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It is shown that the close connection between event horizons and thermodynamics which has been found in
the case of black holes can be extended to cosmological models with a repulsive cosmological constant. An
observer in these models will have an event horizon whose area can be interpreted as the entropy or lack of
information of the observer about the regions which he cannot see. Associated with the event horizon is a
surface gravity v which enters a classical "first law of event horizons*' in a manner similar to that in which
temperature occurs in the first law of thermodynamics. It is shown that this similarity is more than an

analogy: An observer with a particle detector will indeed observe a background of thermal radiation coming
apparently from the cosmological event horizon. If the observer absorbs some of this radiation, he will gain

energy and entropy at the expense of the region beyond his ken and the event horizon will shrink. The
derivation of these results involves abandoning the idea that particles should be defined in an observer-
independent manner. They also suggest that one has to use something like the Everett-Wheeler interpretation
of quantum mechanics because the back reaction and hence the spacetime metric itself appear to be observer-

dependent, if one assumes, as seems reasonable, that the detection of a particle is accompanied by a change in
the gravitational field.

I. INTRODUCTION

The aim of this payer is to extend to cosmologi-
cal event horizons some of the ideas of thermo-
dynamics and particle creation which have recently
been successfully applied to black-hole event
horizons. In a black hole the inward-directed
gravitational field yroduced by a collapsing body is
so strong that light emitted from the body is drag-
ged back and does not reach an observer at a large
distance. There is thus a region of spacetime
which is not visible to an external observer. The
boundary of the region is called the event horizon
of the black hole. Event horizons of a different
kind occur in cosmological models with a repul-
sive A term. The effect of this term is to cause
the universe to expand so rapidly that for each ob-
server there are regions from which light can
never reach him. We shall call the boundary of
this region the cosmological event horizon of the
observer.

The "no hair" theorems (Israel, ' Muller sum
Hagen et al. ,

' Carter, ' Hawking, ' Robinson' ')
imply that a black hole formed in a gravitational
collapse will rapidly settle down to a quasistation-
ary state characterized by only three yarameters,
the mass MH, the angular momentum J» and the
charge Q„. A black hole of a given M„,J„,Q„
therefore has a large number of possible unobserv-
able internal configurations which reflect the dif-
ferent possible initial configurations of the body
that collapsed to produce the hole. In purely clas-
sical theory this number of internal configurations
would be infinite because one could make a given
black hole out of an infinitely large number of

particles of indefinitely small mass. However,
when quantum mechanics is taken into account, one
would expect that in order to obtain gravitational
collapse the energies of the particle would have to
be restricted by the requirement that their wave-
length be less than the size of the black hole. It
would therefore seem reasonable to postulate that
the number of internal configurations is finite. In
this case one could associate with the black hole an

entropy S~ which would be the logarithm of this
number of possible internal configurations. '~

For this to be consistent the black hole would have
to emit thermal radiation like a body with a tem-
perature

Q2

The mechanism by which this thermal radiation
arises can be understood in terms of pair creation
in the gravitational potential well of the black hole.
Inside the black hole there are particle states
which have negative energy with respect to an ex-
ternal stationary observer. It is therefore ener-
getically possible for a pair of particles to be
spontaneously created near the event horizon. One
particle has positive energy and escapes to infinity,
the other yarticle has negative energy and falls
into the black hole, thereby reducing its mass.
The existence of the event horizon would prevent
this happening classically but it is possible quan-
tum-mechanically because one or other of the
yarticles can tunnel through the event horizon. An

equivalent way of looking at the pair creation is
to regard the positive- and negative-energy par-
ticles as being the same particle which tunnels
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out from the black hole on a spacelike or past-
directed timelike world line and is scattered onto
a future-directed world line (Hartle and Hawking'0).
When one calculates the rate of particle emission
by this process it turns out to be exactly what one
would expect from a body with a temperature
T„=h(2&Ac) 'z„, where v„ is the surface gravity
of the black hole and is related to M~, JH, and

Qz by the formulas

~„=(r.—y )c'y, ',
r = c '[GMa (G'M' J'M-'c' GQ')'~']

y '= r '+G 2J M"'e'

A. ~= 4gro'.

A H is the area of the event horizon of the black
hole.

