Multiquark hadrons. II. Methods*

Abstract

R. L. Jaffe ${ }^{\dagger}$

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305 and Laboratory of Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (Received 15 July 1976) Techniques for estimating the masses and decay couplings of multiquark hadrons $\left(Q^{m} \bar{Q}^{n}, n+m>3\right)$ are developed with specific reference to the $Q^{2} \bar{Q}^{2}$ sector. The dynamics is based on a quark-bag model of light, colored, and permanently confined quarks gaugecoupled to non-Abelian colored gluons. The $\mathrm{SU}(6)$ of "color-spin" generated by color $\mathrm{SU}(3)$ and the $\mathrm{SU}(2)$ of relativistic $j=\frac{1}{2}$ quarks dominates the spectrum. Color-spin rules analogous to Hund's rules of atomic spectroscopy dictate that the lightest multiquark hadrons are not exotic, are of low spin, and are coupled predominantly to strange Q^{3} and $Q \bar{Q}$ decay channels. Multiquark hadrons are consequently elusive and may be misclassified as conventional $Q \bar{Q}$ mesons or Q^{3} baryons.

I. INTRODUCTION

In a previous paper ${ }^{1}$ we presented the phenomenology of two-quark, two-antiquark hadrons in a quark-bag model. The discussion was based on a phenomenological Hamiltonian describing light, Swave, colored quarks weakly coupled to massless colored gluons, all confined to the interior of a bag. Two major technical questions were left unanswered in Ref. 1 (referred to hereafter as I): First, how is the phenomenological Hamiltonian diagonalized in the space of color-flavor-spin eigenstates, and second, how are the couplings to dissociation decay channels calculated? These are the subjects of the present paper.

Although we deal specifically with $Q^{2} \bar{Q}^{2}$ mesons, some effort is made to develop techniques applicable to all multiquark ($Q^{m} \bar{Q}^{n} ; n+m>3$) S-wave hadrons. In particular, we introduce $\mathrm{SU}(6)_{\text {cs }}$ [the $S U(6)$ generated by color and the relativistic "spin" of S-wave quarks] in order to diagonalize the gluon interaction terms in the Hamiltonian. The qualitative effects of the gluon interactions are summarized by analogs of Hund's rules, which single out spectroscopically prominent multiquark configurations on the basis of color-spin [$\mathrm{SU}(6)_{\mathrm{cs}}$] quantum numbers. They enable us to make general arguments why multiquark hadrons are less prominent than might naively be expected.
The paper is organized as follows: In Sec. II we introduce the necessary symmetry groups and define a convenient notation for the remainder of the paper. In Sec. III we construct eigenstates of the bag Hamiltonian. First we diagonalize the flavor content of relevant $\mathrm{SU}(3)$ representations. This is the analog of the (trivial) "magic mixing" of ω and ϕ in the $Q \bar{Q}$ sector. Secondly, the gluon exchange interaction must be diagonalized in a basis of magically mixed flavor states. This leads us to in-
troduce $\mathrm{SU}(6)_{\text {cs }}$. Rules are given for spectroscopically important states. In Sec. IV we summarize the recoupling transformations which determine amplitudes for dissociation decays. In Sec. V we return to the $S U(6)_{\text {cs }}$ formalism and show that the rules of Sec. III reduce the spectroscopic importance of multiquark states in general. A simple expression for the quadratic Casimir operator of $\mathrm{SU}(3)$ or $\mathrm{SU}(6)$ is derived in the Appendix.

II. SYMMETRIES, SYMMETRY BREAKING, AND NOTATION

Our quarks carry three labels $\mathrm{s}^{2,3,4}$: color $\left[\mathrm{SU}(3)_{\mathrm{c}}\right]$, flavor $\left[\mathrm{SU}(3)_{\mathrm{f}}\right]$, and $\operatorname{spin}[\mathrm{SU}(2)]$. Color is gauged, unbroken, and confined. Flavor is not gauged, broken by giving the strange quark a small mass and leaving the up and down quarks massless, and of course not confined. Spin is not actually spin at all but rather the $\mathrm{SU}(2)$ generated by the angular momentum of fully relativistic quarks in S-wave modes in a cavity. Neither \vec{L} nor \vec{S} is conserved in a relativistic quark model. Nevertheless, if we fix our attention on the $j=\frac{1}{2} \quad(S$-wave) sector of the theory, the algebra generated by the states and their currents is an $\mathrm{SU}(2)$.

As discussed in I, the phenomenological Hamiltonian (H) includes a kinetic energy term diagonal in eigenstates of the strange-quark number $\left(n_{s}\right)$ and independent of color and spin, and a gluon interaction term which is approximately diagonal in eigenstates of n_{s} but mixes color and spin representations. The eigenstates of H are therefore characterized by the following quantum numbers (in the $Q^{2} \bar{Q}^{2}$ sector):

1. the flavor multiplet of the two quarks, denoted 3 or $\overline{6}$, and of the two antiquarks, denoted 3 or $\underline{6}$;
2. the $\mathrm{SU}(6)_{\mathrm{cs}}$ multiplet of the two quarks, de-
noted [15] or [21], and of the two antiquarks, denoted [15] or [21];
3. the total spin, labeled by $2 J+1$, of the quarks and antiquarks together;
4. the total color, which is always a singlet, of the quarks and antiquarks together.

It is important to understand why the other obvious quantum numbers are not diagonal. The total flavor is not a good quantum number because of magic mixing. For example, many states in the $\underline{1}, \underline{8}$, and $\underline{27}$ (which result from $\underline{6} \otimes \underline{6}$) are mixed to diagonalize the number of s quarks. Generally only the states at the periphery of weight diagrams (e.g., the $I=2$ multiplet in 27) are pure $\mathrm{SU}(3)_{\mathrm{f}}$ eigenstates.

