Cosmological constant in supergravity

Paul K. Townsend

Institute for Theoretical Physics, State University of New York at Stony Brook, Stony Brook, New York 11794 (Received 19 January 1977)

We construct an extension of pure supergravity which contains a cosmological term and a masslike term for the spin-3/2 field. Unlike another recent model which incorporates these features, that presented here is constructed from the usual spin-2, spin-3/2 fields alone.

I. INTRODUCTION

Since the advent of the new supergravity theory^{1,2} much effort has been directed towards the coupling of supergravity to matter.^{3, 4, 5} But little has been written about extensions of pure supergravity to include $R²$ terms, cosmological constants, etc. Freedman and Das⁶ have recently shown that the gauging of SO(2) and SO(3) internal symmetries in extended supergravity requires the presence of ' ${\rm cosmological}$ and ${\rm spin}$ – $\frac{3}{2}$ masslike terms for local supersymmetry. The cosmological constant in these models is proportional to the internal-symmetry gauge coupling constant and is therefore not arbitrary. One might suppose that the appearance of a cosmological term in supergravity is contingent on the couplings to matter. That this is not the case is demonstrated by the model presented below, which contains only spin-2 and spin- $\frac{3}{2}$ fields and differs from the usual supergravity theory by the addition of cosmological and spin- $\frac{3}{2}$ masslike terms. In fact, this model can be obtained from the O(2) gauge model of Freedman and Das if one eliminates from the Lagrangian of Ref. 6 the spin- $(\frac{3}{2}, 1)$ multiplet while keeping a nonzero gauge coupling constant.⁷ However, the present author was guided by other considerations, described in Sec. III. In addition, we use here the scribed in Sec. m . In addition, we use here the first-order formulation of supergravity,² by which the verification of local supersymmetry is considerably simplified.

II. THE MODEL

The action

$$
I = \int \left(-\frac{1}{4\kappa^2} e e^{a\mu} e^{b\nu} R_{\mu\nu ab} - \frac{1}{2} \epsilon^{\lambda \rho \mu \nu} \overline{\psi}_{\lambda} \gamma_5 \gamma_{\mu} D_{\nu} \psi_{\rho} + \frac{3\lambda^2 e}{2} - \lambda \kappa e \overline{\psi}_{\lambda} \sigma^{\lambda \rho} \psi_{\rho} \right) d^4 x \tag{2.1}
$$

is invariant under the following transformations:

$$
\delta e_{a\mu} = -i\kappa \bar{\varepsilon} \gamma_a \psi_\mu \qquad (2.2)
$$

$$
\delta \psi_{\mu} = \kappa^{-1} D_{\mu} \epsilon + \frac{1}{2} i \lambda \gamma_{\mu} \epsilon \quad , \tag{2.3}
$$

$$
\delta \omega_{\mu a b} = B_{\mu a b} - \frac{1}{2} e_{b \mu} B_{\lambda a}{}^{\lambda} + \frac{1}{2} e_{a \mu} B_{\lambda b}{}^{\lambda} \quad , \tag{2.4}
$$

where

$$
B_{a}^{\mu\nu} = \kappa e^{-1} \epsilon^{\lambda \rho \mu \nu} \overline{\epsilon} \gamma_{5} \gamma_{a} D_{\lambda} \psi_{\rho} + i \lambda \kappa^{2} \epsilon^{\lambda \rho \mu \nu} \overline{\epsilon} \gamma_{5} (-\frac{3}{2} \gamma_{\lambda} \gamma_{a} + 2e_{a\lambda}) \psi_{\rho} .
$$
 (2.5)

