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By quantum calculations in a classical background geometry, Hawking has shown that an isolated black hole
emits thermal radiation spontaneously. Starting from Hawking's expectation value for the number of quanta
emitted per mode, and using methods from statistical thermodynamics, one of us calculated earlier the
probability distribution for the number of quanta per mode outgoing from a black hole placed in a thermal
radiation bath. By the same methods we show here that this probability is not simply the combination of that
for Hawking's spontaneous emission and that for pure scattering. From this we infer the existence of
stimulated emission in all modes, even those which do not superradiate. We derive the probability that m

quanta go out in a given mode when precisely n are incident. It satisfies a symmetry condition originally
given by Hartle and Hawking for a special case. For all modes the average number of outgoing quanta
contains a contribution from stimulated emission which shows up as a negative contribution to the effective
absorptivity I'. The situation is analogous to that for opacity in the theory of radiative transport.
Superradiance occurs for modes in which the negative contribution dominates the pure absorptivity. We
identify the Einstein A and B coefficients for a black hole. The B coefficients satisfy the usual relation from
atomic physics with the role of degeneracy factor played by the exponential of black-hole entropy. This agrees
with the statistical interpretation of this quantity in teims of internal black-hole configurations. The relation
between the B coefficients suggests time reversibility of the radiative aspect of a black hole. This supports
Hawking's view that a black hole and a white hole are essentially the same thing.

I. INTRODUCTION

e '=-r(e -1+r) ',
x= (hu) —hmQ —eC }Tbh '.

(2)

(3)

Here w is the frequency of the mode, m its azimu-
thal quantum number, ~ its electric charge, Q and
4 the rotational frequency and electrical potential
of the hole, respectively. Probabilities for differ-

Hawking' has shown that a Schwarzschild black
hole formed by collapse spontaneously emits quanta
which reach infinity with a thermal spectrum.
More precisely, the mean number of quanta emit-
ted in a given mode [see (4) below] is just what
would be emitted by a gray body whose "absorptiv-
ity" I" for the given mode coincides with that of
the black hole, and which has a well-defined tem-
perature Tbh. This radiation temperature is of
the same form as the thermodynamic black-hole
temperature introduced earlier by Bekenstein. "
Hawking's result has been confirmed by Parker, '
Wald, ' Boulware, ' Qerl. ach, ' and others. Hawking'
has given reasons for believing his result is also
valid for a rotating and charged Kerr black hole.
We shall assume this is so in what follows.

From Hawking's result and the principle of maxi-
mal entropy, one of us' derived the following ex-
pression for the probability of spontaneous emis-
sion of n quanta in a given mode:

p (n) =(1 —e 8}e 8",

where

(n) =r(e"-1) ',
which is the original Hawking result. '

For a black hole immersed in a blackbody radi-
ation bath, of temperature T, one assumes' that
the mean number (n), of quanta in a given outgoing
mode is

(n). =(n)~+(I —r)(e' —1) ',
where

y =kd/T .

(5)

Here the last term represents the fraction of in-
cident blackbody quanta returned outward by the
black hole: 1 —r is the "reflectivity" of the hole,
and (e"—1) ' is the Planck mean number of quanta
in a blaekbody radiation mode. The principle of
maximal entropy yields the following probability
that n quanta are outgoing in the given mode:

p, (n} =(1 —e «)e &",

where

(e~- I} '=I'(e" —1) '+(1 —r)(e" —1) '.

ent modes are independent. When expanded in
(1- I')e ", (1) gives a series which for the
Schwarzschild case agrees' with a quantum result
implicit in Ref. 5. In the approximation r =1, (1)
agrees with quantum results of Parker' and Hawk-
ing (we comment on this approximation in Sec. IV).
The mean number of quanta corresponding to the
distribution (1) is
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It is shown in Ref. 8 that (7) is required if the
second law of thermodynamics is to be obeyed
for all T, and if thermodynamic equilibrium is to
be possible for 7.

' =T» at least for a Schwarz-.
schild hole.

It would seem desirable to derive these and fur-
ther results on quantum scattering from a black
hole by formal quantum field-theoretic calcula-
tions. However, even when performed in a classi-
cal background (semiclassical approximation),
such calculations are beset by ambiguities and
technical difficulties. The history of atomic phys-
ics contains similar examples, and suggests that
we might profit here from a statistical thermody-
namics approach to the problem which would be
expected to circumvent the difficulties while yield-
ing a plethora of useful results with little effort.
This is our approach in the present paper. Our
single starting point is formula (7), which follows
directly from the well-verified Hawking result (4)
by application of the principle of maximal entropy,
as explained above. All our results then follow
from standard statistical reasoning together with
an additional assumption (see below) made in ana-
logy with atomic physics. It is hoped that quantum
field-theoretic checks of all our results will even-
tually become possible.

