceding it imply that
I

(3.63)

(3.64a)

D~ hsH ~-fsHD (3.64b)
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Hence, using the cyclic symmetry of the trace,
e

Tre""(5L-DD 2-D5XD DDGA)= Tr(5U)e ""D—2De ""6U)+De ""D6X)=Tr(2e ""D6XD+2e ""6LP).

(3.65)

Here the last two traces do not include a diagonal sum over the implicit tensor indices —the vector indices
of the two D symbols are contracted —and in the last equality we use

(3.20)

The use of Eq. (3.65) results in a large cancellation of terms in Eq. (3.63), and we again use the cyclic
symmetry of the trace to secure

J (d'x)[-g(x)]' 'T""(x;is)g„„(x)5X(x)l= -2i(4sis)'is(Tre "-"H5X —2 Tre ""H6X)
e

8
T "(x;is)g„„=-2(is}'is . —(is) '[E „(x,x;is) —2E(x, x;is)]

= -2(is)'is s. (is) ' [F"~(x,x;is)+ 2J" (x, x;is)]. (3.6'l)

The trace of the stress tensor is nearly at hand. The previous result gives

1 1
ids (inc'is) . — 7""(x;is)g„„(x)4 4m' 8$S

1 1
ids (inc'is)- . is .—-2 . — [F"„(s,s; is)+ 2I'(x, x; is)]~4 4))' ' ~ZS $S ~ZS

1 [E",(x, x; is)+ 2E(x, x; is)] = +("(x), (3.68)

which is the integrand in the action counterterm exhibited in Eqs. (3.50) and (3.51). Thus, Eqs. (3.56) and
(3.58) yield

I

()'""())" )()=~()(e)*(())g'()e)()J(d)~kf' (3.69)

This is the trace anomaly for the stress-energy
tensor of the Maxwell field. C1.early the metric
variational derivative contribution which appears
here can be removed by the addition of a finite
counterterm to the I.agrange function. Thi. s count-
erterm, however, is not invariant under a con-
formal variation of the metric tensor, Eq. (3.59).
Moreover, the anomaly 6!")(x)cannot be removed
by the addition of a counterterm to the I,agrange
function.

The stress-tensor weight 7""( isx) can be ex-
pressed in terms of the vector and scalar (ghost)
Green's function proper -time weights E"~,( xx', is)
and I'(x, x', is). This is done in Appendix C. The
ghost field contribution to the stress-tensor weight
[coming from the y-field terms in Eq. (3.5)] essen-
tially cancels the contribution of the longitudinal
part of the vector potential to the stress-tensor
weight [coming from the terms in Eq. (3.5) with
the coefficient 1/t']. These contributions combine

to form a total proper-time derivative which can
be deleted in our renormalization scheme. Thus,
the Maxwell stress-tensor vacuum expectation
value can be expressed entirely in terms of the
Green's function of the gauge-invariant field
strength tensor. " We see that the ghost field plays
the role of an "integrating factor": It enables the
stress-tensor vacuum expectation value to be given
as the metric variational derivative of an action
functional. As a corollary, we note that this
total proper-time derivative is needed to make
the stress-tensor weight 7'"(x; is) conserved, al-
though, of course, it is not needed for the conser-
vation of the stress-tensor expectation value.
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'

APPENDIX A

Here we shall compute the stress-tensor weight

[-g(x)]' 'T""{xis) =i(4vis)" 'is Tre ""2 5a
~g, „(x)

(2.55)

for the scalar field in terms of the Green s function weight E(x, x;is) and compare this weight with that
used in paper I. The definitions (2.11) and (2.14) imply that

( g)-1/4G-1( g) 1/4 (AI)

Hence, using the cyclic symmetry of the trace and the explicit WKB construction (2.21) for the terms pro-
duced when the factors of (-g) '/4 are varied, we get

[-g(x)]' 'T""(x;is) =i(4vis)" 'is Tr(-g)-'/'e "'"(-g) '/'2-1 e -ksH

~g,.(x)

a . - -2-g'"(x)[-g(x)]'/2(js)" /' is . (is) " 'e ""F(x,x;is) .
~i8

In view of the WKB construction (2.21) and the relation [Eq. (2.49)]
)G~]

