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Techniques for estimating the masses and decay couplings of multiquark hadrons

(Q@™Q", n+m>3) are developed with specific reference to the Q2@ 2 sector. The dynamics

is based on a quark-bag model of light, colored, and permanently confined quarks gauge-
coupled to non-Abelian colored gluons. The SU(6) of “color-spin” generated by color SU (3)
and the SU (2) of relativistic j =% quarks dominates the spectrum. Color-spin rules analogous
to Hund’s rules of atomic spectroscopy dictate that the lightest multiquark hadrons are not
exotic, are of low spin, and are coupled predominantly to strange @* and Q@ decay channels.
Multiquark hadrons are consequently elusive and may be misclassified as conventional QQ

mesons or Q3 baryons.

I. INTRODUCTION

In a previous paper' we presented the phenom-
enology of two-quark, two-antiquark hadrons in a
quark-bag model. The discussion was based on a
phenomenological Hamiltonian describing light, S-
wave, colored quarks weakly coupled to massless
colored gluons, all confined to the interior of a
bag. Two major technical questions were left un-
answered in Ref. 1 (referred to hereafter as I):
First, how is the phenomenological Hamiltonian
diagonalized in the space of color-flavor-spin
eigenstates, and second, how are the couplings to
dissociation decay channels calculated? These
are the subjects of the present paper.

Although we deal specifically with @2@?2 mesons,
some effort is made to develop techniques applic-
able to all multiquark (@™@"; n+m > 3) S-wave ha-
drons. In particular, we introduce SU(6).s [the
SU(6) generated by color and the relativistic
“spin” of S-wave quarks] in order to diagonalize
the gluon interaction terms in the Hamiltonian.
The qualitative effects of the gluon interactions
are summarized by analogs of Hund’s rules, which
single out spectroscopically prominent multiquark
configurations on the basis of color-spin [SU(6) ]
quantum numbers. They enable us to make gen-
eral arguments why multiquark hadrons are less
prominent than might naively be expected.

The paper is organized as follows: In Sec. II we
introduce the necessary symmetry groups and de-
fine a convenient notation for the remainder of the
paper. In Sec. III we construct eigenstates of the
bag Hamiltonian. First we diagonalize the flavor
content of relevant SU(3) representations. This is
the analog of the (trivial) “magic mixing” of w and
¢ in the Q@ sector. Secondly, the gluon exchange
interaction must be diagonalized in a basis of ma-
gically mixed flavor states. This leads us to in-
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troduce SU(6)s. Rules are given for spectrosco-
pically important states. In Sec. IV we summarize
the recoupling transformations which determine
amplitudes for dissociation decays. In Sec. V we
return to the SU(6).s formalism and show that the
rules of Sec. III reduce the spectroscopic import-
ance of multiquark states in general. A simple
expression for the quadratic Casimir operator of
SU(3) or SU(6) is derived in the Appendix.

II. SYMMETRIES, SYMMETRY BREAKING, AND NOTATION

Our quarks carry three labels***: color [SU(3),
flavor [SU(3)¢], and spin [SU(2)]. Color is gauged,
unbroken, and confined. Flavor is not gauged,
broken by giving the strange quark a small mass
and leaving the up and down quarks massless, and of
course not confined. Spin is not actually spin at
all but rather the SU(2) generated by the angular
momentum of fully relativistic quarks in S-wave
modes in a cavity. Neither L nor S is conserved
in a relativistic quark model. Nevertheless, if
we fix our attention on the j =3 (S-wave) sector of
the theory, the algebra generated by the states
and their currents is an SU(2).

As discussed in I, the phenomenological Hamil-
tonian (H) includes a kinetic energy term diagonal
in eigenstates of the strange-quark number (n)
and independent of color and spin, and a gluon in-
teraction term which is approximately diagonal in
eigenstates of ng but mixes color and spin repre-
sentations. The eigenstates of H are therefore
characterized by the following quantum numbers
(in the Q2Q? sector):

1. the flavor multiplet of the two quarks, de-
noted 3 or g, and of the two antiquarks, denoted
3 or 6,— B
" 2. the SU(6).s multiplet of the two quarks, de-
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noted [15] or[21], and of the two antiquarks, de-
noted [15] or[21];

3. the total spin, labeled by 2J +1, of the quarks
and antiquarks together;

4. the total color, which is always a singlet, of
the quarks and antiquarks together.