The last two terms of (2.1) are an addition to the usual supergravity action and the last terms of (2.3) and (2.5) are additions to the usual transformation laws. The curvature tensor and covariant derivative are

$$
R_{\mu\nu ab} = \omega_{\nu ab, \mu} - \omega_{\mu ab, \nu} + \omega_{\mu a}^c \omega_{\nu cb} - \omega_{\mu b}^c \omega_{\nu ca} ,
$$
\n(2.6)

$$
D_{\mu} = \partial_{\mu} + \frac{1}{2} \omega_{\mu a b} \sigma^{a b} , \qquad (2.7)
$$

in which $\omega_{\mu_{ab}}$ is an independent field.² $e_{a\mu}$ is the vierbein field and e is det($e_{\mu\mu}$). The metric signature is $(+ - - -)$ and other conventions are as follows:

$$
\gamma_5 = i\gamma^0 \gamma^1 \gamma^2 \gamma^3 ,
$$

\n
$$
\gamma_0^2 = -\gamma_1^2 = -\gamma_2^2 = -\gamma_3^2 = 1 ,
$$

\n
$$
\sigma_{ab} = \frac{1}{4} [\gamma_a, \gamma_b] ,
$$

\n
$$
\epsilon^{0123} = 1 ,
$$

\n
$$
R_{\mu a} = R_{\mu \nu a b} e^{b \nu}, \quad R = R_{\mu a} e^{a \mu} .
$$

\n(2.8)

We shall first discuss the invariance of the action of (2.1) and then comment on its construction. Only those variations containing λ need be checked here since those variations of (2.1) not containing λ are already known to vanish. We must first check that the variation of (2.1) containing terms linear in ψ_{μ} vanishes. Firstly, note that the variation of the cosmological term cancels the $\delta \psi_{\mu}$ $=\frac{1}{2}i\lambda\gamma_\mu\epsilon$ variation of the spin- $\frac{3}{2}$ mass term. Secondly, it is easily shown that the $\delta \psi_{\mu} = \frac{1}{2}i\lambda \gamma_{\mu} \varepsilon$ variation of the spin- $\frac{3}{2}$ kinetic Lagrangian is

$$
- i \lambda \epsilon^{\lambda \rho \mu \nu} \overline{\epsilon} \gamma_5 \sigma_{\lambda \mu} D_{\nu} \psi_{\rho} + \frac{1}{4} i \lambda \epsilon^{\lambda \rho \mu \nu} \overline{\epsilon} \gamma_5 \gamma_{\lambda} \gamma_7 \psi_{\rho} S_{\mu \nu}^{\ \tau} ,
$$

(2.9)

where the torsion is

$$
15 \qquad \quad 2802
$$

$$
2S_{\mu\nu}^{\ a} = e^{a}_{\ \nu,\ \mu} - e^{a}_{\ \mu,\ \nu} + \omega_{\mu}^{\ a}{}_{c}e^{c}_{\ \nu} - \omega_{\nu}^{\ a}{}_{c}e^{c}_{\ \mu} \quad . \tag{2.10}
$$

Thirdly, we rewrite the spin- $\frac{3}{2}$ mass term as

$$
-\lambda \kappa e \overline{\psi}_{\lambda} \sigma^{\lambda \rho} \psi_{\rho} = -\frac{1}{2} i \lambda \kappa \epsilon^{\lambda \rho \mu \nu} \overline{\psi}_{\lambda} \gamma_5 \sigma_{\mu \nu} \psi_{\rho}
$$
 (2.11)

and take the $\delta \psi_{\mu} = (1/\kappa)D_{\mu} \varepsilon$ variation to obtain

$$
i\lambda \epsilon^{\lambda\rho\mu\nu}\overline{\epsilon}\gamma_5 \sigma_{\lambda\mu} D_{\nu}\psi_{\rho} + 2i\lambda \epsilon^{\lambda\rho\mu\nu}\overline{\epsilon}\gamma_5 \sigma_{\tau\lambda}\psi_{\rho} S_{\mu\nu}^{\qquad}.
$$
 (2.12)

Adding (2.9) to (2.12) we get

$$
\frac{1}{2} i \lambda \epsilon^{\lambda \rho \mu \nu} \overline{\epsilon} \gamma_5 \left(-\frac{3}{2} \gamma_\lambda \gamma_\tau + 2 g_{\tau \lambda} \right) \psi_\rho S_{\mu \nu}{}^\tau \quad . \tag{2.13}
$$