I-g(x)l"*(&'"(x))= — (4, S 4)),' 5g„„

we see that the first line of E(I. (A2) can be evaluated by using the correspondence

p (X)p(x')-2isb, '/2(x, x')E(x, x'; is) exp — '. —m'is(1(x,x')

(A2)

(A3)

(A4)

ln

)s)
Q

~ )sg sv g)sv(II) (t) ~ ()
g jlvm2 (t)2 + 1 [G ((v(t)2 +g (s)s

(y 2);()
(~2) ~ (is v] (2.2)

This evaluation entails the coincident coordinate limits

x=x': (T = 0 = O' = 0'

&,p;v =-gpv
p

gl/2 gl/ 2 0
sV

(2.23)

(2.24)

(2.26)

(I.A11)

gl/2 1 ~
P, 'V' 6 "P,I/' '

We compute in this way

'7""(x;Ss)=g "(x)s "''
(( is .-)g(x, x;is)+2is(g g""— g "g )s x—',g „.(x",x'";(s)

x'=x'

+2is —', (g""g""—g""g"") e "'"[F(x,x; is)],.„.

(I.A12)

(A5)

The trace of this expression gives, at n=4,

8T""(x;is)g „(x)=4e " ~ 1-is . (F, xixs) 2i+se" "F „'"(x,x';is)
X=X'

(Ae)

The coincident coordinate limit of Eq. (2.31) gives

. E(x,x;is) =E '"(x,x'is) (A7)

Hence

T "(x,is)g „(x)=-2(is)2is . (is) 2e" +E(x,x;is) —2m2ise" E(X,x;is), (AB)
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and we recover the result (2.58) derived by formal operator manipulations. The conservation of T""(x;is)
could also be established directly with the use of Eq. (2.31), but there is no need to do this somewhat
lengthy calculation (a similar calculation was presented in paper I).

The stress-tensor weight displayed in Eq. (A5) differs from the weight T""(x",is) used in paper I, Eq.
(1.3.21). Fixing $ = —', in T""(x;is) as is done in T""(x;is), we have the connection

-1'@T~"(x is}=2ise " T~"(x is) ——g'"(x)(is)" 2is . (is) "i'e " &(x x is) .
n &is

(A9)

The old weight T'"(x;is) is regular at s =0. Hence,
Eq. (A9) can be put into the stress-tensor proper-
time representation (2.52}, and an integration by
parts can be done which reduces the triple proper-
time derivative to a double derivative, yielding the
representation used in paper I, Eq. (L1.38) (with
the G""term omitted as is appropriate when $ = —,

'
is held fixed}. The essential difference between
the two weights is that one emphasizes the trace,
the other the divergence. For simplicity let us
consider n=4 and m= 0. Then

lg
&, ;o;ra= 3~Its a.+Ilr an) . (1&4)

I ~ PjV ~ Pi&

which, with

(B4)

Thus, the coincident coordinate limit of the first
derivative of Eq. (B1) yields

x=x'' ~" =0 (B3)

The second derivative of Eq. (Bl) gives the coinci-
dent limit

T""(x is)g (x) =0

while

(Alo)

yields

$P08 p' gn p' Xat3&

8T""(x;is)g „(x)=-2(is)'is . (is) 'F(x, x; is) . —'u&X X ~ ii I ~ +Og Q I @p 0 (B6)

On the other hand,

T""(x;is) „=0, .
while

(A11) Finally, we take four derivatives of Eq. (Bl) with
pairs of derivative indices identified to get the co-
incident limit

X=Xi'

8T""(x;is).„=—,(is)' . (is} 'E(x, x; is)' . (A12)

APPENDIX 8
I

The coincident coordinate limits of various de-
rivatives of the parallel displacement bivector"
&'„,(x, x') are needed in our work. These are ob-
tained from the defining differential equation

o' (x, x'}6',, (x, x').„=0,
with the coincident coordinate boundary condition

+ 26u, ;a;8+ 26m l u;0 0 (Bq)

It follows from Eq. (1%4)that the coincident limits
o '~. ' .z and o ~ ~.„.~'~ are symmetrical in (X, P)
and (X, n), respectively, while, according to Eq.
(B6), they are contracted with quantities that are
antisymmetrical in these index pairs and thus they
give vanishing contributions. There remains

(B6)