Combi:~ing this quantum- mechanical argument
with the thermodynamic argument above, one
finds that the total number of internal configura-
tions is indeed finite and that the entropy is given
by

S„=(4G8') 'kc'A„.

Cosmological models with a repulsive A term
which expand forever approach de Sitter space
asymptotically at large times. In de Sitter space
future infinity is spacelike. "" This means that
for each observer moving on a timelike world line
there is an event horizon separating the region of
spacetime which the observer can never see from
the region that he can see if he waits long enough.
In other words, the event horizon is the boundary
of the past of the observer's world line. Such a
cosmological event horizon has many formal simi-
larities with a black-hole event horizon. As we
shall show in Sec. III it obeys laws very similar
to the zeroth, first, and second laws of black-
hole mechanics in the classical theory. " It also
bounds the region in which particles can have nega-
tive energy with respect to the observer. One
might therefore expect that particle creation with
a thermal spectrum would also occur in these
cosmological models. In Secs. IV and V we shal. l.

show that this is indeed the case: An observer
wi11 detect thermal radiation with a characteristic
mavelength of the order of the Hubble radius. This
would correspond to a temperature of less than
10 "'K so that it is not of much practical signifi-
cance. It is, however, important conceptually be-
cause it shows that thermodynamic arguments can
be applied to the universe as a whole and that the
cl.ose relationship between event horizons, gravi-
tational fields, and thermodynamics that was
found for black holes has a wider validity.

One can regard the area of the cosmological

event horizon as a measure of one's lack of know-

ledge about the rest of the universe beyond one' s
ken. If one absorbs the thermal. radiation, one
gains energy and entropy at the expense of this
region and so, by the first law mentioned above,
the area of the horizon will go down. As the area
decreases, the temperature of the cosmological
radiation goes down (unlike the black-hole case),
so the cosmological event horizon is stable. On
the other hand, if the observer chooses not to
absorb any radiation, there is no change in area
of the horizon. This is another illustration of the
fact that the concept of particle production and
the back reaction associated with it seem not to
be uniquely defined but to be dependent upon the
measurements that one wishes to consider.

The plan of the paper is as follows. In Sec. II
we describe the black-hole asymptotically de Sitter
solutions found by Carter. " In Sec. III we derive
the classical laws governing both cosmol. ogical and
black-hole event horizons. In Sec. IV we discuss
particl. e creation in de Sitter space. W'e abandon
the concept of particles as being observer-inde-
pendent and consider instead what an observer
moving on a timelike geodesic and equipped with
a particle detector would actually measure. W' e
find that he would detect an isotropic background
of thermal radiation with a temperature (2w) '~c
where ~~ = A'~'3 '~' is the surface gravity of the
cosmological event horizon of the observer. Any
other observer moving on a timel. ike geodesic wi. ll
also see isotropic radiation with the same tem-
perature even though he is moving relative to the
first observer. This shows that they are not ob-
serving the same particles: Particles are observ-
er-dependent. In Sec. V we extend these results
to asymptotically de Sitter spaces containing black
holes. The implications are considered in Sec. VI.
It seems necessary to adopt something like the
Everett-Wheeler interpretation of quantum mech-
anics because the back reaction and hence the
spacetime metric mill be observer-dependent, if
one assumes, as seems reasonable, that the de-
tection of a particle is accompanied by a change
in the gravitational field.

