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We suggest a means of incorporating the Planck length as a fundamental constant determined by the structure
of spacetime. In this scheme the spacetime symmetry group is taken as the de Sitter group with radius of
curvature proportional to the Planck length, but we argue that the effects of this curvature are not apparent at
elementary-particle length scales. To make the connection with gravity we present a formulation of the
gravitational interaction as the gauge theory of the de Sitter group. We obtain an action containing the
Einstein-Cartan action, but in which the dimensional gravitational constant 6 appears naturally as the
consequence of the commutation relation of the de Sitter group. We also find a cosmological term, higher-
derivative couplings of the gravitational field, and a propagating torsion field, which we discuss.

I. INTRODUCTION

The speed of light, Planck's con@tant, and the
gravitational constant, G, provide a set of dimen-
sional numbers in terms of which all physical
quantities with dimensions of mass, length, and
time can be expressed as dimensionless numbers.
But, unlike the other two, the gravitational con-
stant is tied to a particular dynamical theory.
This situation is unsatisfactory in several re-
spects, not the least of which is the problem it
poses for quantum gravity. The length scale de-
termined by G is the Planck length, approximately
10""cm. It is on such a length scale that the
quantum corrections to gravity become important,
but unfortunately these corrections are infinite and
cannot be removed by the customary procedure of
renormalization. ' In fact, the nonrenormalizability
of Einstein's theory is directly traceable to the
presence of a dimensional gravitational coupling
constant, and it does not seem as though the plight
of quantum gravity can be remedied until the ori-
gin of the gravitational constant is understood.

Ideally, we should hope to link the existence of
a fundamental length scale, the Planck length,
with the structure of spacetime. There is actually
an obvious way to achieve this, which has gone un-
noticed because it appears at first sight to be ab-
surd, Consider the commutation relations of the
generators of the Poincare group,

[Z, ,J ]=i(Z; J „+Z, „J„),
[J,s, P,]=iZ,

[P., P,]=O,
'

with

ge e e
abc ~acth ~bc~a &

where q, b is the. Minkowski metric with signature
(+, —, —, -)

[P.»s] =—.~.» (1.3)

where z has dimensions of length. The commuta-
tion relations can now be written as

P s ~rsl='(Zasr~. s+ Zass J;) (1.4)

where the indices ot, P, y, 5, & run from 1 through 5

and

~6 6 6
0, p6

— lcir 4 ~gr~e y (1.5)

in which the diagonal unit metric g ~ has the sig-
nature (+,—,—,—,-) and is a generalization of the
Minkowski metric. The commutation relations
(1.4) include that of (1.3) if we make the identifica-
tion

a &~5a y ab e~a, g=b '

The group defined by (1.4) is a well-known alter-
native to the Poincarb group, and is known as the
de Sitter group. ' It is the natural extension of the
Poincare--group in that the algebra is isomorphic
to that of the Dirac matrices and their commuta-
tor, 4i[y„y,-]=a,s, if tc is taken to be unity. It is
clear that the de Sitter algebra of (1.4) and (1.5) is
just that of the group O(4, 1). [If the sign of tc' is
changed we have the group O(3, 2).] This group is
the spacetime symmetry group of a homogenous,
isotropic, expanding universe. Such universes
have a constant, uniform spacetime curvature
with radius of curvature proportional to x. Obser-
vationally, therefore, w would appear to be on the

The P, are the translation generators and the
J,b are the I orentz rotation generators. In the
absence of a fundamental length scale the commu-
tator of two translations must vanish because I',
has dimensions of inverse length. Conversely, if
this commutator does not vanish it must determine
a length scale. For example,
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order of the radius of the un. iverse, so that the
Poincare group is a good approximation for any
but cosmological purposes.

However, we now wish to suggest an alternative
interpretation of the constant K appearing in (1.3),
namely that K be PxoPoxtional to the Plane& length. .
Not only do translations no longer commute, but
their commutator is exceedingly large. In fact, if
a Lorentz 4-vector is transported around a closed
spacetime loop with the dimensions of the Planck
length, it will be rotated about an axis perpendicu-
lar to the loop by an angle on the order of one
radian. We wil. l have more to say on the desirabil-
ity of this suggestion later, but for the moment let
us consider how it can be reconciled with our
customary notions of how 4-vectors behave under
translations.