In this paper we show that (7) does not have the
form expected if ordinary scattering is the only
source of ref lectivity of the hole. We trace the
discrepancy to the existence of stimulated emis-
sion which may be described by Einstein A and J3
coefficients. Z el'dovich'0 and Starobinski" earlier
inferred from the phenomenon of superradiance"
the existence of stimulated emission in modes with
x& 0. This view is supported by a field-theoretic
calculation of Wald. "

But stimulated emission at late time in modes
with x& 0 had not been expected. However, we
show that stimulated emission must be present at
late times, even for x) 0. Itis requiredby thermo-
dynamics. Stimulated emission contributes nega-
tively to the absorptivity I. When x& 0 this con-
tribution is large enough to turn I' negative and
give rise to superradiance.

In Sec. II we show that spontaneous emission and
ordinary scattering regarded as independent can-
not yield the probability distribution (7) required
by thermodynamics. This implies the existence
of stimulated emission, even in nonsuperradiant
modes. In Sec. III we derive the probability dis-
tribution P(m i n) for m outgoing quanta when pre-
cisely n are incident upon the hole. This P(m in)
obeys a symmetry condition originally obtained
in a special case by Hartle and Hawking' by a
direct quantum treatment, a condition which
makes detailed balance with a radiation bath pos-

sible. In Sec. IV we calculate the conditional
mean number of emerging quanta when precisely
n are incident. Subtracting from it the mean num-
.ber scattered in terms of a one-quantum scatter-
ing coefficient 1- I'„and assuming that the re-
mainder (stimulated plus spontaneous emission)
is proportional to n+1 as in atomic physics, we
find the relation between the pure absorption coef-
ficient I', and the effective absorptivity I' correct-
ed for stimulated emission. The relation is identi-
cal to that in the theory of radiative transport.
In Sec. V we identify the Einstein A and 9 coeffi-
cients for a black hole. The 8 coefficients satisfy
the Einstein condition with the degeneracy factor
of a black-hole state being given by the exponen-
tial of the black-hole entropy. " This supports
the interpretation of black-hole entropy in terms
of internal black-hole configuration. "' The con-
nection between the 3 coefficients implies time
reversibility, and thus supports Hawking's view"
that black holes and white holes are essentially
the same thing. In the Appendix we treat the case
of fermions, calculate P(m jn), show that it obeys
the same symmetry relation as for bosons, and
demonstrate how the Pauli principle suppresses
emission by the hole.

II. NECESSITY OF STIMULATED EMISSION

We consider a rotating, charged black hole im-
mersed in a radiation bath of temperature T. We
assume the cavity in which the radiation is en-
closed to be nonrotating and at zero electric po-
tential. Then the probability that there are n
quanta incident upon the hole in a mode specified
by ~, m, and e is given by the blackbody normal-
ized probability distr ibution

pbb(n) =(1 —e ')e '",
where y is defined by (6). The probability distri-
bution P, for the number of quanta in the corre-
sponding outgoing mode is given by (7), whose
derivation is outlined in Ref. 8.

We shall now regard P, (n) in (7) as being com-
posed of the probability distribution for spontan-
eous emission P~ given by (1), and some indepen-
dent probability distribution P„for the blackbody
quanta returned outward by the hole:

(10)

Comparing this with (7) we get by term-by-term
inspection

(I-e-&)(1-e a) ', n =0
P, (n) =

(1 —e &)(I —e 8) '(1 —e& s)e &, n) 1.
(11)
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We now ask if this form of P„(n)is what would be
expected if ordinary scattering (by the potential
barrier surrounding the hole& were the only pro-
cess responsible for returning the incident black-
body quanta outward. The probability distribution
for scattering is calculated as follows: Let F, be
the probability that a single quantum incident on
the hole is absorbed; 1-I', is the probability that
it will be scattered outward. Then the probability
P,(n) that n quanta are scattered outward is con-
structed by combining-the probability distribution
+b for the incident quanta with the binomial prob-
ability distribution with parameter I', :

p.(m) = Q p(m I n) p„(n).
n =0

(14)

Substituting P, (m) from (7) and Pbb(n) from (9), and
writing z =e 'we see that

sion as well as ordinary scattering. Effectively
p(m In) is the square of the matrix element
(n+m, m In}, in the notation of Ref. 4, which has
been calculated under various restrictions for
the case n =0 by Parker, ' Wald, ' and Hawking. ' It
is a crucial assumption of our arguments that
P(m In) does not depend on the black hole's environ-
ment, but only on its intrinsic properties.