Total $\mathrm{SU}(6)_{\mathrm{cs}}$ multiplets are mixed by the gluon interactions. For example

$$
\begin{equation*}
[21] \otimes[\overline{21}]=[1] \otimes[35] \otimes[405] \tag{2.1}
\end{equation*}
$$

The $\operatorname{SU}(3)_{c} \times \operatorname{SU}(2)$ decomposition of these shows that total color singlets with $J=0$ occur in both the [1] and [405] representations of $\mathrm{SU}(6)_{\mathrm{cs}}$. The gluon interactions mix these multiplets.

Eigenstates of total $\mathrm{SU}(6)_{\mathrm{cs}}$, color, and spin for $Q^{2} \bar{Q}^{2}$ are mixtures of color and spin representations of quarks and antiquarks separately. Again an example clarifies matters. The $[1]$ in $[21] \otimes[\overline{21}]$ is a linear combination of $(6,3)(\overline{6}, 3)$ and $(\overline{3}, 1)(3,1)$. (The notation is $\left[d_{c}(Q), 2 j_{Q}+1\right]\left[d_{c}(\bar{Q}), 2 j_{\bar{Q}}+1\right] . d_{c}$ is the dimension of a color multiplet, $2 \boldsymbol{j}+1$ is the dimension of a spin multiplet.) Clearly both $(6,3)(\overline{6}, 3)$ and $(\overline{3}, 1)(3,1)$ can be coupled to total color and spin singlets. The $(1,1)$ in $[405]$ is the orthogonal linear combination.

To summarize the notation introduced above:
$\left[d_{c s}\right]$ denotes $\mathrm{SU}(6)_{\mathrm{cs}}$ multiplets labeled by their dimension.
$\left(d_{c}, 2 j+1\right)$ denotes $\mathrm{SU}(3)_{c} \times \mathrm{SU}(2)$ multiplets labeled by their color and spin dimensions.
$\underline{d}_{\mathrm{f}}$ denotes flavor multiplets by their dimension.
It will always be apparent from context whether the notation refers to quarks, antiquarks, or both taken together. For reference, the $S U(6)$ representations available to Q^{2}, \bar{Q}^{2}, and $Q^{2} \bar{Q}^{2}$ are summarized in Table I. Generally states will be labeled with quark quantum numbers, antiquark quantum numbers, and overall quantum numbers, in that order. We will often suppress labels when they are unnecessary. Specifically, antisymmetrization fixes the flavor once the $S U(6)_{c s}$ representation is chosen, so we often suppress flavor labels. Also, $Q^{2}\left(\right.$ or $\left.\bar{Q}^{2}\right) \mathrm{SU}(3)_{c} \times \mathrm{SU}(2)$ multiplets belong to unique $\mathrm{SU}(6)_{\mathrm{cs}}$ representations (see Table I) so we may suppress $\mathrm{SU}(6)_{\mathrm{cs}}$ labels if the $\mathrm{SU}(3)_{\mathrm{c}}$ $\times \mathrm{SU}(2)$ representation is given.

III. EIGENSTATES AND INTERACTION ENERGIES

Consider first the requirements of antisymmetrization. Quarks are [6] in $\mathrm{SU}(6)_{\mathrm{cs}}$, thus

$$
\begin{equation*}
[6] \otimes[6]=[15] \oplus[21] \tag{3.1}
\end{equation*}
$$

are representations for Q^{2}. The flavor states available to two quarks are $\overline{3}$ and 6 . In both cases the smaller representation is antisymmetric; the larger is symmetric. Antiquarks are in conjugate representations. There are four antisymmetric combinations:

$$
\begin{align*}
& {[21] \underline{3} \otimes[\overline{21}] 3} \tag{3.2a}\\
& {[15] \underline{6} \otimes[\overline{15}] \underline{6}} \tag{3.2b}\\
& {[15] \underline{6} \otimes[\overline{21}] \frac{3}{2}} \tag{3.2c}\\
& {[21] \overline{3} \otimes[\overline{15}] \overline{6}} \tag{3.2d}
\end{align*}
$$

In addition to being antisymmetrized, these multiplets are not mixed by the gluon interactions.

A. Magic mixing

The flavor multiplets in Eqs. (3.2a) - (3.2d) mix to diagonalize the strange-quark content. The problem is familiar from the $Q \bar{Q}$ sector $\left(\eta-\eta^{\prime}, \omega-\phi, f-f^{\prime}\right)$ where $I=Y=0$ octet and singlet members mix. Typically

$$
\begin{align*}
& \eta_{s}=\left(\frac{1}{3}\right)^{1 / 2} \eta_{\underline{1}}-\left(\frac{2}{3}\right)^{1 / 2} \eta_{\underline{8}} \tag{3.3}\\
& \eta_{0}=\left(\frac{2}{3}\right)^{1 / 2} \eta_{\underline{1}}+\left(\frac{1}{3}\right)^{1 / 2} \eta_{\underline{8}}
\end{align*}
$$

where η_{1} and $\eta_{\underline{8}}$ are singlet and octet members, while η_{0}^{-}and η_{s}^{-}contain zero or two strange quarks, respectively. The mixing in the $\overline{3} \otimes 3$ of $Q^{2} \bar{Q}^{2}$ is exactly opposite to that in the $\underline{3} \otimes \underline{3}$ of $Q \bar{Q}$ [compare Eq. (3.3) with Table II]. This has important phenomenological implications. ${ }^{1}$