We shall adopt units in which 6 =@=0=c= 1. %'e

shall use a metric with signature +2 and our con-
ventions for the Riemann and the Ricci tensors are

& ~dVa. t'g;c] 2 ~ ~c Vd

R+ Rg Qc ~

II. EXACT SOLUTIONS WITH COSMOLOGICAL EV'ENT
HORIZONS

In this section we shall give some examples of
event horizons in exact solutions of the Einstein
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equations

g,~-~g~A+Ag, ~=8nT, ~ . (2 1) r=V ~&, V=O

UV =- ~(S)

=-1
=0

We shall consider only the case of A positive (cor-
responding to repulsion&. Models with negative A

do not, in general, have event horizons.
The simplest example is de Sitter space which

is a solution of the field equations with T„=O.
One can write the metric in the static form

ds'=-(I -Ar'3 ')dt'+dr'(I -A~'3 ') '
UV=-1
r =0

X,u=o

+x'(d H'+ sin'Hdg') . (2.2) UV = 1(5)
r =co

This metric has an apparent singularity at r
= 3'/'A '/'. This singularity caused considerable
discussion when the metric was first discov-
ered. "'" However, it was soon realized that it
arose simply from a bad choice of coordinates
and that there are other coordinate systems in
which the metric can be analytically extended to
a geodesically complete space of constant curva-
ture with topology A'&S'. For a detailed descrip-
tion of these coordinate systems the reader is
referred to Refs. 12 and 19. For our purposes it
will be convenient to express the de Sitter metric
in "Kruskal coordinates":

ds' = 3A '(U V-1) '

x[ 4dUdV -+(UV +I)'(d 'H+si n' Hdg') j

(2.3)

where

~ =3'~'A-'~'(UV+I)(I -UV)

exp(2A'~23-'~'t) = —VU-'.

(2.4)

{2.5)

The structure of this space is shown in Fig. l. In

this diagram radial null geodesics are at +45' to
the vertical. The dashed curves UV=-& are time-
like and represent the origin of polar coordinates
and the antipodal point on a three-sphere. The
solid curves VV=+1 are spacelike and represent
past and future infinity 8 and 8', respectively.

In region I (U&0, V&0, UV&-1) the Killing vec-
tor K=8/Bt is timelike and future-directed. How-

ever, in region IV (U&0, V&0, UV &—1, K is still
timelike but past-directed, while in regions II and

III (0& UV&1) K is spacelike. The Killing vector K
is null on the two surfaces U=O, V=(f. These are
respectively the future and past event horizons for
any observer whose world line remains in region
I; in particular for any observer moving along a
curve of constant r in region I.

By applying a suitable conformal transformation
one can make the Kruskal diagram finite and con-
vert it to the Penrose-Carter form (Fig. 2). Radi-
al null geodesics are still. +45' to the vertical but

the freedom of the conformal factor has been used

FIG. 1. Kruskal diagram of the (r, t) plane of de
Sitter space. In this figure null geodesies are at + 45
to the vertical. The dashed curves r =0 are the anti-
podal origins of polar coordinates on a three-sphere.
The solid curves r = ~ are past and future infinity &

and &+, respectively. The lines r =3 ~ A are the
past and future event horizons of observers at the ori-
gin.

to make the origin of polar coordinates, r =0, and
future and past infinity, 8' and 8, straight lines,
Also shown are some orbits of the Killing vector
K=8/st. Because de Sitter space is invariant
under the ten-parameter de Sitter group, SO(4, 1),
E will not be unique. Any timelike geodesic can
be chosen as the origin of polar coordinates and
the surfaces U=O and V=O in such coordinates
will be the past and future event horizons of an
observer moving on this geodesic. If one normal-
izes E to have unit magnitude at the origin, one
can define a "surface gravity" for the horizon by

E,.~K =a~K, {2.6)

r=m, 8 '

r =oo, 8

FIG. 2. The Penrose-Carter diagram of de Sitter
space. The dotted curves are orbits of the Killing vec-
tor.
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on the horizon. This gives

Aj /23 -1/2
C

The area of the cosmological horizon is

Ac = 12''A

(2.7}

(2.&)