It is important to understand why the other ob-
vious quantum numbers are not diagonal. The
total flavor is not a good quantum number because
of magic mixing. For example, many states in the
1, 8, and 27 (which result from 6® 6) are mixed
to dlagonahze the number of s quarks Generally
only the states at the periphery of weight diagrams
(e.g., the I=2 multiplet in 27) are pure SU(3);
eigenstates. -

Total SU(6)., multiplets are mixed by the gluon
interactions. For example

[21]®[21] =[1]®[35]®[405] . (2.1)

The SU(3). X SU(2) decomposition of these shows
that total color singlets with J =0 occur in both the
[1] and [405] representations of SU(6),,. The gluon
interactions mix these multiplets.

Eigenstates of total SU(6),, color, and spin for
Q2@? are mixtures of color and spin representa-
tions of quarks and antiquarks separately. Again
an example clarifies matters. The (1] in [21]®[21]
is a linear combination of (6, 3)(6, 3) and (3, 1)(3, 1).
(The notation is [d.(@),2j¢ +1J[dC(Q), 275 +1]. de
is the dimension of a color multiplet, 2j +1 is the
dimension of a spin multiplet.) Clearly both
(6,3)(6,3) and (3, 1)(3, 1) can be coupled to total
color and spin singlets. The (1, 1) in [405) is the
orthogonal linear combination.

To summarize the notation introduced above:

[d.] denotes SU(6)., multiplets labeled by their
dimension.

(de,2j +1) denotes SU(3), X SU(2) multiplets la-
beled by their color and spin dimensions.

dy denotes flavor multiplets by their dimension.

It will always be apparent from context whether
the notation refers to quarks, antiquarks, or both
taken together. For reference, the SU(6) repre-
sentations available to @2, @2, and Q2Q? are sum-
marized in Table I. Generally states will be la-
beled with quark quantum numbers, antiquark
quantum numbers, and overall quantum numbers,
in that order. We will often suppress labels when
they are unnecessary. Specifically, antisymme-
trization fixes the flavor once the SU(6). repre-
sentation is chosen, so we often suppress flavor
labels. Also, @2 (or @2) SU(3). X SU(2) multiplets
belong to unique SU(6), representations (see Table
I) so we may suppress SU(6). labels if the SU(3).
X SU(2) representation is given.
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IIl. EIGENSTATES AND INTERACTION ENERGIES

Consider first the requirements of antisymme-
trization. Quarks are [6] in SU(6),, thus

[6]®[6] = [15] @ [21] (3.1)

are representations for @2. The flavor states
available to two quarks are 3 and 6. In both cases
the smaller representation is antlsymmetnc, the
larger is symmetric. Antiquarks are in conjugate
representations. There are four antisymmetric
combinations:

[21]3®[21]3 , (3.2a)
(15]6®[15]6 (3.2b)
[15]6®[21]3 , (3.2¢)
[21]3®[15]6 . (3.2d)

In addition to being antisymmetrized, these multi-
plets are not mixed by the gluon interactions.

A. Magic mixing
The flavor multiplets in Egs. (3.2a)—(3.2d) mix
to diagonalize the strange-quark content. The
problem is familiar from the QQ sector
nm-n",w-0¢,f -f') where I=Y =0 octet and singlet
members mix. Typically

775 = (}i)l/zni_ (%)1/27'5 ’
=)0, +&)*n,

(3.3)

where 7, and 7, are singlet and octet members,
while 7, “and 74 “contain zero or two strange quarks,
respectively. The mixing in the 3® 3 of Q2 Q% is
exactly opposite to that in the 3® 3 of QQ [compare
Eq. (3.3) with Table II]. This has important phe-
nomenological implications.*