For a black hole immersed in a blackbody bath
we clearly have

One finds that

p, (n) =(1 —e ")e "",

e z=-(1-1',)(e'- I', ) '.

(12) g p(m I
n)z" = (1-e & ')(1 —z) ' e "i' '

n =0

where y(z) is defined by (8). Expanding the right-
hand side in powers of z we find" that

The sum can be verified by expanding out (13) in
powers of I', e ' (see Appendix of Ref. 8).

We see that P„(n)and P,(n) are not of the same
form regardless of the choice of I",. What can
cause the discrepancy? There can be no doubt
about the correctness of P,(n) in (7). As shown in
Ref. 8 any other distribution would clash with the
second law. The construction scheme (10) is the
only possible one if the spontaneous emission is
independent of the "scattering"; and the scatter-
ing probability distribution P,(n) is the only one
possible if the quanta are indistinguishable bosons.
Thus we are forced to conclude that scattering is
not the only process that returns incident quanta
outward. We are led to believe that stimulated
emission must also be present. To be sure, the
suggestion is not new. Zel'dovich' and Starobin-
ski" interpreted the phenomenon of black-hole
superradiance~ as implying stimulated emission
in modes with u&&mQ (uncharged black hole). This
view is verified by a quantum calculation of Wald. "
However, we are led by thermodynamics to expect
stimulated emission in all modes, even in those
for which there is no classical superradiance. We
now proceed to extract the contribution of stimu-
lated emission to P,(n), and to the definition of the
Einstein coefficients.

(16)

The expansion considered is natural, as it is
about the point T =0. Writing A=I'(e"-1) '+I"-1.
and changing to the new independent variable 5'
=(1 —z)(1 —I') ' we have

1 (-1)" 8" (1+AW)"
n( I")

~ (( r(""an" I(+((+n(n(""}
(17)

Performing the differentiation and simplifying,
we get

(en 1)enn rm+n nnn(n, m& (-1)n(m +n —k)!
p( I }-

( I,r)n+ m+1 p t, i(n y)((m g}(

x 1 —2, (cosh x- 1), (18}

where the sum extends up to m or n, whichever
is smaller.

This expression is so complicated that it is
worthwhile checking it in a simple limit. For n =0
we get

p(m IO) =(e" —1)(e"-1+r) ™1r
= (1 —e 8)e zm (19)

III. THE CONDITIONAL PROBABILITY p(m In)

We define P(m In) as the conditional probability
that a rotating charged Kerr black hole emits
exactly m quanta in a given mode when precisely
n are incident in the corresponding mode. The
P(m In) includes spontaneous and stimulated emis- .

the last step following from the definition of e 6,
Eq. (2}. We thus find that p(m IO) =p,~(m), as
would be expected: The conditional probability
for emission when nothing is incident is just the
probability of spontaneous emission.

We notice that the sum in (18) is symmetric in
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m and n. It follows that in general

e ""p(min) =e " p(num). (20)

Substituting in (24) and performing the differentia-
tion" we get

This result generalizes that obtained by Hartle
and Hawking" by a Feynman integral calculation

.for scalar quanta and a Schwarzschild hole:

P(1 lO) =e-"P(OI I). (21)

Condition (20) makes detailed balance possible be-
tween the black hole and a cavity at the same
temperature and electric potential, and rotating
with the same frequency, insofar as the nonsuper-
radiant modes are concerned. We can see this
by noticing that the radiation in such a cavity has
the blackbody distribution

Pb„(n)= (1- e ")e '",
where x is given by (3). Thus (20) assures us that
the probability that n quanta are incident and m

are outgoing equals that for m to be incident and

n to be outgoing. This means there is detailed bal-
ance and thermodynamic equilibrium between hole
and cavity through the given mode. However, this
conclusion does not-apply to a superradiant mode,
one with x( 0. In such a case (22) is not the probabil-
ity distribution of the incident quanta as it is not
normalizable: Q„OPbb(n)-~. Hence (20) does
not have a simple physical interpretation in this
case. It has earlier' beck argued that a black
hole cannot reach thermodynamic equilibrium with
the cavity through superradiant modes.