Now, for $\delta \omega_{\mu_{ab}}$ of the form (2.4) the contribution to $\delta\mathfrak{L}$ from $\delta\omega_{\mu ab}$ is

$$
\delta \mathcal{L} = -\frac{e}{2\kappa^2} B_a^{\mu\nu} S_{\mu\nu}^{\ \ a} \ , \tag{2.14}
$$

so that (2.13) is canceled by the choice of the last term in $B_{a}^{\mu\nu}$ given by (2.5). This completes the verification of invariance up to terms linear in ψ_u .

To check that the cubic terms in 6I also cancel is simple. The additional terms that we must consider come from the δe_{au} variation in the spin- $\frac{3}{2}$ mass term and the new $\delta\omega_{\mu ab}$ variation in the spin. $\frac{3}{2}$ kinetic Lagrangian. The latter is easily shown to be

$$
\frac{1}{2}\lambda\kappa^2\epsilon^{\lambda\rho\mu\nu}(\overline{\psi}_{\lambda}\gamma_{\nu}\psi_{\mu})(\overline{\epsilon}\gamma_5\psi_{\rho})
$$
 (2.15)

while the former is

$$
-\lambda \kappa^2 \epsilon^{\lambda \rho \mu \nu} (\overline{\psi}_{\lambda} \gamma_5 \sigma_{\tau \nu} \psi_{\rho}) (\overline{\epsilon} \gamma^{\tau} \psi_{\mu}). \qquad (2.16)
$$

A Fierz rearrangement of (2.16) leads to a term which cancels (2.15) and a term which vanishes after a small amount of Dirac algebra. The action (2.1) is therefore fully invariant.

In obtaining Eqs. (2.15) and (2.16) we made use of the identity

$$
\epsilon^{\lambda \rho \mu \nu} Q \psi_{\lambda} \overline{\psi}_{\rho} Q \psi_{\mu} \equiv 0 , \qquad (2.17)
$$

where ^Q is any of the 16 Dirac matrices.

III. CONSTRUCTION

A nonzero cosmological constant implies a constant curvature of spacetime independent of matter. The symmetry properties of such spaces are those of the de Sitter group rather than the Poincaré group. The covariant derivative, D_u , of (2.7) is appropriate to the Poincaré group. When considering the possibility of a. cosmological term it is therefore natural to form the modified covariant derivative

$$
\mathfrak{D}_{\mu} = D_{\mu} + \frac{1}{2} i \lambda \kappa \gamma_{\mu} , \qquad (3.1)
$$

which is appropriate to the de Sitter group. $⁸$ The</sup> covariant derivative has the commutator

$$
[\mathfrak{D}_{\mu}, \mathfrak{D}_{\nu}] = \frac{1}{2} R_{\mu\nu a b} \sigma^{a b} + i \lambda \kappa S_{\mu\nu a} \gamma^{a} , \qquad (3.2)
$$

where

$$
R_{\mu\nu ab} = R_{\mu\nu ab} - \lambda^2 \kappa^2 (e_{a\mu} e_{b\nu} - e_{a\nu} e_{b\mu}) \tag{3.3}
$$

Let us now replace D_u in the usual supergravity action and transformation laws by \mathfrak{D}_{μ} . This gives precisely the spin- $\frac{3}{2}$ mass term of (2.1) and the new transformation law, (2.3), for ψ_u . The spin- $\frac{3}{2}$ field equation is now that of conventional supergravity but with \mathfrak{D}_u replacing D_u . Secondly, let us construct a modified Einstein tensor from $R_{\mu\nu ab},$

$$
G_{\mu a} = R_{\mu\nu ab}e^{bv} - \frac{1}{2}R_{\mu\nu ab}e^{bv}e^{au} = G_{\mu a} + 3\lambda^2\kappa^2 e_{a\mu} \tag{3.4}
$$