The mixing matrices for the four SU(3); multi-
plets of Eq. (3.2) are given in Table II. The ma-
gically mixed states are given as linear continua-
tions of SU(3)¢ eigenstates. The 6® 3 representa-
tion and its conjugate cause specxal problems The
flavor octets in 3® 6 and 6® 3 individually are not
eigenstates of G parlty Approprlate linear com-
binations yield an j-type octet §_f and a d-type octet
8, which have different hadronic decays and may
have quite different physical masses though in our
(zero-width) approximation they remain degener-
ate. The hypercharge-zero members of 6®3 and
3® E mix to diagonalize G parity®:

C= 7rlc. 187 C,@@) |

Cs,,*=f[ +18)F C7( 18)] (3.4)
1

ot = leo (1) C*(18)] -
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TABLE 1. SU(6) and SU(3) representations for @2 and @2 sectors (@2 representations are
obtained from Q2 representations by interchanging quarks and antiquarks and drawing con-

jugate tableaux).

SU(6) representations

Eigenvalue
Young SU(3) X SU(2) of Casimir
Sector tableau Dimension content operator
Q%2 m 21 6,3), 3,1 160/3
B 15 6,1, 3,3 112/3
Q?Q? E 1 (1,1) 0
aﬂ 35 (1,3), (8,1), (8,3) 48
189 1,1, (1,5), 8,1), 2(8,3), 80
(8,5), (10,3), (10,3), (27,1)
| 405 1,1, 1,5, 8,1, 2(6,3), 112
an (8,5), (10,3), (10,3), (27,1),
1] (27,3), (27,5)
280 (1,3), (8,1), 2(8,3), (8,5), 96
E (10,1), (10,3), (10,5), (10, 1),
27,3)
SU(3) representations
Eigenvalue
of Casimir
Sector Tableau Dimension operator
Qe m 6 40/3
E 3 16/3
Q2Q2 ﬁ 1 0
8 12

i

3Q? representations are obtained by interchanging quarks and antiquarks and drawing

conjugate tableaux.

The names of states are defined in Figs. 6-8 of
paper I, and for the most part also in Table II.
This mixing will figure in the calculation of decay
couplings.

B. Diagonalizing the gluon interaction

The spectroscopically important interaction be-
tween quarks (aside from the interaction with the
bag which provides confinement and sets the over-
all scale) is the spin-spin force mediated by one
gluon exchange. The gluon interaction Hamilto-
nian is given by*

8
He==- 22 2.0 Gr@XXM(mR, mR) ,  (3.5)

a=1 i>§

where a, = g°/4n is the color fine-structure con-

stant (o, =0.55); R

is the bag radius, later to be

eliminated by a boundary condition"*; a labels
colors and i (j) labels quarks. §; and Aj are the
spin and color vectors for the ¢th quark. To be
precise, if ¢ or j indicates an antiquark, the fol-
lowing replacement should be understood:

0y~ =0f,

A~ =AF .

M is the magnetic-

(3.6)

interaction strength determined

by an integral over bag wave functions. It is a

function of quark masses. In paper I, we approxi-

mated M as follows:

MOm R, )= v (e, Pl 6.
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TABLE 0. Magic mixing in Q2Q? states.

@383
Number of
Isospin Hypercharge Name! 1 8 sS pairs
0 0 ¢’ PV - 0
0 0 ot @G 1
(b) 6®86
Number of
Isospin Hypercharge Name! 27 8 1 s pairs
0 0 Cc°(36) (&)1 (2)1/2 (%)1/2 0
0 0 cee (B G P 1
0 0 e (HYE - HvE L 2
1 0 Cr (36) G (e 0 0
1 0 cgee)  (HYE - hHE 0 1
1 £1 e (BT Y o 0
3 £1 iy —(HYVr (e 0 1
(c) 6®3
Number of
Isospin Hypercharge Name! 8 10 ST pairs
1 0 C, (18) (22 _L 0
w18 5 7
1 0 CE(18) (H2 %)t 1
1 1 Cs(18) 211/2 1 1
F) K\ =2 (3) 73
7 -1 Cr (18) (§H1/2 &Y 0
(@3®8
_ Number of
Isospin Hypercharge Name! _8_ 10 SS pairs
. 1
1 0 C, (18) (212 -5 0
1 0 G @) ($)V? B 1
1 1 c (18 2)1/2 1 1
2 K __) (5 V3
b 1 Cr 18) BN - @ 0

where ng is the number of strange quarks in the

state of being considered, N is the total number of

quarks, and my is the strange-quark mass (270
MeV).* M(x,x) may be read off of Fig. 3 in paper
I. So approximated, M may be removed from be-

neath the summation.