(27)

This result is reasonable: It includes the con-
tribution (4) from spontaneous emission, and
shows that on the average a fraction 1 —1 of the
incident n quanta is returned outward. Were we
to average (27) over a blackbody distribution for
n, we would recover (5), which was our starting
point. But (27) is a stronger result than (6), in-
dependent as it is of the distribution for the inci-
dent quanta.

What is the contribution of pure scattering to
(27)? Arguing as in Sec. II we write

n

{m)„=Qm, ', I'," (1 —I',)

(28)

1(m)„=(m)„+aI'n ~, )). (29)

where the tilde refers to scattering, and the fac-
tor multiplying m is the probability that precisely
m of the n incident quanta are scattered. The
sum is carried out by means of the binomial theo-
rem. We know that the factor 1- I', cannot equal
1 —I', for otherwise there would be no room in

(27) for the stimulated emission we know must be
present. Defining Ar =I,—I" we can write (27)
as

IV. EFFECT OF STIMULATED EMISSION
ON THE ABSORPTIVITY

(m)„=pm&(min)

=e"" Q p(ntm)me *
m=0

(23)

where use has been made of (20) in the last step.
It follows that

{m)„=e""u —Q p(n im)u™xn

Bg u=e
(24)

But from (15) we see that

QP(num)u" =(1 —e )')(1-u) 'e ~",
m =-0

where according to (8)

(26)

e ~=(1+[r(e"—1) '+(1 —I)( '-1) '] ') '.
(26)

Let us calculate the mean number of quanta out-
going in a given mode if precisely n are incident
in the corresponding ingoing mode:

The last term in (29) is the contribution to {m)„
from spontaneous plus stimulated emission. We
shall take as our working hypothesis that this
term is precisely proportional to @+1as in atomic
physics. Then it follows that

6I'=I'(e" —1) ',
and thus that

I" = I', (1 —e ") .

(30)

(31)

We recall that 1 —I', is the probability that an
incident quantum will be scattered outward. There-
fore 0&1 —I',&1, and it follows that the pure ab-
sorption coefficient I", is al.so between 0 and 1.
What is the physical meaning of I"P We see from
(27) that 1 —I' is the effective ref lectivity of the
black hole for incident quanta; thus I" is the effec-
tive absorptivity —effective in that it includes the
effects of stimulated emission. It is clear that a
measurement will reveal directly only I' but not
I",. Likewise any classical calculation of the re-
flectiviiy of the hole would yield 1 —I' but not
1 —I', [large-quantum-number limit of (27)]. We
observe that I' is the sum of I', and a negative
contribution due to stimulated emission, -I; e ",
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h+z=~, 1 —exp—
kT

(32)

Thus g is positive, and r adiation tr aver sing the
medium is attenuated. From (31) we see that the
situation for a black-hole mode with x&0 is anal-
ogous; I' is positive, and radiation is attenuated
upon bouncing off the hale. When there is a popu-
lation inversion in the medium, the negative expo-
nent in (32) is replaced by a factor larger than
unity. " Thus & becomes negative even though K,
is always positive. Radiation is amplified when
traversing the medium. From (31) we see that
this is precisely analogous to the case x&0 for a
(rotating or charged) black hole; I" becomes nega-
tive, and radiation is amplified when bounced off
the hole (superradiance).

We see from (31) that I' must always be smaller
than unity due to stimulated emission. This makes

which is present for all modes. This had already
been'conjectured in Ref. 8 (footnote 14). For
modes with x&0 the positive contribution domi-
nates, 0&I"&1 and 1- I'&1. Therefore the black
hole returns outward on the average fewer quanta
than are incident. For modes with x&0 the stimu-
lated emission contribution to I" dominates, I'&0
and 1 —I'&1. Therefore the black hole returns
outward on the average more quanta than are in-
cident upon it. In the classical limit it amplifies
radiation —it superradiates. In short, there is
stimulated emission in al/ modes, but only for
x&0 does it become strong enough to cause super-
radiance.

For superradiant modes formula (27) for the
mean number of outgoing quanta by itself shows
that there has to be stimulated emission (effec-
tive reflectivity 1-I' greater than unity). The
situation is different for nonsuperradiant modes
when (27) by itself does not hint at anything apart
from spontaneous emission and scattering. If
(m)„is all that is considered, one could conclude
that there is no stimulated emission. " Only when
considering the probability distribution (Sec. II)
does one need to appeal to stimulated emission to
explain the results.