where G_{μ} is the usual Einstein tensor constructed from $R_{\mu\nu ab}$. We will now require that the new spin-2 field equation be obtained from the usual one by replacing \mathcal{G}_{μ_a} for G_{μ_a} and \mathfrak{D}_{μ} for D_{μ} . This equation ls

$$
S_{\tau}^{\mu} = e^{-1} \kappa^2 \epsilon^{\lambda \rho \mu \nu} \overline{\psi}_{\lambda} \gamma_5 \gamma_{\tau} \mathfrak{D}_{\nu} \psi_{\rho} . \qquad (3.5)
$$

This requirement is met by adding, in addition to 'the spin- $\frac{3}{2}$ mass term, just the new cosmologica term of (2.1) to the usual supergravity action. This completes the construction of (2.1) . It is seen that the new action is determined by the prescription that the quantities D_{μ} and $R_{\mu\nu ab}$ which are characteristic of the Poincaré group, be replaced in the field equations⁹ by the quantities \mathfrak{D}_{μ} and $\mathfrak{R}_{\mu\nu ab}$ which are characteristic of the de Sitter group.

IV. COMMENTS

We have shown that pure supergravity may be generalized to include an arbitrary cosmological α constant. As in previous models, β this requires the introduction of a masslike term for the spin- $\frac{3}{2}$ field. The presence of a nonzero cosmological constant implies a constant curvature of spacetime. Consequently the spin- $\frac{3}{2}$ mass term cannot be interpreted as a physical mass.¹⁰ terpreted as a physical mass.

Further, it is hoped that the use of de Sitter covariant quantities will be useful in the construction of more complicated models.¹¹ of more complicated models.

ACKNOWLEDGMENT

I thank Professor D. Z. Freedman for his advice and many helpful discussions.

- *&York supported in part by the National Science Founda-' tion under Grant No. PHY-76-15328.
- ¹D. Z. Freedman, P. van Nieuwenhuizen, and S. Ferrara, Phys. Rev. D 13, 3214 (1976); D. Z. Freedman and P. van Nieuwenhuizen, ibid. 14, 912 (1976).
- 2S. Deser and 8. Zumino, Phys. Lett. 628, 335 (1976). 3S. Ferrara, J. Scherk and P. van Nieuwenhuizen, Phys. Bev. Lett. 37, 1035 (1976); S. Ferrara, F. Qliozzi,
- J. Scherk, and P. van Nieuwenhuizen, Nucl. Phys. 8117, &33 (1976); D. Z. Freedman and J. H. Schwarz, Phys. Rev. D 15, 1007 (1977); S. Ferrara, D. Z. Freedman, P. van Nieuwenhuizen, P. Breitenlohner, F. Qliozzi, and J. Scherk, ibid. 15, 1013 (1977).
- 48. Ferrara and P. van Nieuwenhuizen, Phys. Bev. Lett. 37, 1669 (1976).
- $5D. Z.$ Freedman, Phys. Rev. Lett. 38, 1105 (1977); S. Ferrara, J. Scherk, and B. Zumino, Phys. Lett.

668, 35 (1977).

- $6D. Z.$ Freedman and A. Das, Nucl. Phys. B120, 221 (1977) .
- ${}^{7}I$ thank Professor D. Z. Freedman for pointing this out.
- ${}^{8}P$. K. Townsend, preceding paper, Phys. Rev. D 15, 2795 (1977).
- 9 And not in the Lagrangian. I thank Professor D. Z. Freedman for this observation.
- 10 S. Deser and B. Zumino, CERN report (unpublished). $¹¹$ Since the original version of this paper, S. W. Mac-</sup>
- Dowell and F. Mansouri have obtained the model presented here as the gauge theory of the graded de Sitter group OSp(4, 1) [Phys. Rev. Lett. 38, 739 (1977)].
- This has also been extended to SO(2) extended supergravity fsee P. K. Townsend and P. van Nieuwenhuizen, Phys. Lett. (to be published)].