The products of o*\* are among the generators
of SU(6),. The entire algebra is generated by
these together with the 8 A matrices and the 3 ¢

matrices. Specifically, define the generators of
SU(6),, as follows:

(3)V20*, k=1,2,3
fa} = 2, a=1,2, ...,8

ot .

(3.8)

The 35 a’s generate an SU(6). They are normalized
to Tra®=4 (we have chosen TrA*=2 and Tro%=2
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as is conventional). The SU(6) of the antiquarks is
generated by {- a*}.

It is straightforward to express Eq. (3.5) in
terms of the quadratic Casimir operators of SU(2),
SU(3),, and SU(6):

=307 G T ANNE =8N +5C,(tot) = 2 S0 (Sie+ 1)
a i>§f
“’Cg(Q) +_§sq (Sq +1) —CS(Q)
+C,@) +255(S5 +1) -C,@) .
(3.9)
The Casimir operators are defined as follows:

Cy= i(i ai’)z, (3.10)
N 2
Ci= <E x‘:) , (3.11)
A
48 +1)=y, (}: o§> : (3.12)

The labels @, @, and tot refer to the representa-
tions of the quarks, antiquarks, and the entire
system, respectively. The SU(2) Casimir opera-
tor is familiar. The SU(3) and SU(6) Casimir op-
erators may readily be evaluated if the SU(2) % U(1)
or SU(3) X SU(2) content of a given representation
is known. Simple formulas for C; and C4 are de-
rived in the Appendix. Values for C, and C, for
representations of interest are given in Table I.

The systematics of multiquark spectroscopy may
be read off from Eq. (3.9). We may enumerate a
pair of “Hund’s rules”®: The magnetic interaction
is most attractive (negative) for states in which

Rule 1. The quarks and antiquarks are separ-
ately in the largest possible representations of
SU(6).s.

Rule 2. C(tot) is as small as possible.

Generally the Casimirs of SU(6). dominate Eq.
(3.9) because they are larger than those of color
or spin (see Table I) for the representations of
interest. The spectroscopy is therefore less sen-
sitive to S, C4@), C;@), etc.” In Sec. V, we
combine these two rules with the requirements of
antisymmetrization to establish some general pat-
terns among exotic and cryptoexotic masses.

Armed with Eq. (3.9), we may construct the
eigenstates of H,.

1. R1]®R1]. These are flavor nonets [see Eq.
(3.2) and Table II] and (according to Rule 1 above)
should contain the lightest @2@? states. First we
must look for color singlets in

[21]®([21] =[1] % [35]® [405] . (3.13)

SU(3), X SU(2) decomposition of these reveals the
following singlets:

1,1nc],

1,3)c[35] , (3.14)

(1,1) and (1, 5)C[405]
To apply Eq. (3.9), we must know which SU(3).
X SU(2) representations of quarks and antiquarks
contribute which total colorX spin multiplet. For
total spin 1 and spin 2, this is trivial (see Table
II); both must arise from (6, 3)® (6, 3) since (3, 1)
® (3,1) can yield only spin 0. The wave functions
of the Jit=1 and J,, =2 states are fixed.

12*,9 = [(6, 3)3; (6, 3)3; (1, 5)[405)]) , (3.15)
11*, 9 = (6, 3)3; (6, 3)3; (1, 3)(35]) . (3.16)

The corresponding magnetic energies are listed in
Table III.