The relation between stimulated emission and
superradiance is analogous to that in atomic phys-
ics. There is stimulated emission for any atomic
transition. But stimulated emission manifests it-
self as amplification only when a population inver-
sion is present. The analogy can be made more
precise. In the theory of radiative transport one
deals with the pure absorption coefficient (opacity)
g, of matter and with the effective absorption co-
efficient ~ which takes into account the effects of
stimulated emission. For a medium in thermo-
dynamic equilibrium, the relation is"

the often-used approximation 1"= 1 of doubtful
validity when computing probabilities for non-
vacuum. initial states since it is equivalent to
neglecting a relevant physical effect. This ap-
proximation could be justified only in the high-
frequency limit when 1",—1 and x- ~.

For modes with x small in absolute value, (31)
gives I'= xI', =I', T» 'h(~ mo—) for the case
4 =0." We see that in the neighborhood of co=mQ,
I' is linear in & —mQ since we do not expect the
pure absorptivity 1„abarrier tunneling factor,
to be particularly sensitive to +-mQ. And in-
deed calculations of Starobinski" and Starobinski
and Churilov' show just this linear behavior for

Qne important consequence of this is that the
spontaneous emission [see (4}]remains finite and
positive for modes with x=0.

V. THE EINSTEIN COEFFICIENTS

We are now in a position to define the Einstein
coefficients for a black hole. Let us substitute
(28) and (30) in (29). We get

(m)„=(1—I',)n+I'(e* —1) '(n +1). (33)

The coefficient of 1 in the last pair of parentheses
is the coefficient of spontaneous emission Ay. The
coefficient of n in those same parentheses is the
coefficient of stimulated emission Bz. The coeffi-
cient of absorption B& is the complement of the
scattering coefficient 1- I', . Thus

At=Bi=I'(e" —1} ', (34a)

fit=I', = I'(1 —e *) (34b)

8) =B)e '.
We shall see that this connection is in precise

(35)

These are coefficients per mode. Were we to
desire coefficients on a time rate basis, we would
have to multiply our coefficients by the number of
outgoing modes of given &u, m, and e per unit time.

The equality of A& and B& is, of course, a re-
sult of our assumption that the last term in (29)
is proportional to n+1, and is in analogy with the
results in atomic physics. It has been common
practice in the literature" to identify -1 as the
Einstein coefficient of stimulated emission for
superradiant modes (x&0). We see from (34a)
that this is incorrect; the coefficient is a factor
-(e'- 1) ' larger, and this makes quite a differ-
ence when ~x~«1. As a result early estimates of
the spontaneous emission by a Kerr black hole
were far off the mark for modes near the transi-
tion point v =mQ.

We see from (34a) and (34b} that
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&)gu = Jjt 8'i ) (36)

where g„andg, are degeneracy factors for the
atomic upper and lower levels, which are connect-
ed by the emission of the quantum in question.

Let us consider a black hole of mass M, angu-
lar momentum L, and charge Q. It has a certain
black-hole entropy Sbh(M, L, Q).' "' For a small
variation in the parameters of the hole we have'

analogy to the Einstein relation for atomic physics, APPENDIX

All our previous considerations referred to
Bose quanta. Here we shall treat fermions start-
ing from Hawking's' conclusion that a black hole
spontaneously emits a mean number I'(e" + 1) '
of quanta in each fermion mode, with x defined by
(3) and I' having a meaning of effective absorption
coefficient. In analogy with (5) we assume that the
mean number of outgoing quanta in the given mode
is

ESbh
= (b M —DD L —4&Q)Tbh (37)

(n), =r(e"+1) '+(1 —r)(e"+1) ', (A1)
Comparing with the definition of x, (3), we see
that for the mode in question

Sb„(M,L, Q) —Sbh(M —k&u, L —hm, Q —e) = x .
(38)

Now, according to the statistical interpretation of
black-hole entropy, "' exp[Sbh(M, Q, L)] is the
number of internal black-hole configurations com-
patible with the external state labeled by I, L,
and Q. It can thus be thought of as the degeneracy
factor for this state. Substituting the x from (38)
into (35) we see that it takes the form (36) with

g, =exp[Sb„(M—ku, L -hm, Q —e)]

g„=exp[Sbh(M, L, Q)] .