Suppose we transport a Lorentz vector around
a closed spacetime loop with the dimensions of,
say, an elementary particle. The elementary-
particle diameter is approximately 10 "cm, so
that the ratio of length scales involved is 10".
Hence the Lorentz vector will be rotated in a com-
plete circle approximately 10" times. The pre-
cise direction of the 4-vector after these rotations
depends critically on the exact spacetime path
chosen. If this path is changed so that it differs
from the original by deviations on the order of
10"cm, the final direction of the 4-vector may
be quite different. Hut we cannot Physically dis-
tinguish two spacetime paths which differ by such
a small amount. For measurements which probe
to 10 "cm there will be approximately 10" indis-
tinguishable but significantly different paths. If
physical measurements consist of averages over
regions of 10 ~3 cm then we may easily imagine
that the net rotation of the measured 4-vector will
be zero. In other words, while spacetime is very
strongly curved at very short distances, this
curvature is such that its effects are averaged to
zero at larger distances.

The above argument provides an intuitive way
of understanding how the translation group can be
non-Abelian at the Planck length and yet appear
Abelian at larger length scales. But there is a
more convincing argument which runs as follows:
Because translations no longer commute, the cor-
responding quantum numbers, the components of
4-momentum, are not continuous but must occur
in multiples of a basic unit. This unit is propor-
tional to the Planck mass and is very large. If,
for example, we probe the structure of an elemen-
tary particle down to the Planck length we would
find that its 4-momentum is always a multiple of
the basic unit. But the direction of this 4-momen-
tum is ill defined because each time the particle
moves a distance proportional to the Planck length,

which it will do in a time interval on the order of
the Planck time, the 4-momentum will be rotated
to a new direction. Thus, although the particle's
actual 4-momentum is very large, its direction
oscillates with a frequency on the order of the in-
verse Planck time, so that the average 4-momen-
tum is zero. Or rather, we should say that the
average 4-momentum depends on additional exter-
nal macroscopic forces whose effect is superim-
posed on a microscopic random walk. In this re-
spect the situation is analogous to the motion. of
molecules within some volume of a fluid. The ob-
served motion of the Quid depends on. the external
macroscopic forces.

The fluctuations envisioned above are not those
of quaritum theory, although it is probable that
quantum fluctuations of a particle's 4-momentum
are necessary for the randomness which is inher-
ent in the above description. In particular, the
Heisenberg uncertainty principle will ensure that
physical measurements axe averages over dis-
tances large compared to the Planck length until
elementary particles can be accelerated to ener-
gies comparable to the Planck mass. At this point
the quantum fluctuations of the gravitational. field
and hence of the spacetime geometry become-im-
portant. Ultimately it is these fluctuations which
ensure the indistinguishability of spacetime paths
differing by 10 "cm, and the necessity of consid-
ering physical quantities as averages over reg'ions
of spacetime larger than this. The quantum Quc-
tuations of spacetime geometry have been the
source of most of the previous speculations on the
structure of spacetime at the Planck length. In
particular, Wheeler' has speculated that the topol-
ogy of spacetime is subject to fluctuations at such
small distances. Presumably any such quantum
structure would be an addition to that described
here.

But even if we accept the notion that a physically
measured 4-momentum is actually an average, we
may still wonder how it is that the direction of
this average momentum can remain fixed, given
that the actual 4-momentum is rapidly oscillating.
The answer to this query is as follows: Let us
imagine that the fluctuations described above cause
the traversal of an actual 4-momentum around
closed spacetime loops. Whenever this happens,
the direction of 4-momentum will change arbitrar-
ily. But the rotation of a 4-vector is opposite for
opposite- sense traversals of closed loops. Hence,
the average 4-momentum will have the same direc-
tion as that of the actual 4-momentum (but not the
same magnitude of course). This is subject to the
provision that fluctuations are random and cause
traversals of spacetime loops equally in both
senses. This will be satisfied statistically.
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Heuristically we may express the degree to which
an average vector may change direction with time
as the ratio of the number of traversals of loops
in one sense to the number of traversals in the
opposite sense. This ratio will differ from unity
by an amount proportional to the inverse square
root of the number of traversals. For example,
at the elementary-particle length scale the ratio
differs from unity by 10 "and oscillations of the
average 4-momentum are negligible. At smal. ler
length scales these oscillations may be appreciable
until at the Planck length they are isotropic. Below
the Planck length the average 4-momentum is in-
distinguishable from the actual 4- momentum which
is discrete.