The mixing matrices for the four $\mathrm{SU}(3)_{\mathrm{f}}$ multiplets of Eq. (3.2) are given in Table II. The magically mixed states are given as linear continuations of $\mathrm{SU}(3)_{\mathrm{f}}$ eigenstates. The $\underline{6} \otimes \underline{3}$ representation and its conjugate cause special \bar{p} roblems. The flavor octets in $\overline{3} \otimes \underline{6}$ and $\underline{6} \otimes \underline{3}$ individually are not eigenstates of $G \bar{p}$ parity. Appropriate linear combinations yield an f-type octet $\underline{8}_{f}$ and a d-type octet $\underline{8}_{d}$ which have different hadronic decays and may have quite different physical masses though in our (zero-width) approximation they remain degenerate. The hypercharge-zero members of $\underline{6} \otimes \underline{3}$ and $\overline{3} \otimes \overline{6} \operatorname{mix}$ to diagonalize G parity ${ }^{5}$:

$$
\begin{align*}
& C_{\pi}^{ \pm}=\frac{1}{\sqrt{2}}\left[C_{\pi}(\underline{18}) \mp C_{\pi}(\overline{18})\right] \\
& C_{\pi}^{s \pm}=\frac{1}{\sqrt{2}}\left[C_{\pi}^{s}(\underline{18}) \mp C_{\pi}^{s}(\overline{18})\right] \tag{3.4}\\
& C^{s \pm}=\frac{1}{\sqrt{2}}\left[C^{s}(\underline{18}) \mp C^{s}(\overline{18})\right]
\end{align*}
$$

TABLE I． $\mathrm{SU}(6)$ and $\mathrm{SU}(3)$ representations for Q^{2} and \bar{Q}^{2} sectors \bar{Q}^{2} representations are obtained from Q^{2} representations by interchanging quarks and antiquarks and drawing con－ jugate tableaux）．

Sector	$\mathrm{SU}(6)$ representations			Eigenvalue of Casimir operator
	Young tableau	Dimension	$\mathrm{SU}(3) \times \mathrm{SU}(2)$ content	
$Q^{2}{ }^{\text {a }}$	\square	21	$(6,3),(\overline{3}, 1)$	160／3
	$日$	15	$(6,1),(\overline{3}, 3)$	112／3
$Q^{2} \bar{Q}^{2}$	日	1	$(1,1)$	0
	Ψ	35	$(1,3),(8,1),(8,3)$	48
	\nexists	189	$\begin{aligned} & (1,1),(1,5),(8,1), 2(8,3), \\ & (8,5),(10,3),(\overline{10}, 3),(27,1) \end{aligned}$	80
		405	$\begin{aligned} & (1,1),(1,5),(8,1), 2(8,3), \\ & (8,5),(10,3),(\overline{10}, 3),(27,1), \\ & (27,3),(27,5) \end{aligned}$	112
		280	$\begin{aligned} & (1,3),(8,1), 2(8,3),(8,5), \\ & (10,1),(10,3),(10,5),(10,1) \\ & (27,3) \end{aligned}$	96

SU（3）representations

Sector	Tableau	Eigenvalue of Casimir operator	
$Q^{2 \mathrm{a}}$	\square	6	$40 / 3$
	$Q^{2} \bar{Q}^{2}$	$日$	3

${ }^{a} \bar{Q}^{2}$ representations are obtained by interchanging quarks and antiquarks and drawing conjugate tableaux．

The names of states are defined in Figs．6－8 of paper I，and for the most part also in Table II． This mixing will figure in the calculation of decay couplings．

B．Diagonalizing the gluon interaction

The spectroscopically important interaction be－ tween quarks（aside from the interaction with the bag which provides confinement and sets the over－ all scale）is the spin－spin force mediated by one gluon exchange．The gluon interaction Hamilto－ nian is given by ${ }^{4}$

$$
\begin{equation*}
H_{g}=-\frac{\alpha_{c}}{R} \sum_{a=1}^{8} \sum_{i>j} \vec{\sigma}_{i} \cdot \vec{\sigma}_{j} \lambda_{i}^{a} \lambda_{j}^{a} M\left(m_{i} R, m_{j} R\right), \tag{3.5}
\end{equation*}
$$

where $\alpha_{c}=g^{2} / 4 \pi$ is the color fine－structure con－
stant（ $\alpha_{c}=0.55$ ）；R is the bag radius，later to be eliminated by a boundary condition ${ }^{1,4} ; a$ labels colors and $i(j)$ labels quarks．$\vec{\sigma}_{i}$ and λ_{i}^{a} are the spin and color vectors for the i th quark．To be precise，if i or j indicates an antiquark，the fol－ lowing replacement should be understood：

$$
\begin{align*}
& \sigma_{i} \rightarrow-\sigma_{i}^{*}, \tag{3.6}\\
& \lambda_{i} \rightarrow-\lambda_{i}^{*} .
\end{align*}
$$

M is the magnetic－interaction strength determined by an integral over bag wave functions．It is a function of quark masses．In paper I，we approxi－ mated M as follows：

$$
\begin{equation*}
M\left(m_{i} R, m_{j} R\right) \rightarrow M\left(\frac{n_{s} m_{s}}{N}, \frac{n_{s} m_{s}}{N}\right) \tag{3.7}
\end{equation*}
$$

TABLE I. Magic mixing in $Q^{2} \bar{Q}^{2}$ states.

where n_{s} is the number of strange quarks in the state of being considered, N is the total number of quarks, and m_{s} is the strange-quark mass (270 $\mathrm{MeV}) .{ }^{4} M(\boldsymbol{x}, \boldsymbol{x})$ may be read off of Fig. 3 in paper I. So approximated, M may be removed from beneath the summation.
The products of $\sigma^{k} \lambda^{a}$ are among the generators of $\operatorname{SU}(6)_{\mathrm{cs}}$. The entire algebra is generated by these together with the 8λ matrices and the 3σ
matrices. Specifically, define the generators of $\mathrm{SU}(6)_{\mathrm{cs}}$ as follows:

$$
\{\alpha\}=\left\{\begin{array}{l}
\left(\frac{2}{3}\right)^{1 / 2} \sigma^{k}, \quad k=1,2,3 \tag{3.8}\\
\lambda^{a}, \quad a=1,2, \ldots, 8 \\
\sigma^{k} \lambda^{a} .
\end{array}\right.
$$