+r'(d 8'+ sin'8d P') . (2.9}

One can also construct solutions which general-
ize the Kerr-Newman family to the case when A

is nonzero. ' " The simplest of these is the
Schwarzschild-de Sitter metric. When A = 0 the
unique spherically symmetric vacuum spacetime
is the SchwarzschiM solution. The metric of this
can be written in static form:

ds'=-(1 —2M' ')dt'+dr'(I -2M' ') '

left-hand side of the diagrari there is another a
asymptotically flat region IV. The Killing vector
K = 8/&t is now uniquely defined by the condition
that it be timelike and of unit magnitude near 8'
and ~ . It is timelike and future-directed in re-
gion I, timelike and past-directed iri region IV,
and spacelike in regions II and ID. The Killing
vector E is null on the horizons which have area
A„=16aM'. The surface gravity, defined by (2.6},
is ~„=(4M) '.

The Schwarzschild solution is usual. ly interpreted
as a black hole of mass M in an asymptotically flat
space. There is a straightforward generalization
to the case of nonzero A which represents a black
hole in asymptotically de Sitter space. The metric
can be written in the static form

As is now well known, the apparent singularities
at ~= 2M correspond to a horizon and can be re-
moved by changing to Kruskal coordinates in which
the metric has the form

ds'=-(I -2M' ' —Ar'3 ')dt'

+d~'(I 2Mr-'-A~'3 ')-'

+r'(d 8' + sin'8dg') . (2.13)
sd'=- 23M' 'exp( 2'M -'r)dUd V

+x'(d 8'+ sin'8d p'),

where

UV=(1 2'M-'r} exp(2 'M 'x}

and

UV '=-exp(-2 'M 't). .

(2.10)

(2.11)

(2.12)

r= 0

The Penrose-Carter diagram of the Schwarzschild
solution is shown in Fig. 3. The wavy lines marked
~ = 0 are the past and future singularities. Region
I is asymptotically flat and is bounded on the right
by past and future null infinity 8 and O'. It is
bounded on the left by the surfaces U=O and V=O,
r =2M. These are future and past event horizons
for observers who remain outside x= 2M. On the

If A & 0 and 9A M' & 1, the factor (1 —2M' ' -Ax'3 ')
is zero at two positive values of x. The smaller of
of these values, which we shall denote by x„can
be regarded as the position of the black-hole event
horizon, while the larger value x„represents the
position of the cosmological event horizon for ob-
servers on world lines of constant r between r,
and x„. By using Kruskal coordinates as above
one can remove the apparent singularities in the
metric at x, and r„. One has to employ separate
coordinate patches at r, and x„. We shall not
give the expressions in full because they are rath-
er messy; however, the general structure can be
seen from the Penrose-Carter diagram shown in
Fig. 4. Instead of having two regions (I and Iv) in
which the Killing vector K = &/&t is timelike, there
are now an infinite sequence of such regions, also
labeled I and IV depending upon whether K is,
future- or past-directed. There are also infinite
sequences of x=O singularities and spacelike in-
finities ~' and ~ . The surfaces x =~, and x =~„
are black-hole and cosmological event horizons
for observers moving on world lines of constant

r=0 r=Q

FIG. 3. The Penrose-Carter diagram of the Schwarzs-
child solution. The wavy lines and the top and bottom
are the future and past singularities. The diagonal
lines bounding the diagram on the right-hand side are
the past and future null infinity of asymptotically flat
space. The region IV on the left-hand-side is another
asymptotically flat space.

r=Q r=Q

FIG. 4. The Penrose-Carter diagram for Schwarzs-
child-de Sitter space. There is an infinite sequence of
singularities r = 0 and spacelike infinities r = ~. The
Killing vector &= 8/8t is timelike and future-directed
in regions I, timelike and past-directed in regions IV
and spacelike in the others.
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x between r, and x„.
The Killing vector K = &/St is uniquely defined

by the conditions that it be null on both the black-
hole and the cosmological horizons and that its
magnitude should tend to A' '3 ' 'r as z tends to
infinity. One can define black-hole and cosmolo-
logical surface gravities aH and ~~ by