The order of the derivative indices in the last term
here can be altered with the aid of the curvature
tensor. Using the coincident limits (B2) and (83),
we get

6~„,(x, x) = 6"„,, (B2) x =x':

x=x': o, =0,
~ o'8 geP y

o .~.„=0,

(1.2.24)

(1.2.26)

(I.A2)

and from the coincident coordinate limit of deriva-
tives of the world function which have been re-
viewed in paper I,

The last term which appears here vanishes by
virtue of the contracted Bianchi identity. The next-
to-last term also vanishes because Eq. (B6) im-
plies that the coincident limit & „, ~ is antisymme-
trical in aP. Thus, on using Eq. (B6), we get
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;e', 8 gv;e;8 +~@, g Xn8
p' 0 e i/, 'e 'g Xng

{Blo)

yield the coincident limit of Eq. (B13),
I ~x =x: f, , =-R', . (B15)

and Eq. (B8) yields

x=x' &'
~ e og P eay ii I ~ (B11)

Taking two derivatives of Eq. (B13), and again
using the coincident limits listed above and the
fact that

Vfe need coincident limits of the first two terms
of the expansion

(1.A13)

I" '„,=isf,"„,+ (is)' f2v, , + ' ' (B12)
is symmetrical in p. v, we get

for our work. Inserting this expansion into Eq.
(3.41) gives

fl', =-«/'fl'. ',1+R'.~", ~4

/' ~x=x: f, -„,. ' =2f, ,, ' -R v, .~'

p, ', 'A;e

and

gl/2, Xgg gp

2f2'. -=R',fl". +«/'f2". ', 1

(B13)
p, , n ~ p ;e 1 p eelyX=X: fl .',. =-2R .; 2" -2vR'

(B1V)

We use these results in the coincident limit of Eq.
(B14),

—&1/2 (+' 'fl" x =x': 2f,"-„=R „,f,",. —r'/' 1' f,
fl v''1 + v'fl s.(B18)

along with a result quoted in paper 1 [Eq. (1.A20)
with ) =0]

(B14)

where f, is the first term in the expansion of the
scalar field weight I'(x, x'; is) defined by Eq. (3.39).
The coincident limits listed above and

(2.26)

x=x': f, = ',R—
to secure the coincident limit

x=x': f,"„,= —,'R' R "——'R" R

6 "
p, ';e 12 " nay "p. '

(B19)

~1/ 2, )t 0 (1.A11) (B20)

The stress-tensor weight
APPENDIX C

6B
[ g(X)]l/2Z vv(X. .iS) i(4««iS)n/2iS Tre-«sH2 —

2 Tre-«sH2
&g„„(x) 5g„(x)

(3.62)

for the Maxwell field can be expressed in terms of Green's function weights using the techniques described
for the scalar field case in Appendix A. Since

Iiy, { g)-1/4G-lvlg ( g)-1/4 (cl)

we get

( g) 1/ 4G-1( g) 1/4 (c2)

OG '
[-g(x)]'/ Z'v" (x is) =i(4««is)"/2is Tr(-g) '/'e « —"(-g) '/'2 — —Tr(-g) '/'e «sH( g) 1/44

6g,„{x) 6g..(x)

-g""{x)[-g{x)]''{is)" 'is . (is) " '[El (x x;is) —2E(x, x;is)]

+2[-g(x)]"'(is)""ls . (Ss)-""E""{xx is).8

&is

The metric variation of the inverse Green's function operators produces the stress tensor
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IP Ilv (F0 Fv)l ~ JlvF FnS) + (glkv [
~ (QX )2 ++X QK] Qll, ~ EL' gX ~ vg II] + (lit ~ lkgv+ litgvg ~ ll gv vXf li ~ X)

t

(s.5)

with the fields represented by

(x)A."(x')—2i sS'~'(x, x')F""(x,x'; is) exp
o(x, x')

22S
(c4)

and

X'(x)X(x')—-2is &'~'(X, x')F (x, x', is) exp

where the minus sign in the last formula arises from the anticommutativity of the ghost field.
We evaluate first the contribution arising from the "classical" piece of the stress tensor,

(F&yWV y p y VX & ~levy yo.g
X &+ nQ

a contribution which we denote by 'H'2'v"(x; is). This evaluation again entails the coincident coordinate
limits