The 35α 's generate an $\operatorname{SU}(6)$. They are normalized to $\operatorname{Tr} \alpha^{2}=4$ (we have chosen $\operatorname{Tr} \lambda^{2}=2$ and $\operatorname{Tr} \sigma^{2}=2$
as is conventional). The $\operatorname{SU}(6)$ of the antiquarks is generated by $\left\{-\alpha^{*}\right\}$.
It is straightforward to express Eq. (3.5) in terms of the quadratic Casimir operators of $\operatorname{SU}(2)$, $\operatorname{SU}(3)_{\mathrm{c}}$, and $\operatorname{SU}(6)_{\mathrm{cs}}$:

$$
\begin{align*}
-\sum_{a} \sum_{i>j} \vec{\sigma}_{i} \cdot \vec{\sigma}_{j} \lambda_{i}^{a} \lambda_{j}^{a}= & 8 N+\frac{1}{2} C_{6}(\mathrm{tot})-\frac{4}{3} S_{\mathrm{tot}}\left(S_{\mathrm{tot}}+1\right) \\
& +C_{3}(Q)+\frac{8}{3} S_{Q}\left(S_{Q}+1\right)-C_{6}(Q) \\
& +C_{3}(\bar{Q})+\frac{8}{3} S_{\bar{Q}}\left(S_{\bar{Q}}+1\right)-C_{6}(\bar{Q}) . \tag{3.9}
\end{align*}
$$

The Casimir operators are defined as follows:

$$
\begin{align*}
& C_{6}=\sum_{\mu=1}^{35}\left(\sum_{i=1}^{N} \alpha_{i}^{\mu}\right)^{2}, \tag{3.10}\\
& C_{3}=\sum_{a=1}^{8}\left(\sum_{i=1}^{N} \lambda_{i}^{a}\right)^{2}, \tag{3.11}\\
& 4 S(S+1)=\sum_{k=1}^{3}\left(\sum_{i=1}^{N} \sigma_{i}^{k}\right)^{2} . \tag{3.12}
\end{align*}
$$

The labels Q, \bar{Q}, and tot refer to the representations of the quarks, antiquarks, and the entire system, respectively. The $\operatorname{SU}(2)$ Casimir operator is familiar. The $\operatorname{SU}(3)$ and $\operatorname{SU}(6)$ Casimir operators may readily be evaluated if the $S U(2) \times U(1)$ or $S U(3) \times S U(2)$ content of a given representation is known. Simple formulas for C_{3} and C_{6} are derived in the Appendix. Values for C_{3} and C_{6} for representations of interest are given in Table I.
The systematics of multiquark spectroscopy may be read off from Eq. (3.9). We may enumerate a pair of "Hund's rules" ${ }^{\text {: }}$: The magnetic interaction is most attractive (negative) for states in which

Rule 1. The quarks and antiquarks are separately in the largest possible representations of $\mathrm{SU}(6)_{\mathrm{cs}}$.
Rule 2. C_{6} (tot) is as small as possible.
Generally the Casimirs of $\operatorname{SU}(6)_{\mathrm{cs}}$ dominate Eq. (3.9) because they are larger than those of color or spin (see Table I) for the representations of interest. The spectroscopy is therefore less sensitive to $S_{\text {tot }}, C_{3}(Q), C_{3}(\bar{Q})$, etc. ${ }^{7}$ In Sec. V, we combine these two rules with the requirements of antisymmetrization to establish some general patterns among exotic and cryptoexotic masses.
Armed with Eq. (3.9), we may construct the eigenstates of H_{g}.

1. $[21] \otimes[\overline{21}]$. These are flavor nonets [see Eq. (3.2) and Table II] and (according to Rule 1 above) should contain the lightest $Q^{2} \bar{Q}^{2}$ states. First we must look for color singlets in

$$
\begin{equation*}
[21] \otimes[\overline{21}]=[1] \oplus[35] \oplus[405] \tag{3.13}
\end{equation*}
$$

$\mathrm{SU}(3)_{\mathrm{c}} \times \mathrm{SU}(2)$ decomposition of these reveals the following singlets:

$$
\begin{align*}
& (1,1) \subset[1] \\
& (1,3) \subset[35] \tag{3.14}\\
& (1,1) \text { and }(1,5) \subset[405]
\end{align*}
$$

To apply Eq. (3.9), we must know which $\operatorname{SU}(3)_{c}$ $\times S U(2)$ representations of quarks and antiquarks contribute which total color \times spin multiplet. For total spin 1 and spin 2, this is trivial (see Table II); both must arise from $(6,3) \otimes(\overline{6}, 3)$ since $(\overline{3}, 1)$ $\otimes(3,1)$ can yield only spin 0 . The wave functions of the $J_{\text {tot }}=1$ and $J_{\text {tot }}=2$ states are fixed.

$$
\begin{align*}
& \left.\left|2^{+}, \underline{9} \equiv \equiv\right|(6,3) \underline{\overline{3}} ;(\overline{6}, 3) \underline{3} ;(1,5)[405]\right\rangle, \tag{3.15}\\
& \left|1^{+}, 9\right\rangle \equiv|(6,3) \underline{\overline{3}} ;(\overline{6}, 3) \underline{3} ;(1,3)[35]\rangle . \tag{3.16}
\end{align*}
$$

The corresponding magnetic energies are listed in Table III.
The two spin-0 states are linear combinations of $(\overline{3}, 1) \otimes(3,1)$ and $(\overline{6}, 3) \otimes(6,3)$. Graphical techniques for calculating the coefficients weighting these states have been developed by Mandula. ${ }^{8}$ The application of his methods yields

$$
\begin{align*}
\left|0^{+} \underline{9}[1]\right\rangle= & \left(\frac{6}{7}\right)^{1 / 2}|(6,3) \overline{3} ;(\overline{6}, 3) \underline{3} ;(1,1)\rangle \\
& +\left(\frac{1}{7}\right)^{1 / 2}|(\overline{3}, 1) \overline{3} ;(3,1) \underline{3} ;(1,1)\rangle, \tag{3.17}\\
\left|0^{+} \underline{9}[405]\right\rangle= & \left(\frac{1}{7}\right)^{1 / 2}|(6,3) \overline{3} ;(\overline{6}, 3) \underline{3} ;(1,1)\rangle \\
& -\left(\frac{6}{7}\right)^{1 / 2}|(\overline{3}, 1) \overline{3} ;(3,1) \underline{3} ;(1,1)\rangle . \tag{3.18}
\end{align*}
$$

H_{g} mixes these two states. The eigenstates are

$$
\begin{align*}
& \left|0^{+}, \underline{9}\right\rangle=0.972\left|0^{+} \underline{9}[1]\right\rangle+0.233\left|0^{+} \underline{9}[405]\right\rangle, \\
& \left|0^{+}, \underline{9} *\right\rangle=0.233\left|0^{+} \underline{9}[1]\right\rangle-0.972\left|0^{+} \underline{9}[405]\right\rangle \tag{3.20}
\end{align*}
$$

The eigenvalues are collected in Table III. Notice

TABLE III. Magnetic interaction energies of $Q^{2} \bar{Q}^{2}$ cigenstates.