K, .~E = gK,

on the horizons. These are given by

a„=A6 '~, '(r„-r,)(r, -r ),
zc=A6 'x, , '(r„-r,)(r„—r ),

where x = x is the negative root of

3~ -6M -Ar' = 0.
The areas of the two horizons are

&„=4ay,'

and

(2.14)

(2.15a)

(2.15b)

(2.16)

(2.17)

(2.18)

If one keep~ A constant and increases M, r, will
increase and x„will decrease. One can under-
stand this in the following way. When M=0 the
gravitational potential g(s/at, 8/st) is 1 Ar'3 -'.
The introduction of a mass M at the origin pro-
duces an additional potential of -2Mr '. Horizons
occur at the two values of r at which g(S/St, S/St)
vanishes. Thus as M increases, the black-hole
horizon r, increases and the cosmological hori-
zon r„decreases. When 9AM' =1 the two hori-
zons coincide. The surface gravity E can be
thought of as the gravitational field or gradient
of the potential at the horizons. As M increases
both ~H and v~ decrease.

The Kerr —Newman-de Sitter space can be ex-
pressed in Boyer-I indquist-type coordinates
as20, 21

ds = p (b,„dr +b,e 'de )

There are apparent singularities in the metric
at the values of r for which 6„=0. As before,
these correspond to horizons and can be removed
by using appropriate coordinate patches. The Pen-
rose-Carter diagram of the symmetry axis (8=0)
of these spaces is shown in Fig. 5 for the case
that 4, has 4 distinct roots: r, r, r „and

As before, r„and r, can be regarded as
the cosmological and black-hole event horizons,
respectively. In addition, however, there is now

an inner black-hole horizon at r =x . Passing
through this, one comes to the ring singularity at
r =0, on the other side of which there is another
cosmological horizon at x=r and another infin-
ity. The diagram shown is the simplest one to
draw but it is not simply connected; one can take
covering spaces. Alternatively one can identify
regions in this diagram.

The Killing vector K= &/Q is uniquely defined by
the condition that its orbits should be closed
curves with parameter length 2w. The other Kiii-

where

+p '= '
AI eatd(r' a+')dQ]'-

'p '(dt-asin'&dP)', (2.19)

p2 = y'2 + g2 COS2 g

& =(r +a')(1 Ay'3 '}-2Mr+Q', —

Ee =1+Aa 3 cos

==1+ha'3 '.

(2.20)

(2.21)
(2.22)

(2.23)

A, =Qrp '= '(6', -a sin'Ã~}. (2.24)

Note that our A has the opposite sign to that in

Ref. 21.

The electromagnetic vector potentials, is given by

FIG. 5. The Penrose-Carter diagram of the symme-
try axis of the Kerr —Newman —de Sitter solution for
the case that Q has four distinct real roots. The in-
finities r =+~ and r =- ~ are not joined together. The
external cosmological horizon occurs at r =r++ the ex-
terior black-hole horizon at r = r+, the inner black-hole
horizon at r =r . The open circles mark where the ring
singularity occurs, although this is not on the symmetry
axis. On the other side of the ring at negative values of
r there is another cosmological horizon at r =r and
another infinity.
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The areas of these horizons are

W „=4~(r, '+ a'),
A c = 4m(r„'+a') .

(2.21)

(2.28)

III. CLASSICAL PROPERTIES OF EVENT HORIZONS

In this section we shall generalize a number of
results about black-hole event horizons in the
classical theory to spacetimes which are not
asymptotically flat and may have a nonzero cosmo-
logical constant, and to event horizons which are
not black-hole horizons. The event horizon of a
black hole in asymptotically flat spacetimes is
normal. ly defined as the boundary of the region
from which one can reach future null infinity, ~',
along a future-directed timelike or null curve. In
other words it is J (8') [or equivalently I (&')],
where an overdot indicates the boundary and J
is the causal past (I is the chronological past).
However, one can also define the black-hole hori-
zon as I (A.), the boundary of the past of a time-
like curve A. which has a future end point at future
timelike infinity, i' in Fig. 3. One can think of A.

as the world line of an observer who remains out-
side the black hole and who does not accelerate
away to infinity. The event horizon is the bound-

ary of the region of spacetime that he can see if
he waits long enough. It is this definition of event
hori. zon that we shall extend to more general
spacetimes which are not asymptotically flat.