(ce)

(ce)

and

I ~X=X: O'=P=O' =O' S PSV SP

O', p, v =-gpv ~

+1/2

~l/2 g1/2 p
~ P 2 P,

gl/2 1 gp
2 P, ', V' 6 PV

(2.2s)

(2.24)

(2.2e)

(l.All)

(l.AlS)

After a little calculation, we find

'H'T'"(x is)= g""5' +5' g"'(n 2) F" (x x is)

—' [Rv"e~ R" g"~ R" gv~+Rev g"~ —'gv"(Re~ R~ )]2isF" (x x is)

+ [gllngvSex gllngvtleS ell gvS+n+ es gvkgnS

vv(2ex gns es gran es gran)]2&sFs (x x&. is)
l

(c&)

Note that at n =4

'H'T'v(X iS)g,„(X)=O. (ce)

potential piece of the stress tensor (S.5),

(L)Tpv gnv[ —g& )2+~X gs]
1 SX,g

The contribution of the terms that remain in the
stress tensor (S.5) can be computed in the same
fashion. All these terms essentially cancel, how-
ever, and this cancellation is much more simply
demonstrated with a more abstract approach.
Hence, we consider these remaining quantities in
terms of diagonal, coordinate-space matrix ele=
ments of operators. In so doing, we must bear in
mind that the operator corresponding to a deriva-
tive,

(c9)

s PgV gX sv+P (cll)

v [ (g 4H D) fl (~& LsH)X]-
gll(g&-fsH)v Dv(D&-ksH)v (cl2)

We now recall that

g)e-isH eisHD (s.e4b)

can be written in terms of the diagonal, coordi-
nate-space matrix element of the operator

obeys

D, lx)=-s, lx). (clo) D =-H. (s.2o)

Thus, the contribution of the longitudinal vector Hence,
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L v v(2s) gvv[ I e-isHIf + (~e-isHD)]

Due-i sHDv ~ u &-is HDv (C18)

operator correspondence (C10). We have now found
that the longitudinal and ghost contributions essen-
tially cancel, giving

The ghost piece

(')T'"=X~"X "+Xi "X"-g'"X~ X

gives the operator

9 vv(2S) =~ve ssH~-v+gve-ssH~v

g vv (DS 2sHD)

(C14)

(C15)

I-v"(2s) +9v"(is) = ,' g"—"e2sHH

(I+G)Tvv(x, is) = -gvv(x)(2s)s/22s
8

~is

&& (is) " 'E(x, x; is) .

(C16)

(C17)

Here one must be careful to get the overall sign
right. There is a minus sign arising from the
anticommutativity of the ghost field as illustrated
in Eq. (C5), and there is another minus sign in the

The complete stress-tensor proper-time weight
is the sum of 'H'Tv'(x; is), ~~'T""(X;is), and the
proper-time derivative terms remaining in Eq.
(Cs),

97v"(x; is) = 'H'T""(x; is)+ (is)"~'is . (is) "~'(2E""(x,x; is) g""(x)-[E ~(x, x; is) E(x, x-; is)]) . (C18)

The proper-time derivative terms that appear here could be deleted, for they give a vanishing contribution
in our dimensionally continued renormalization scheme. Thus, the stress tensor could be written entirely
in terms of the weight 'H'Tv" (X; is), which is related to the proper-time weight of the gauge-invariant field
strength Green's function. In particular, if this were done, the ghost field mould not contribute to the
stress tensor. This deletion, however, would upset the conservation of the weight T""(x,is), and so we
keep these proper-time derivative terms. Finally, we note that atn=4, the trace of the stress-tensor
weight Eq. (C18) is given by

8
T'"(x;is)g„„(x)= -(is)'is . (is) '[2E',(x, x; is) -4E(x, x; is)], (C19)

in agreement with the result computed by operator techniques, Eq. (3.67).
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the definition of the vacuum expectation value. In some
eases, it is the matrix element of the stress tensor
with both states representing an initial vacuum that is
of interest. However, these ambiguities do not affect
our work significantly. The trace anomalies which we . .

compute are unambiguous since they depend only upon
the short-distance behavior of the theory and not upon
its global properties. Alterations of our (rather im-
plicit} boundary conditions can be accommodated by
adding appropriate homogeneous solutions to the
Green's functions or to their proper-time representa-
tion.
L. S. Brovrn, Phys. Rev. D 15, 1469 (1977).