We may summarize this argument by an uncer-
tainty principle. Knowledge of the direction of a
4-vector precludes knowledge of its magnitude,
since only the average magnitude is observable in
this case. Conversely, knowledge of the magni-
tude precludes knowledge of the direction because
the 4-vector will appear to be oscillating randomly
in all directions. The gravitational constant is a
measure of this uncertainty. Although this uncer-
tainty is very large rather than. very small, we
hope to have shown that it is only apparel at the
Planck length and that the observed Poincare in-
variance could be the large-scale manifestation of
an entirely different small-scale spacetime sym-
metry.

In order to clarify the means by which we have
chosen. to introduce the constant ~ into physics we
wish to point out that the transition from the
Poincare to the de Sitter group is analogous to the
transition from the Galilean to the Lorentz group.
The Galilean group is characterized by the 3-rota-
tion generators J,J and the boost generators K,
The commutator of J&J with itself and K; are those
appropriate to a 3-tensor and 3-vector, respec-
tively. The commutator of K, with itself is

[K;,K~] = 0.
The transition to the Lorentz group is achieved by
the replacement

(1.8)

This connection between the structure of space-
time as envisioned above and the theory of gravity
is the problem that concertos us for the remainder
of this paper. We approach this problem by at-
tempting to interpret gravity as the gauge theory
of the de Sitter group.

The concept of the gravitational interaction as
the gauge theory of the Poincare group was first
put forward by Kibble, ' who extended the idea, due
to Utiyama, ' of gravity as the gauge theory of the
Lorentz group. Various treatments of gravity as
a gauge theory have since appeared. ' We choose
to present a slightly different formulation of gauge
theories of spacetime symmetries and apply it to
the Poincare group in Sec. II. The key feature of
our approach is the separation of the differential
and matrix representations of the group. This
separation is an unsatisfactory feature of our ap-
proach in some respects, but it does have the vir-
tue of simplicity. In Sec. III we attempt to extend
these ideas to the de Sitter group. In this way we
are able to connect the constant ~, introduced into
the commutation relations of the generators of
spacetime symmetries, with the gravitational con-
stant. Conversely, knowing the gravitational con-
stant, the assumption that the gravitational inter-
action is the gauge theory of a de Sitter group al-
lows us to fix the constant & appearing in the com-
mutation relations of this group. This allows the
reinterpretation of the gravitational constant as a
natural fundamental dimensional constant inti-
mately connected with the structure of spacetime.

II. GAUGE FIELDS FOR SPACETIME SYMMETRIES

The spacetime symmetry group connects inertia1.
coordinate systems. Thus for the Poincare group
the transformation

x -x'" =x + $ +X" x'" (2.1)

connects infinitesimally separated inertial frames
for constant parameters g', V„where X. „ is anti-
symmetric and the Minkowski metric q„„ is used
to raise and lower indices. If g(x) is a scalar field,
a function of spacetime, then (2.1) will induce the
following transformation on g(x):

which introduces into physics a new fundamental
constant c, the speed of 1ight. Of course, one can-
not immediately deduce from (1.8) that c is the
speed of light. This remains to be shown. In the
same way, while we have introduced the constant
z into physics by means of the commutator (1.3),
and have declared this constant to be the Planck
constant, we have yet to show that x, so defin. ed,
has anything to do with gravity. Until this con-
nection is made, our choice of x is arbitrary.

g(x)- g'(x) = [I-($„+X„"x„)9"]g(x) . (2.2)

We may write this as

g'(x) = [1+i(g„P~+&X,„Z"")]g(x), (2.3)

where P" and J~" act as linear differential oper-
ators on t/r such that they form a representation of
the symmetry group. For the Poincare group we
have
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P" —=i8",
Jgv i=—(x vs" —x"9') .