State	Wave function	Magnetic interaction energy $\left(R H_{g} / \alpha_{c} M\right)^{a}$
$\left\|0^{+} \underline{9}\right\rangle$	Eq. (3.19)	-43.36
$\left\|0^{+} \underline{36}\right\rangle$	Eq. (3.27)	-19.37
$\left\|0^{+} \underline{9}^{*}\right\rangle$	Eq. (3.20)	-1.97
$\left\|0^{+} \underline{36}^{*}\right\rangle$	Eq. (3.28)	22.03
$\left\|1^{+} 9\right\rangle$	Eq. (3.16)	-16
$\left\|1^{+} \underline{36}\right\rangle$	Eq. (3.24)	0
$\left\|1^{+} \underline{\overline{18}}\right\rangle$	Eq. (3.33)	$-\frac{40}{3}$
$\left\|1^{+} \underline{\overline{18}} *\right\rangle$	Eq. (3.34)	$\frac{32}{3}$
$\left\|2^{+} \underline{9}\right\rangle$	Eq. (3.15)	$\frac{32}{3}$
$\left\|2^{+} \underline{36}\right\rangle$	Eq. (3.23)	$\frac{32}{3}$

${ }^{a}$ This is the eigenvalue of the operator of Eq. (3.9).
that the lighter state (9) is predominantly [1] as dictated by Rule 2. The small admixture of [405] comes about through the effect of spin and color within color-spin eigenstates.
2. $[15] \otimes[\overline{15}]$. These multiplets should be relatively heavy and contain truly exotic members. The calculation is analogous to $[21] \otimes[\overline{21}]$:

$$
\begin{equation*}
[15] \otimes[\overline{15}]=[1] \oplus[35] \oplus[189] \tag{3.21}
\end{equation*}
$$

with color singlets as follows:

$$
\begin{align*}
& (1,1) \subset[1] \\
& (1,3) \subset[35] \\
& (1,1) \text { and }(1,5) \subset[189] \tag{3.22}
\end{align*}
$$

The spin-1 and spin-2 states are trivial; they are formed uniquely from $(\overline{3}, 3) \otimes(3,3)$,

$$
\begin{align*}
& \left|2^{+}, \underline{36}\right\rangle \equiv|(\overline{3}, 3) \underline{6} ;(3,3) \underline{\overline{6}} ;(1,5)[189]\rangle \tag{3.23}\\
& \left|1^{+}, \underline{36}\right\rangle \equiv|(\overline{3}, 3) \underline{6} ;(3,3) \underline{\overline{6}} ;(1,3)[35]\rangle \tag{3.24}
\end{align*}
$$

The two spin-0 states are linear combinations of $(\overline{3}, 3) \otimes(3,3)$ and $(6,1) \otimes(\overline{6}, 1)$. Using Mandula's ${ }^{8}$ methods

$$
\begin{align*}
\left|0^{+} \underline{36}[1]\right\rangle= & \left(\frac{3}{5}\right)^{1 / 2}|(\overline{3}, 3) \underline{6} ;(3,3) \underline{\overline{6}} ;(1,1)\rangle \\
& +\left(\frac{2}{5}\right)^{1 / 2}|(\underline{6}, \underline{1}) \underline{6} ;(\overline{6}, \underline{1}) \underline{\overline{6}} ;(1,1)\rangle, \tag{3.26}\\
\left|0^{+} 36[189]\right\rangle= & \left(\frac{2}{5}\right)^{1 / 2}|(\overline{3}, 3) \underline{6} ;(3,3) \underline{6} ;(1,1)\rangle \\
& \quad-\left(\frac{3}{5}\right)^{1 / 2}|(6,1) \underline{6} ;(\overline{6}, 1) \underline{6} ;(1,1)\rangle .
\end{align*}
$$

Once again these are mixed by H_{g} :

$$
\begin{align*}
\left|0^{+}, \underline{36}\right\rangle= & -0.998\left|0^{+} \underline{36}[1]\right\rangle \\
& +0.063\left|0^{+} \underline{36}[189]\right\rangle \tag{3.27}\\
\left|0^{+}, \underline{36} *\right\rangle= & 0.063\left|0^{+} \underline{36}[1]\right\rangle \\
& +0.998\left|0^{+} \underline{36}[189]\right\rangle . \tag{3.28}
\end{align*}
$$

The magnetic-interaction matrix elements for all these states may be found in Table III.
3. $[15] \otimes[\overline{21}]$ and $[21] \otimes[\overline{15}]$. The multiplets are related by charge conjugation. We discuss [21] $\otimes[\overline{15}]$ and obtain results for $[15] \otimes[\overline{21}]$ by inspection:

$$
\begin{equation*}
[21] \otimes[\overline{15}]=[35] \oplus[280] \tag{3.29}
\end{equation*}
$$