_The two spin-0 states are linear combinations of
(3,1)® (3,1) and (6, 3)® (6,3). Graphical techniques
for calculating the coefficients weighting these
states have been developed by Mandula.® The ap-
plication of his methods yields

[0 9[1]) = €©)/2|(6, 3)3; (6, 3)3; (1, 1))
+@V2(3,1)3; 3, 13; (1,1) ,  (3.17)
|0*9[405]) =&)/[(6, 3)3; (6, 3)3; (1, 1))
-©Y2|(3,1)3;(3,1)3; (1,1)) . (3.18)
H, mixes these two states. The eigenstates are
[0*,9) =0.972[0*9[1]) +0.233]0*9[405]) , (3.19)
[0*,9%) =0.233/079[1]) - 0.972|0*9[405])
. (3.20)

The eigenvalues are collected in Table III. Notice

TABLE III. Magnetic interaction energies of Q%Q?
cigenstates.

Magnetic interaction

State Wave function energy (R Hy/a.M) ?
[0*9) Eq. (3.19) -43.36
|0*36) Eq. (3.27) -19.37
[0*9%) Eq. (3.20) —1.97
[0*36%) Eq. (3.28) 22.03
|17 9) Eq. (3.16) -16
|1*36) Eq. (3.24) 0
|1718) Eq. (3.33) _§’
[1718*) Eq. (3.34) 2

|2 9) Eq. (3.15) 3
|2*36) Eq. (3.23) ?:3-2

4 This is the eigenvalue of the operator of Eq. (3.9).
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that the lighter state (9) is predominantly [1] as
dictated by Rule 2. The small admixture of [405]
comes about through the effect of spin and color
within color-spin eigenstates.

2. [15]®[15]. These multiplets should be rela-
tively heavy and contain truly exotic members.

The calculation is analogous to [21]®[21]:

[15]®[15] =[1]® [35]® [189] , (3.21)
with color singlets as follows:

@, Decf1],

(1,3)c[35] ,

(1,1) and (1, 5)c [189] . (3.22)

The spin-1 and spin-2 states are trivial; they are
formed uniquely from (3, 3)® (3, 3),

|2*,36) = (3, 3)6; (3, 3)6; (1, 5)[189]) ,
1%, 36) =13, 3)6; (3, 3)6; (1, 3)[33)) .

(3.23)
(3.24)

_The two spin-0 states are linear combinations of
(3,3)®(3,3) and (6,1)® (6,1). Using Mandula’s®
methods

|0*36[1]) = ()" (3, 3)6; (3, 3)6; (1, 1))

+(3)2|(6, 1)6; (6, 1)6; (1,1)) ,

ol - (3.26)
|0*36[189]) = (3)"/I(3, 3)8; (3,3)8; (1, 1))
-@)v?|(6, 1)6; (6,1)6; (1, 1)).
Once again these are mixed by H,:

|0*, 36) = -0.998|0*36[1])
+0.063]|0736[189)) , (3.27)

|0*,36%) =0.063]|0*36[1])
+0.998(0*36(189]) . (3.28)

The magnetic-interaction matrix elements for all
these states may be found in Table III.

3. [15]®[21] and [21] ®[15]. The multiplets are
related by charge conjugation. We discuss [21]
®[15] and obtain results for [15]®[21] by inspec-
tion:

[21]®[15] = [35]® [280] . (3.29)
The overall color singlets are
(1,3)c[35] , (3.30)

(1,3)c [280] ,

which are linear combinations of (6, 3)® (6,1) and
(3,1)®(3,3)

[1°18[35]) =(3)¥?(3, 1)3; (3, 3)6; (1, 3))
-(3)V2|(6, 3)3; (6, 1)6; (1, 3))
(3.31)
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|1+18[280]) = (3)"/%/(3, 1)3; (3, 3)86; (1, 3))

+(5)/2((8, 3)3; (6,1)6; (1, 3))
(3.32)

which in turn are mixed to produce eigenstates of
H,:

1, 10= 202 |1 Tass) - 317 Tefs0) , (3.33)

2V2

11*,1__8*>:§|1*E[35]>+T |1*18[280]) .