Thus the 8 coefficients for a black hole are re-
lated in the same way as those for an atom whose
transition from the upper to the lower level gives
rise to a quantum in the mode described by cu, m,
and e. Since a black hole can emit a number of
quanta in the same mode, we can say it behaves
like a thermal ensemble of atoms.

The conclusion that the Einstein relation is satis-
fied by the 8 coefficients of a black hole is im-
portant. It serves as a check on our entire ap-
proach, and in particular on our assumption about
the form of the term in brackets in (29). It also
brings out very vividly the reality of internal
black-hole configurations, and shows that exp(Sb„)
is the number of such configurations for definite
M, L, and Q,

' and not as is sometimes claimed, "
the density of configurations per unit interval of
mass, angular momentum, and charge.

In quantum theory, the Einstein relation (36) is
a direct consequence of time reversibility of the
system in question. %e may thus argue that by
analogy a black hole, or more precisely, that
aspect of it which has to do with absorption and
emission of radiation, is time reversible. Now
the time reversal of a black hole is a white hole.
%e thus find support for Hawking's" view that in-
sofar as radiative properties are concerned, a
black hole and a white hole are the same thing.

when the black hole finds itself in a thermal bath.
The y is defined by (6) and we assume that the
chemical potential of the fermions in the bath is
zero. It is clear that (Al) is consistent with the
Pauli exclusion principle since (n), & 1.

We now define the conditional probability P(min)
in precise analogy with Sec. III, except that be-
cause of the Pauli principle only the values 0 and
1 are allowed for m and n. Clearly, we have by
normalization

p(olo)+ p(1 lo) =1,
p(0 I 1)+ p(1 I 1)= 1 .

(A2)

(A3)

Po(1) =P(1 I o)P„„(o)+P(1 I 1)P„(1),
P.(0) =P(0l 0)p,„(0)+P(ol1)P„,(1) .

Equations (A2)-(A5) for P(min) are not linearly
independent; they have many solutions. But the
only physical solution is

(A4)

(A5)

p(olo)= 1 —I'(e" +1) ',
p(l I 0) = I (e"+ 1) ',
p(oil)=I'(1+e ") ',
p(1 I 1)= r(e" + 1) '+ 1 —I' .

(A6)

(AV)

(A8)

(Ao)

Only for it are the P(min) independent of y, that is,
of the hole's environment. The P(min) satisfy the
same condition as for bosons:

p(min) e ""=p(nlm) e "" (A10)

for m, n= 0, l. In analogy with the discussion in
Sec. III we conclude that this condition is what
allows detailed balance of the black hole with a

The probability that a quantum is incident in the
given mode is p»(1)= (e'+1) '; the probability
that no quantum is incident is P»(0) = 1 —Pbb(1), so
that the mean number incident is the mell-known
Fermi-Dirac result (e'+ 1) '. The probability
that one quantum is outgoing in the given mode is
p, (1)=(n)„while the Probability that no quantum
is outgoing is P,(0) = 1 —P,(1). Thus the mean .num-
ber outgoing is precisely (n), .

We can clearly write in analogy with (14)
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cavity having the same temperature, angular ve-
locity, and electric potential. This conclusion
holds also for modes with x&0 in this case; the
normalization difficulties of the boson case have
no counterpart here.

Can one understand the form of the P(m~n) phys-
ically'P The p(1~0) just equals the mean number
of quanta emitted spontaneously, which for ferm-
ions is just the probability for spontaneous emis-
sion of one quantum. This is precisely the defini-
tion of P(1 ~

0). The P(0 ~
0) is just the complement

of P(1~0) by normalization. The P(1~1) is defined
as the probability that one quantum is outgoing
given that one is incident. This could be expressed

as the probability for spontaneous emission of one
quantum regardless of what happens to the ingoing
quantum, F(e"+ 1) ', plus the probability the in-
going quantum is returned outward regardless of
whether the black hole emits or not, 1 —I', minus
the probability the black hole emits and the incident
quantum is returned outward. By the Pauli prin-
ciple the last probability must vanish. Hence
P(1~1)=I'(e" +1) '+1 —I', which agrees with (AS).
The p(0~1) is just the complement of p(1~1). We
note that in the fermion case 1- I" cannot be re-
garded as a scattering coefficient. In fact there
is no such thing. Whether an incident quantum is
scattered depends on whether the black hole emits.
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