The overall color singlets are

$$
\begin{align*}
& (1,3) \subset[35] \tag{3.30}\\
& (1,3) \subset[280]
\end{align*}
$$

which are linear combinations of $(6,3) \otimes(\overline{6}, 1)$ and $(\overline{3}, 1) \otimes(3,3)$

$$
\begin{align*}
\left|1^{+} \overline{18}[35]\right\rangle= & \left(\frac{1}{3}\right)^{1 / 2}|(\overline{3}, 1) \overline{3} ;(3,3) \overline{6} ;(1,3)\rangle \\
& -\left(\frac{2}{3}\right)^{1 / 2}|(6,3) \overline{3} ;(6,1) \overline{6} ;(1,3)\rangle, \tag{3.31}
\end{align*}
$$

$$
\begin{align*}
\left|1^{+} \overline{18}[280]\right\rangle= & \left(\frac{2}{3}\right)^{1 / 2}|(\overline{3}, 1) \overline{3} ;(3,3) \overline{6} ;(1,3)\rangle \\
& +\left(\frac{1}{3}\right)^{1 / 2}|(6,3) \underline{3} ;(6,1) \underline{6} ;(1,3)\rangle, \tag{3.32}
\end{align*}
$$

which in turn are mixed to produce eigenstates of H_{g} :

$$
\begin{align*}
& \left|\underline{1}^{+}, \overline{18}\right\rangle=\frac{2 \sqrt{2}}{3}\left|1^{+} \underline{18}[35]\right\rangle-\frac{1}{3}\left|1^{+} \underline{18}[280]\right\rangle \tag{3.33}\\
& \left|1^{+}, \overline{18} *\right\rangle=\frac{1}{3}\left|1^{+} \underline{18}[35]\right\rangle+\frac{2 \sqrt{2}}{3}\left|1^{+} \underline{18}[280]\right\rangle \tag{3.34}
\end{align*}
$$

The wave functions for the states in $[15] \otimes[\overline{21}]$ are obtained from Eqs. (3.29) - (3.34) by interchanging quarks and antiquarks. The reader should keep in mind that these two sets of states will be mixed by the available decay channels. The magnetic-interaction energies tabulated in Table III complete the information necessary to calculate $Q^{2} \bar{Q}^{2}$ masses. The recipe for masses is reviewed in paper I and discussed in detail in Ref. 4.

IV. RECOUPLING TO DECAY CHANNELS

The decays of $Q^{2} \bar{Q}^{2} S$-wave mesons are expected to be dominated by S-wave $(Q \bar{Q})(Q \bar{Q})$ channels into which they simply "fall apart" or "dissociate". ${ }^{1}$ To estimate decay amplitudes, we transform from the $Q^{2} \bar{Q}^{2}$ basis of the previous section to a $(Q \bar{Q})(Q \bar{Q})$ basis. The techniques for constructing these recoupling matrices are well known. The cases of interest to us have not been written down previously (to our knowledge) because the Q^{2} and \bar{Q}^{2} channels are separately unphysical.

The calculation is conveniently performed in two steps: First one recouples the color and the spin; then one recouples the flavor, remembering the mixing induced by diagonalizing n_{s}.

A. Color and spin

The crossing matrices for color and spin separately are given in Tables IV and V. The recoupling of H_{g} eigenstates is obtained by combining the wave functions of the last section with the recoupling coefficients in Tables IV and V. The results, presented in Tables IV, V, and VI of paper I, express $Q^{2} \bar{Q}^{2}$ eigenstates as linear combinations of $Q \bar{Q}$ mesons of definite color and spin. ${ }^{9}$

Notice that the lightest $Q^{2} \bar{Q}^{2}$ state of each total spin recouples most strongly to the two lightest $Q \bar{Q}$ states available (see Tables IV-VI, Ref. 1). For example, the lightest $0^{+},\left|0^{+} 9\right\rangle$ is predominantly two color-singlet pseudoscalars. This is to be

TABLE IV. Crossing matrix for color.

	$\left\|(Q \bar{Q})^{1}(Q \bar{Q})^{1}\right\rangle^{1}$	$\left\|(Q \bar{Q})^{8}(Q \bar{Q})^{8}\right\rangle^{1}$
$\left\|\left(Q^{2}\right)^{6}\left(\bar{Q}^{2}\right)^{\overline{6}}\right\rangle^{1}$	$\left[\left(\frac{2}{3}\right)^{1 / 2}\right.$	$-\left(\frac{1}{3}\right)^{1 / 2}$
$\left\|\left(Q^{2}\right)^{\overline{3}}\left(\bar{Q}^{2}\right)^{3}\right\rangle^{1}$	$\left(\frac{1}{3}\right)^{1 / 2}$	$\left.+\left(\frac{2}{3}\right)^{1 / 2}\right]$

expected in order that H_{g} be minimized. It has important phenomenological consequences.

B. Flavor

The $S U(3)$ crossing matrix is given in Table VI. Were it not for the mixing of multiplets induced by the strange-quark mass, the flavor-recoupling coefficients could be read off Table VI, together with any standard table of $S U(3)$ isoscalar factors. ${ }^{10}$ We have rewritten mixed states as linear combinations of $\mathrm{SU}(3)_{\mathrm{f}}$ eigenstates in Table II. Tables II and VI, together with the isoscalar factors of de Swart ${ }^{10}$ enable us to construct the relevant recoupling coefficients. The results were given in Figs. 6-8 of Ref. 1. These provide a check on the magic mixing described in Table II; the number of s and \bar{s} quarks is conserved in fall-apart decays.

V. GENERAL FEATURES OF MULTIQUARK SPECTRA

Hadron masses are roughly linear in the number of quarks plus antiquarks. Without dynamical input, we would expect often to find a multiquark state $\left(Q^{m} \bar{Q}^{n}\right)$ less massive than the ordinary $(Q \bar{Q}$ or Q^{3}) hadrons into which it might decay. No narrow exotics are known. This was the problem posed at the outset of Ref. 1 which originally led us into this subject. Studying $Q^{2} \bar{Q}^{2}$ mesons, we found no narrow exotics. Instead we found broad
heavy exotics and a low-spin cryptoexotic nonet. Many states in the nonet contain "hidden" $s \bar{s}$ pairs which make them heavy and coupled to strange particles.