(2.4)

In this way we consider spacetime symmetries
as transformations on the fields rather than on the
coordinates. If we now take the parameters $, and
A.„„to be spacetime dependent, then, since P" and
J""are represented only as linear differential
operators, Eq. (2.3) becomes

0- 0'= [1-~.(x)&"+ p(x)]P, (2.11)

translation subgroup. In the following we will
therefore set P' to zero and return to the more
general case in the next section. If we now take
g(x) to be in some nontrivial representation of the
Poincare group, its transformation under this
group for spacetime- dependent group parameters
is

g'(x) = [1—e„(x)9"]g(x),

where, in this case,

(2.5)

(2.12)

where the matrix gauge parameter p(x) is (recall
that P'= 0)

p(x) = —,'X„(x)Z",
e,(x) = g„(x)+ X„'(x)x, . (2.6)

(8.0)'= [I-~.(x)&"](&,0) - ~",„(&.0), (2.7)

Under the transformation (2.5), s g transforms as
in which X„ is e,„e»X"". Evidently the indepen-
dence of X,„(x) from &„(x) has been maintained in
this case. The transformation of (S„g) corre-
sponding to (2.11) is

x'-x" =x'+ &~(x) . (2.8)

which is the transformation of a covariant vector
field under the coordinate transformation

(s„g)'= [1—&„(x)8'+ip(x)](s,g)

—e", ,(s,g)+ip„g. (2.13)

(2.8) is just the generalization of (2.1) to space-
time-dependent $" and X~„, and is the most general
infinitesimal coordinate transformation. We are
thus led to replace the Minkowski metric g~„by
the spacetime-dependent metric g„„(x) defined as
a tensor under general coordinate transformations.
Since g, 8„(, and g„„are covariant tensors, we
may construct a scalar Lagrangian for P from
these quantities alone.

Notice that, for the scalar field, the indepen-
dence of $" and X~„ is lost when we take these to
be spacetime dependent because both become ab-
sorbed into e" (x). There is no longer any refer-
ence to the original spacetime symmetry group
which has been replaced by the 4-parameter group
of general coordinate transformations. The rele-
vance of the original symmetry group becomes
apparent when we consider fields g(x) which are
not scalars but are in some nontrivial representa-
tion of the symmetry group. In this case P~ and
J""will be represented by matrix operators on
g(x) in addition to their representation as linear
differential operators. We will denote the matrix

A

representation by P" and J"". But P" and J""are
spacetime- dependent matrices because their com-
mutation relations involve g„„(x) rather than q„„.
To circumvent this we introduce the tetrad field
e'~(x) and its inverse e,"(x) satisfying

Because of the last term in (2.13) this is no longer
the transformation of a vector field. We must in-
troduce a gauge potential I' (x) which acts as a
matrix operator on g(x) such that

(e, +ir„)y (2.14)

6,r„= p, „-i[pr„]. (2.16)

We can now construct a scalar Lagrangian from

p, (6„+ir„)p, and g„, but not yet from I', and its
derivatives alone.

By analogy with the gauge transformations of
internal symmetries, we take (2.16) to define a
covariant derivative of the gauge parameter,

D, p= p, + i[p, 1"„].

By taking the commutator

[D„,D„]p= -i[p, I',„)

(2.17)

(2.18)

is a vector field. This condition determines the
transformation of I"„ to be

I", —I', = 6r„=-r, „e"—e",„r„—p, „—i[p, I'„].
(2.15)

I' is clearly not a vector field because of the last
two terms of (2.15), which we will call the gauge
transformation of I'„. Thus

ag~~=e veav ~
P

~ab cage b (2.9)
we obtain the gauge-covariant field-strength ten-
sor l„„

We can now form the spacetime-independent ma-
trices P' and J'. For example,

P'=e' P (2.10)

Now, for the Poincare group P' is always zero,
which is a consequence of the Abel. ian nature of the

(2.19)

Let us now expand I'„ in terms of the group gen-
erators P' and J". However, we have noted al-
ready that P' is zero for the Poincare group, so
that we may write
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(2.20)

Substituting (2.20) into (2.16) and (2.19) we find
that

~G gab ~agg+ mfa ~cb+ wb ~ac Dg~ab &

(2.21)

which is the usual covariant derivative of X,b, and

(2.22)

respectively, where in this case

e (x) = —(x2)'~2$„(x)+ x "(x)x„. (3.6)
c

As before, the independence of A»„and g» is lost
when these parameters become spacetime depen-
dent. However, if tf(x) is not a scalar field but is
in some nontrivial representation of the de Sitter
group, then (3.5) must be replaced by

which defines the curvature tensor

+p vab vab, p gab&v p a vcb va web '

(2.23)

g'(x) = [1-e„(x)s"+ip(x)] g(x),

where the gauge parameter p(x) is now

p(x) = $, P'+ 2 A.,2
J'2 .