(3.34)

The wave functions for the states in [15]®[21]
are obtained from Egs. (3.29)~(3.34) by inter-
changing quarks and antiquarks. The reader
should keep in mind that these two sets of states
will be mixed by the available decay channels.
The magnetic-interaction energies tabulated in
Table III complete the information necessary to
calculate @2Q? masses. The recipe for masses is
reviewed in paper I and discussed in detail in Ref.
4.

IV. RECOUPLING TO DECAY CHANNELS

The decays of @2Q2 S-wave mesons are expected
to be dominated by S-wave (QQ)(Q®) channels into
which they simply “fall apart” or “dissociate”.!
To estimate decay amplitudes, we transform from
the Q2Q? basis of the previous section to a
(QQ)(QQ) basis. The techniques for constructing
these recoupling matrices are well known. The
cases of interest to us have not been written down
previously (to our knowledge) because the @ and
Q? channels are separately unphysical.

The calculation is conveniently performed in two
steps: First one recouples the color and the spin;
then one recouples the flavor, remembering the
mixing induced by diagonalizing n,.

A. Color and spin

The crossing matrices for color and spin sep-
arately are given in Tables IV and V. The re-
coupling of H, eigenstates is obtained by combin-
ing the wave functions of the last section with the
recoupling coefficients in Tables IV and V. The
results, presented in Tables IV, V, and VI of pa-
per I, express Q2Q? eigenstates as linear com-
binations of @@ mesons of definite color and spin.®

Notice that the lightest Q2Q? state of each total
spin recouples most strongly to the two lightest
QQ states available (see Tables IV-VI, Ref. 1).
For example, the lightest 0*,|0*9) is predominant-
ly two color-singlet pseudoscalar—s. This is to be
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TABLE IV. Crossing matrix for color.

QR'QYH! QR @@)%)!
[CENCEDS G
l@%° @%%)" )

1,1/2
—(3)

2

expected in order that H, be minimized. It has
important phenomenological consequences.

B. Flavor

The SU(3) crossing matrix is given in Table VI.
Were it not for the mixing of multiplets induced by
the strange-quark mass, the flavor-recoupling co-
efficients could be read off Table VI, together with
any standard table of SU(3) isoscalar factors.'®
We have rewritten mixed states as linear combin-
ations of SU(3)¢ eigenstates in Table II. Tables II
and VI, together with the isoscalar factors of de
Swart'® enable us to construct the relevant re-
coupling coefficients. The results were given in
Figs. 6-8 of Ref. 1. These provide a check on the
magic mixing described in Table II; the number of
s and S quarks is conserved in fall-apart decays.

V. GENERAL FEATURES OF MULTIQUARK SPECTRA

Hadron masses are roughly linear in the number
of quarks plus antiquarks. Without dynamical in-
put, we would expect often to find a multiquark
state (Q™ Q") less massive than the ordinary (QQ
or @°) hadrons into which it might decay. No nar-
row exotics are known. This was the problem
posed at the outset of Ref. 1 which originally led
us into this subject. Studying @2@Q? mesons, we
found no narrow exotics. Instead we found broad
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heavy exotics and a low-spin cryptoexotic nonet.
Many states in the nonet contain “hidden” sS pairs
which make them heavy and coupled to strange
particles.

This is a general phenomenon. The systematics
of the color-spin interaction is such that for any
Q"Q@™ sector of the quark-bag model (1) the lightest
multiplets are generally not exotic; (2) they are
low-spin cryptoexotic states with many s or §
quarks, making them heavier and coupled predom-
inantly to obscure channels (involving hyperons,
K’s, m’s, etc.). The exceptions occur when n or m
is a multiple of 3, where the situation is more
complicated.

The argument goes as follows: According to Eq.
(3.9) (and Rule 1), maximizing C4(@) and C,(@)
minimizes the mass. This generally selects
SU(6).s representations in which the maximum num-
ber of quarks (or antiquarks) are symmetrized.'!
“Horizontal” SU(6),, Young tableaux are favored.
Antisymmetry requires the SU(3); Young tableau
to be conjugate—as antisymmetric as possible. In
fact, the largest SU(6),, Casimir operator is as-
sociated with a 3 or 3 of flavor (with the noted ex-
ception).!' Exotics are associated with less sym-
metric SU(6),, representations and are consequently
heavier.