This is a general phenomenon. The systematics of the color-spin interaction is such that for any $Q^{n} \bar{Q}^{m}$ sector of the quark-bag model (1) the lightest multiplets are generally not exotic; (2) they are low-spin cryptoexotic states with many s or \bar{s} quarks, making them heavier and coupled predominantly to obscure channels (involving hyperons, K 's, η 's, etc.). The exceptions occur when n or m is a multiple of 3 , where the situation is more complicated.
The argument goes as follows: According to Eq. (3.9) (and Rule 1), maximizing $C_{6}(Q)$ and $C_{6}(\bar{Q})$ minimizes the mass. This generally selects $\mathrm{SU}(6)_{\mathrm{cs}}$ representations in which the maximum number of quarks (or antiquarks) are symmetrized. ${ }^{11}$ "Horizontal" $\operatorname{SU}(6)_{\mathrm{cs}}$ Young tableaux are favored. Antisymmetry requires the $\mathrm{SU}(3)_{\mathrm{f}}$ Young tableau to be conjugate-as antisymmetric as possible. In fact, the largest $\mathrm{SU}(6)_{\mathrm{cs}}$ Casimir operator is associated with a $\underline{3}$ or $\underline{\overline{3}}$ of flavor (with the noted exception). ${ }^{11}$ Exotics are associated with less symmetric $\mathrm{SU}(6)_{\mathrm{cs}}$ representations and are consequently heavier.

Furthermore, a nonet made from many quarks and antiquarks $(n+m>4)$ must contain triplets of Q 's and \bar{Q} 's coupled to flavor singlets [$Q(u d s)$ or $Q(\bar{u} \bar{d} \bar{s})]$. Consequently the states generally contain hidden $s \bar{s}$ pairs. This elevates them to higher mass (not only are the s quarks heavier but also their magnetic interactions are weaker) and dictates that they couple (fall apart) predominantly into strange particles.

Rule 2 selects small representations of total color-spin. These generally contain only low-spin states. The lightest nonet will have low spin.

TABLE V. Crossing matrices for spin.

		$\left\|(Q \bar{Q})^{3}(Q \bar{Q})^{3}\right\rangle^{1} \quad \mid(Q \bar{Q}$	$\left\|(Q \bar{Q})^{1}(Q \bar{Q})^{1}\right\rangle^{1}$
	$\begin{aligned} & \left\|\left(Q^{2}\right)^{3}\left(\bar{Q}^{2}\right)^{3}\right\rangle^{1} \\ & \left\|\left(Q^{2}\right)^{1}\left(\bar{Q}^{2}\right)^{1}\right\rangle^{1} \end{aligned}$	$\left[\begin{array}{l}\left(\frac{1}{4}\right)^{1 / 2} \\ \left(\frac{3}{4}\right)^{1 / 2}\end{array}\right.$	($\left.\frac{3}{4}\right)^{1 / 2}$-($\left.\left.\frac{1}{4}\right)^{1 / 2}\right]$
	$\left\|(Q \bar{Q})^{3}(Q \bar{Q})^{3}\right\rangle^{3}$	$3 \quad\left\|(Q \bar{Q})^{3}(Q \bar{Q})^{1}\right\rangle^{3}$	${ }^{3} \quad\left\|(Q \bar{Q})^{1}(Q \bar{Q})^{3}\right\rangle^{3}$
$\begin{aligned} & \left\|\left(Q^{2}\right)^{3}\left(\bar{Q}^{2}\right)^{3}\right\rangle^{3} \\ & \left\|\left(Q^{2}\right)^{3}\left(\bar{Q}^{2}\right)^{3}\right\rangle^{3} \\ & \left\|\left(Q^{2}\right)^{1}\left(\bar{Q}^{2}\right)^{3}\right\rangle^{3} \end{aligned}$			$-\left(\frac{1}{2}\right)^{1 / 2} 7$
	$\left(\frac{1}{2}\right)^{1 / 2}$	$-\frac{1}{2}$	$-\frac{1}{2}$
	$\left(\left(\frac{1}{2}\right)^{1 / 2}\right.$	$\frac{1}{2}$	$\frac{1}{2}$
		$\left\|(Q \bar{Q})^{3}(Q \bar{Q})^{3}\right\rangle^{5}$	
	$\left.\left.\mid\left(Q^{2}\right)^{3} \bar{Q}^{2}\right)^{3}\right\rangle^{5}$	(1)	

TABLE VI. Crossing matrices for flavor.

Higher-spin nonets are heavier.
The $Q^{2} \bar{Q}^{2}$ states of Ref. 1 are a case in point. Another important example are the $Q^{4} \bar{Q}$ baryons. ${ }^{12}$ The lightest multiplet is a $\frac{1}{2}^{-}$nonet of the form

$$
\begin{equation*}
B_{i j}=Q(u d s) Q_{i} \bar{Q}_{j} \tag{5.1}
\end{equation*}
$$

Were the strange quark massless, the nonet would lie at about 1200 MeV -embarrassingly low. Unlike a Q^{3} nonet, the $S=0$ isodoublet contains an $s \bar{s}$ pair making it heavier ($1600-1700 \mathrm{MeV}$) and coupled predominantly to channels like $K \Sigma, \eta N$, and $K \Lambda$, not πN as one would naively expect. Truly exotic $Q^{4} \bar{Q}$ baryons are more massive.
The moral of this section is that simple gluon exchange may provide a systematic dynamical explanation for the failure to observe relatively narrow multiquark hadrons in familiar channels. Perhaps the light 0^{+}mesons are $Q^{2} \bar{Q}^{2}$ states. Further tests of the model await detailed calculations of other channels (e.g., $Q^{4} \bar{Q}, Q^{3} \bar{Q}^{3}, \ldots$) and more experimental input.

ACKNOWLEDGMENTS

The author wishes to thank Ken Johnson for his collaboration on the early phases of this work and for many fruitful conversations subsequently.

Thanks are also due Jeff Mandula for patient explanations of his graphical techniques for grouprepresentation theory.