(3.7)

(3 8)

By contracting on all indices we can form the
gauge-invariant curvature scalar

a =e"ebva
p, vab & (2.24)

and hence we can construct the Einstein. -Cartan
action

(3.9)

In this expression $, is e,„$ and similarly for the
other quantities. P' is not zero for the de Sitter
group and must therefore be included in (3.8). We
may rewrite (3.8) in the more compact notation

P(x) = 2x 2
J-

J 2 is defined as in (1.6) and X 2 is

I= — d~x eR,1
(2.25) 1

~2a ~a & ~ah a=a 8 2'=
K t (3.10)

where e is the determinant of
certainly the simplest action,
troduction of the dimensional
is no suggestion of its origin.
defect can be remedied in the

e,„. Although this is
it requires the in-

constant 6 and there
We sha1. 1. see how this
next section.

Again (s t/r) does not transform as a vector field
under the transformation (3.7) on P, and we must
introduce the gauge potential I'„. We ca,n. expand
this potential in terms of the group generators

(3.11)
III. GAUGE THEORY OF THE DE SITTER GROUP

We will now suppose that infinitesimally sep-
arated inertial frames are connected by the trans-
formation

in which the components of „~ are

p5a + hap & gab g, e=a,g-"b ' (3.12)

(3.1)

g'= [1+i()„P»+2 X„„J"")]g, (3.2)

where I"and J""are represented by the linear
differential operators

For a scalar field g(x) this induces the transforma-
tion

The significance of the new potential h,„will con-
cern us shortly. For the moment, we proceed
as in Sec. II to obtain the gauge transformation of
10„2(reaii that the gauge transformation is in
addition to the tensor transformation and is the
reason that ~„,2 and h, „are not true tensors).
This transformation is

G, ~ +~ ——8 ~~@~+ ~ o ~~~+

p» — (x 2)1/2s»
K

j»"—= i(x»s»- x» s )
(3.3)

(3.13)

which defines the gauge-covariant derivative g)„
by analogy with (2.21). In component form (3.13) is

x,' =x +e„(x),
iCt '(x) = [1—e„(x)s"] g (x),

(3.4)

(3.5)

These operators satisfy the commutation relations
of the de Sitter group, (1.4)-(1.6). We will not
give a further justification of (3.1)-(3.3). We re-
fer the reader to the discussion of Sec. I.

As in Sec. II, we now generalize g„and X„„to
arbitrary spacetime functions. (3.1) and (3.2)
become

J6, 1= »D$»»A» k2», -
1

6a(o», 2=-D A, 2
—~ (g, h2„—(2',, »),

(3.14)

where D„ is the Poincare covariant derivative of
(2.21). Notice the new tc-dependent term in 6c&u„,2.
Continuing as in. Sec. II we find the field-strength
tensor I'„„from the commutator of S and S„. This
ls
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Fgv ~ Cgveg tJ

where

(3.15)

(3.1V)

C,„„=——S„„,(h) = ——(D„h —D„h,„). (3.18)
2

CO CO COpv~p v~p, g peg, p ve gyp pn vga '

(3.16)

In component notation this is

We will suppose that a good' approximation for
gravitational phenomena on length scales much
larger than 10""cm is obtained by the identifica-
tion of (3.20). Of course this avoids the question
of how gravitational phenomena appear at the Planck
length, but it will be sufficient for our purposes.
Using (3.20) in (3.19) and expanding C„, ~ in terms
of its components we find

6 1 1I= d4xe ~ —~B——,S„„,S""'

@van+ —R„„,~R

We may form the obvious scalar action from
Cavo/ & g egy and gpv

I=4 d4x g g"~ 'C„„&C„,N~, (3.19)
I(",
' = 16nG. (3.23)