3J. Schwinger, Phys. Rev. 82, 664 (1951).
Some use of dimensionally continued, parametric in-
tegral representations in quantum field theory has

been made by previous authors. M. R. Brown and
M. J.Duff [ Phys. Rev. D 11, 2124 {1975)] used such a
technique to calculate the renormalized one-loop ef-
fective Lagrangian for the special case of a self-in-
teracting scalar field in a slowly varying external
scalar background field. They also indicated an exten-
sion of this calculation to non-Abelian gauge theories.
The parametric integral representation employed by
these authors is not the proper-time representation
used by us. P. Candelas and D. J. Raine [Phys. Rev.
D 12, 965 {1975)) have used a parametric integral rep-
resentation (which is not a proper-time representation)
.to compute Green's functions in de Sitter space with
n dimensions, and have used these Green's functions to
compute renormalized, one-loop effective Lagrangians
for de Sitter space by dimensional regularization. J. S.
Dowker and R. Critchley [ Phys. Rev. D 13, 3224 (1976))
have introduced a "g-function" renormalization scheme
which they implement by a proper-time representation,
and which they applied to compute the stress tensor
and effective action for de Sitter space. This &-func-
tion renormalization scheme is not the dimensional-
continuation method which we use.

5Stress tensors for quantum fields propagating in curved
space-time have recently been computed by several
authors using an ambiguous, point-separation tech-



STRESS-TENSOR TRACE ANOMALY IN A GRAVITATIONAL. . . 2829

nique. P. C. W. Davies, S. A. Fulling, and W. G. Un-
ruh [ Phys. Rev. D 13, 2720 (1976)] and S. M. Chiisten-
sen [ibid. 14, 2490 (1976)] use this technique and sim-
ply discard various ill-defined terms. S. L. Adler,
J. Lieberman, and Y. J.Ng [Ann. Phys. (N.Y.) (to be
published)] use this technique and perform a compli-
cated averaging process to make ill-defined terms
meaningful. However, their results do not agree with
those of lowest-order perturbation theory for nearly
flat space- times.

68. Deser, M. J. Duff, and C. J. Isham, Nucl. Phys.
3111,45 {1976).

7B. S. DeWitt, Dynamica/ Theory of Groups and Fields
(Gordon and Breach, New York, 1965); B. S. DeWitt,
Phys. Rep. 19C, 295 (1975).

It is perhaps worth emphasizing that any renormaliza-
tion procedure necessarily entails the introduction of
a dimensional parameter of some sort. In our method,
the variation of the renormalized action with respect
to the scale mass yields a finite constant times the
renormalization counterterms, a constant that is es-
sentially the lowest-order P function of the renormal-
ization-group language.

~The expression (I.1.24) for our trace anomaly 8 ~ (x)
agrees with that presented in Eq. {7.3) of S. M. Chris-

tensen [ Phys. Rev. D 14, 2490 (1976)], who remarks,
incorrectly, that "something is wrong. " It also agrees
with the expressions found for the special case of the
Robertson-Walker universe by P. C. W. Davies, S. F.
Fulling, S. M. Christensen and T. S. Bunch, King' s
College London report (unpublished) and T. S. Bunch
and P. C. W. Davies, King's College London report
(unpublished). In lowest order of perturbation about
flat space-time, only the term involving R &'& survives.
Our coefficient for this term. agrees with that found in
the lowest-order perturbation calculation performed by
D. M. Capper and M. J.Duff [Nuovo Cimento 23A, 173
{1974)].

00ur total coefficient for the B &'" term in the anomaly,
[1/(4r) ] (—~+ 6), agrees with the lowest-order per-
turbation calculation of Capper and Duff, Ref. 9.

. The properties of the parallel displacement bivector
(and also the world function 0) are discussed in J. L.
Synge, Relativity: The Genera/ Theory (Interscience,
New York, 1960) and in the book of DeWitt in Ref. 7.

~&The cancellation of the longitudinal and "ghost" terms
in the stress tensor was shown by Adler, Lieberman,
and Ng (Ref. 5) within the context of their point-separa-
tion method.