APPENDIX

It is particularly easy to calculate the quadratic Casimir operator C_{n} for a given representation of $\mathrm{SU}(n)$ if the $\mathrm{SU}(2)$ content of the representation is known. [$\mathrm{SU}(n)$ always contains an $\mathrm{SU}(2)$ subgroup.] As an example, consider $\operatorname{SU}(6)$:

$$
C_{6}=\sum_{\mu=1}^{35} \alpha_{\mu}{ }^{2}
$$

Take the trace of C_{6} in the representation $[R]$ of $\operatorname{SU}(6)\left(N_{R}\right.$-dimensional)

$$
\begin{equation*}
N_{R} C_{6}[R]=\sum_{\mu=1}^{35} \operatorname{Tr}{\alpha_{\mu}}^{2} . \tag{A1}
\end{equation*}
$$

All traces are identical:

$$
\begin{equation*}
C_{6}[R]=\frac{35}{N_{R}} \operatorname{Tr} \alpha_{\nu}{ }^{2} \tag{A2}
\end{equation*}
$$

Choose ν to be the third generator of the $\operatorname{SU}(2)$ subgroup

$$
\begin{align*}
C_{6}[R] & =\frac{70}{3 N_{R}} \operatorname{Tr} \sigma_{z}^{2} \tag{A3}\\
& =\frac{70}{3 N_{R}} \sum_{j} d_{j} \operatorname{Tr}_{j} \sigma_{z}^{2} \tag{A4}
\end{align*}
$$

The sum on j covers all $\mathrm{SU}(3) \times \mathrm{SU}(2)$ representations contained in $[R] . d_{j}$ is the dimension of the $\mathrm{SU}(3)$ representation. An analogous calculation for $\mathrm{SU}(2)$ itself gives

$$
\begin{equation*}
\operatorname{Tr}_{s} \sigma_{z}^{2}=\frac{4(2 s+1) s(s+1)}{3} \tag{A5}
\end{equation*}
$$

in a representation with spin s. Finally, then,

$$
\begin{equation*}
C_{6}[R]=\frac{280}{9 N_{R}} \sum_{j} d_{j}\left(2 s_{j}+1\right) s_{j}\left(s_{j}+1\right) \tag{A6}
\end{equation*}
$$

The analogous calculation for $\mathrm{SU}(3)$ makes use of the isospin subgroup:

$$
\begin{equation*}
C_{3}(R)=\frac{32}{3 N_{R}} \sum_{k}\left(2 I_{k}+1\right) I_{k}\left(I_{k}+1\right), \tag{A7}
\end{equation*}
$$

where the sum extends over all isospin multiplets in the given $\operatorname{SU}(3)$ representation.
*This work is supported in part through funds provided by the Energy Research and Development Administration under Contracts Nos. AT(11-1)-3069 and E(04-3)515.
\dagger A. P. Sloan Foundation Fellow, on leave from Massachusetts Institute of Technology,
${ }^{1}$ R. L. Jaffe, preceding paper, Phys. Rev. D 15, 267 (1977).
${ }^{2}$ A. Chodos, R. L. Jaffe, K. Johnson, C. B. Thorn, and V. F. Weisskopf, Phys. Rev. D $\underline{9}, 3471$ (1974).
${ }^{3}$ A. Chodos, R. L. Jaffe, K. Johnson, and C. B. Thorm, Phys. Rev. D 10, 2599 (1974).
${ }^{4}$ T. DeGrand, R. L. Jaffe, K. Johnson, and J. Kiskis, Phys. Rev. D 12, 2060 (1975).
${ }^{5}$ Hypercharge ± 1 members would mix in the $\mathrm{SU}(3)_{\mathrm{f}}$ limit to diagonalize $\mathrm{SU}(3)$ parity. Since this is presumably violated in decays, we ignore it here. See footnote of Ref. 1 for an explicit example.
${ }^{6}$ F. Hund, Linienspektren und Periodisches System der Elemente (Springer, Berlin, 1927), p. 124.
${ }^{7}$ Often the limitations of the $\operatorname{SU}(3)_{c} \times \operatorname{SU}(2)$ content of an $\mathrm{SU}(6)_{\text {cs }}$ representation prevent the color and spin Casimir operators from playing any role at all. For example, in [21] $\otimes[21]$ the $J_{\text {tot }}=2$ state occurs in [405]
while one $J_{\text {tot }}=0$ state occurs in [1]. The difference between $C_{6}(1)$ and $C_{6}(405)$ overwhelms the effect of the difference in $J_{\text {tot }}$.
${ }^{8} \mathrm{~J}$. Mandula, private communication.
${ }^{9}$ It is essential that the phases of Tables IV and V be defined consistently with those of the mixed states of Sec. III. We have checked this internal consistency.
${ }^{10}$ J. J. de Swart, Rev. Mod. Phys. 35, 916 (1963).
${ }^{11}$ Only $\mathrm{SU}(6)_{\mathrm{cs}}$ tableaux of three columns or less can be combined with $\mathrm{SU}(3)_{\mathrm{f}}$ tableaux antisymmetrically. Denote a tableau (n_{1}, n_{2}, n_{3}) by the number of boxes in each column. For a fixed number of boxes, N, the dimension (and hence C_{6}) is maximized when the differences $n_{i}-n_{j}$ are minimized. The exception is the case $N=3 n$; the tableau (n, n, n) has smaller dimension than $(n+1, n, n-1)$. For example, if $n=1$, the tableau $(1,1,1)$ has $d=56$ while $(2,1,0)$ has $d=70$. Consequently the lowest flavor configuration in $Q^{3} \bar{Q}^{3}$ is $\underline{8} \otimes \underline{8}$ rather than $1 \otimes 1$.
${ }^{12}$ R. L. Jaffe, invited paper presented at the Topical Conference on Baryon Resonances, 1976, Oxford [Stanford Linear Accelerator Center Report No. SLAC-PUB1774 (unpublished)].