The feature of this action that we wish to stress is
that it contains the Einstein-Cartan action, In
fact, we can make the identification

whereg is the determinant of g„„. But before we
can make sense of this action we must find an
interpretation for the gaug potential h„. An at-
tractive choice is

k ~= eg~ (3.20

because this links the spacetime metric to the
gauge theory of gravity as weB as avoiding the
introduction any new fields. In other treatments
of gravity as the gauge theory of the Poincare
group the choice of (3.20) is customary. "That
is, the tetrad field e,„is usually taken to be the
gauge potential of the translation subgroup. (He-
caQ that in the approach adopted here we were not
required to introduce gauge potentials for the
translation subgroup of the Poincare group. ) With
this choice the field S,„,{e) defined in (3.18) is just
the torsion. of spacetime. We may therefore think
of C„„~a& a generalized curvature tensor ex-
plicitly incorporating both the curvature and tors-
ion.

However, it does not appear that the choice of
(3.20) can be made for the de Sitter group. The
reason is that the metric g„„constructed from
e,„would not be invariant under the gauge trans-
formation

6~e,„= D„g, , - (3.21)

so that g„„would not be a good terisor. It is not
clear to the author what rel.ation replaces (3.20)
for the de Sitter group. It is possible that we
should retain the metric g„„and the gauge poten-
tial h,„as independent fields. We would then have
separate Euler- Lagrange equations for g„„and

We have not been able to resolve this issue,
so we will sidestep it by asking a simpler question:
Is there a suitable limit in which the action of
(3.19) contains the usual Einstein-Cartan action
of (2.25) P

Thus the fundamental constant w appears naturally
as the dimensional constant associated with the
gravitational interaction if the small-scale struc-
ture of spacetime is governed by the de Sitter
group with parameter x. [We should point out,
however, that the precise identification of (3.23)
depends on the factor multiplying the action in
(3.19). We chose & by analogy with Yang-MiHs
theories. ]

It is not clear how seriously we should take the
remaining terms in (3.22). Nevertheless we shall
consider them in turn, .

(1) The term B„„,,B""'' is a "higher derivative"
coupling originally considered by Weyl. Such
terms improve the high-energy behavior of quan-
tum gravity, and they have been accorded recent
attention because of this fact. v This term does
not affect the low-energy, hence large-scale,
properties of the gravitation field.

(2) The term S„„,S""'will provide a propagating
torsion field. This is already a consequence of the

R„„,~A""' term because „„contains torsion im-
plicitly. ' The torsion. of spacetime couples to the
matter spin density, but on a macroscopic scale
the spin density usually averages to zero. For
this reason quadratic torsion terms might be ex-
pected to have little effect on macroscopic gra-
vitational phenomena. Other authors have shown
that if a propagating torsion field exists there
must be a fundamental length associated with it, '
and conversely that the detection of torsion waves
would provide evidence for the existence of a fun-
damental length in the geometry of spacetime. '0 It
is clear from (3.22) that we would expect this
fundamental length to be none other than the Planck
length.

(3) 6/z4 is a cosmological term and causes us the
most trouble, since it implies a very large neg-
ative energy density proportional to 1/tc' This is.
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physically .unacceptable for the classical theory.
We could simply subtract 6/8 from the action, but
there is an alternative explanation for this term,
From the point of view of quantum gravity, the
absence of a cosmological term is unnatural be-
cause quantum corrections will generate such a
term even if it is initially absent. In fact, the
vacuum energy density generated by quantum fluc-
tuations is expected to be proportional to 1/x'
and Positive. We might hope that this will cancel
the large negative energy density implies by 6/
K, leaving an almost vanishing cosomological con-
stant.