Furthermore, a nonet made from many quarks
and antiquarks (z +m>4) must contain triplets of
Q’s and @’s coupled to flavor singlets [@ (uds) or
@(#ds)]. Consequently the states generally contain
hidden sS pairs. This elevates them to higher
mass (not only are the s quarks heavier but also
their magnetic interactions are weaker) and dic-
tates that they couple (fall apart) predominantly
into strange particles.

Rule 2 selects small representations of total
color-spin. These generally containonly low-spin
states. The lightest nonet will have low spin.

TABLE V. Crossing matrices for spin.

1Q®)%@QQ)%)! 1Q®)QQ)!)!
1@%3@%°%)! ()12 3V
|(Q2)1(§2)1)1 (%)1/2 _(11)1/2
1(QQ)°(@Q)%)® [QQ)%@Q)"* Q@) (QQ)%)®
Q)P @%?%)* 0 (Y —(h2
[(@23@YH1)? Y2 -3 -1
Q%) 1@%3%) e - 1

|@%3@%3)>

(QR)*@Q)*)°

(1)
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TABLE VI. Crossing matrices for flavor.

Singlet
QR @Y |@])° @Q)%) !
1@ @%8)! 12 -(h?
Q%)% @3%)! ($)V2 2y
Octet _
[(QRQE(QQ)EY  [(RPQDH%E  [(QDFQDH  |(QR)(QR)P)3
L@ @F)? 0 e (22 (&
L@ @° 0 &/? (12 — ()
2
l@)F@)"° —(3)? -4 L
1@ @) (b2 -1 L
Antidecuplet Decuplet
1QR)%Q@)%H 1 1Q®)%QQ)%H 1
Q2 @5 )10 (1) [QYE @271 1)
27-plet
1(QR)3QQ)%)Y
Q2@ )Y 1)

Higher-spin nonets are heavier.

The Q2Q? states of Ref. 1 are a case in point.
Another important example are the *@ baryons.'?
The lightest multiplet is a 3~ nonet of the form

Bj; :G(uds)Qgé_; . (5.1)

Were the strange quark massless, the nonet would
lie at about 1200 MeV—embarrassingly low. Un-
like a @° nonet, the S=0 isodoublet containsan ss
pair making it heavier (1600-1700 MeV) and
coupled predominantly to channels like KX, 1N,

and KA, not 7N as one would naively expect. Truly

exotic @%@ baryons are more massive.

The moral of this section is that simple gluon
exchange may provide a systematic dynamical ex-
planation for the failure to observe relatively nar-

row multiquark hadrons in familiar channels. Per-

haps the light 0* mesons are @2Q?2 states. Further
tests of the model await detailed calculations of
other channels (e.g., '@, @°@3%,...) and more
experimental input.
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APPENDIX

It is particularly easy to calculate the quadratic
Casimir operator C, for a given representation of
SU(n) if the SU(2) content of the representation is
known. [SU(r) always contains an SU(2) subgroup.]
As an example, consider SU(6):

35
Ce= Z °‘n2
p=1

Take the trace of C, in the representation [R] of
SU(6) (Ng-dimensional)

35
NgCo[R] =2 Tra,”. (A1)
p=1
All traces are identical:

C,[R]=—— Tra,?. (A2)

Choose v to be the third generator of the SU(2)
subgroup
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70
C¢[R] = ﬁ; Tro,” (A3)
_ 10 2
" 3N, Z d; Tryo, ~ . (A4)

The sum on j covers all SU(3) X SU(2) representa-
tions contained in [R]. d; is the dimension of the
SU(3) representation. An analogous calculation
for SU(2) itself gives

. 4(2s +1)s(s +1)

Tryo,%= 3 (A5)

in a representation with spin s. Finally, then,

280
Ce[R] “oN.

A ; d;(2s, +1)s(s; +1) . (A6)

The analogous calculation for SU(3) makes use of
the isospin subgroup:
32

C3(R) =7

N, & (2Iy + 1)L (I, +1) , (A7)

where the sum extends over all isospin multiplets
in the given SU(3) representation.
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