IV. SUMMARY

Our main purpose has been to introduce a fun-
damental dimensional constant into physics in a
natural way that does not depend, a Priori, on
any particular dynamical theory. We chose to do
this by replacing the Poincarb group by the de
Sitter group as the symmetry group of spacetime.
Because translations do not commute for the de
Sitter group', , their commutator provides us with a
dimensional constant, a', which can be interpreted
as the constant radius of curvature of spacetime
independent of the presence of matter. For this
reason & is usually taken to be on the order of the
radius of the universe. However, we allowed our-

,.selves to be guided by the idea that the constant
& has some connection with the theory of gravity.
Thus we formulated the gravitational interaction
as the gauge theory of the de Sitter group by anal-
ogy with the usual formulation of gravity as the
gauge theory of the Poincarb or Lorentz groups.
We were able to find an action for this gauge theo-
ry i.n a limit for which Poincare invariance is as-
sumed to be valid. This action contains the Ein-
stein-Cartan action, where the gravitational. con-
stant G is proportional to ~'. We take this as an
indication that the small-scale structure of space-
time is that of the de Sitter group, and that the
scale of this structure sets the scale of the gravita-
tional coupling constant G. This scale is that of the
Planck length, 10"'3 cm. This implies a large uni-

form spacetime curvature. In Sec. I we have
argued that the observational effects of this curva-
ture will not be apparent for measurements at
length scales much larger than 10 "cm. If this
idea is tenable, it is possible that the gravitational
interaction is more intimately connected with the
structure of spacetime than has hitherto been
appreciated. It is interesting that the Planck length
also sets the scale for quantum gravitational effects
and one expectes quantum fluctuations of the space-
time geometry to appear at this length scale.
However, the quantitative treatment of these fluctu-
ations is not amenable to conventional techniques
of quantum fi.eld theory. Any additional small-
scale spacetime strucutre such as that suggested
here could be relevant to this problem.

The action obtained in Sec. III contains terms in
addition to the Einstein-Cartan action. Although
we have provided arguments suggesting that each
of these terms can be tolerated, we wish to stress
that we have not yet obtained a completely satis-
factory theory.

Note added in proof. S.W. MacDowell and F.Man-
souri [Phys. Ref. Lett. 38, V39 (19VV)] have recently
treated gravity (and supergravity) as the gauge
theory of the de Sitter group. However, they do
not require full invariance of the action under the
gauge transformations (3.14). Consequently, they
are able to avoid the introduction of a gauge po-
tential h,„distinct from e,„. Their action for
gravity (in our notation) is I= Jd xe""
& Cp & C &p p The R' terms are just the GCLuss-

Bonnet invariant ~"""'~'""Rp &R&p z and can be
ignored. Hence the de Sitter group may be con-
tracted to the Poincard group giving the usual
Einstein-Cartan action and these authors do not
consider the length scale determined by the de
Sit,ter group as fundamental.

ACKNOWLEDGMENTS

I thank Professor Daniel Freedman and Profes-
sor Andrzej Trautman and Dr. David Wilkinson
for helpful conversations.

*Work supported in part by the National Science Foun-
dation under Grant No. PHY-76-15328.

S. Deser and P. van Nieuwenhuizen, Phys. Rev. Lett.
32, 245 (1974); G. 't Hooft and M. Veltman, Ann. Inst.
Henri Poincarb 20, 69 (1974); S. Deser and
P. van Nieuwenhuizen, Phys. Rev. D 10, 401 (1974);
10, 410 (1974).

2W. de Sitter, Mon. Not. R. Astron. Soc. 78, 3 (1.917).
For a relatively recent review with refererices to
other papers see F. Gursey, in Group Theoretical
Concepts and Methods in Elementary Particle Physics,
edited by F. Gursey (Gordon and Breach, New York,
1964).

3See, for example, C. W. Misner, K. S. Thorne, and

J. A. Wheeler, Gravitation (Freeman, San Francisco,
1973), Chaps. 44, 45.
T. W. B. Kibble, J. Math. Phys. 2, 212 (1961).

SR. Utiyama, Phys. Rev. 101, 1597 (1956).
See the review article by F. W. Heyl, P. von der Heyde,
G. D. Kerlick, and J. M. Nester, Rev. Mod. Phys. 48,
393 (1976). Also see Y. M. Cho, J. Math. Phys. 16,
2029 (1975), and C. N. Yang, Phys. Rev. Lett. 33, 445
(1974).

K. Stelle, Phys. Rev. D (to be published).
A. Trautman, Symp. Math. 12, 139 (1973).
P. von der Heyde, Phys. Lett. 51A, 381 (1975).
R. Skinner and D. Gregorash, Phys. Rev. D 15, 3314
(1976).