Let ~ be a future inextensible timelike curve
representing an observer's world line. For our
considerations of particle creation in the next sec-
tion we shall require that the observer have an in-
definitely long time in which to detect particles.
We shall therefore assume that A, has infinite prop-
er length in the future direction. This means that
it does not run into a singularity. The past of A. ,
I (X), is a terminal indecomposable past set, or
TIP in the language of Geroch, Kronheimer, and
Penrose. ' It represents all the events that the ob-
server can ever see. We shall assume that what
the observer sees at late times can be predicted
(classically at least) from a spacelike surface 3,

ing vector K = 8/at is not so specially picked out.
One can add different constants multiples of Jf to
K to obtain Killing vectors which are null on the
different horizons and one can then define surface
gravities as before. We shall be interested only
in those for the r„x„horizons. They are

z„=A6 '= '(r, r-)(r, r)-(r„r-,}(r,'+a') ',
(2.25)

ec=A6 '. '(r„r,)-(r„r)(r-„r)(r-,'+a'} '.
(2.26)

i.e. , I (A) A J'(3) is contained in the future Cauchy
development 8'(S)." We shall also assume that
I (&) & J'(&), the portion of the event horizon to
the future of S, is contained in D'(S). Such an
event horizon will be said to be predictable. The
event horizon will be generated by null geodesic
segments which have no future end points but
which have past end points if and where they in-
tersect other generators. " In another paper" it
is shown that the generators of a predictable event
horizon cannot be converging if the Einstein equa-
tions hold (with or without cosmological constant),
provided that the energy-momentum tensor sat-
isfies, the strong energy condition T,„u'u'
-3 1';u'u, for any timelike vector u„ i.e. , pro-
vided that p, +P; ~0, p, +L', P; ~0, where )j. is
the energy density and P& are the principal pres-
sures. This gives immediately the following re-
sult, which, because of the very suggestive anal-
ogy with thermodynamics, we call:

The second law of event horizons: The area of
any connected two surfa-ce in a Predictable event
horizon cannot decxease saith time. The area may
be infinite if the two-di. mensional cross section is
not compact. However, in the examples in Sec. II,
the natural two-sections are compact and have con-
stant area.

In the case of gravitational collapse in asymp-
totically flat spacetimes one expects the space- .

time eventually to settle down to a quasistationary
state because all the avail. able energy will either
fall through the event horizon of the black hole
(thereby increasing its area} or be radiated away
to infinity. In a similar way one would expect that
where the intersection of I (A) with a spacelike
surface S had compact closure (which we shall as-
sume henceforth}, there would only be a finite
amount of energy available to be radiated through
the cosmological event horizon of the observer
and that therefore this spacetime would eventually
approach a stationary state. One is thus lead to
consider solutions in which there is a Killing vec-
tor K which is timelike in at least some region of
I (A) ll J'(8). Such solutions would represent the
asymptotic future l.imit of general spacetimes with
predictable event horizons.

Several results about stationary empty asymp-
totically flat black-hol, e solutions can be general-
ized to stationary solutions of the Einstein equa-
tions, with cosmological constant, which contain
predictable event horizons. The first such theo-
rem is that the null geodesic generators of each
connected component of the. event horizon must
coincide with orbjts of some Killing vector. 4' '

These Killing vectors may not coincide with the
original Killing vector K and may be different for
different components of the horizon. In either of
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these two cases there are at least two Killing vec-
tors. One can chose a linear combination K whose
orbits are spacelike closed curves in I (&}A J (I).
One coul.d interpret this as implying that the solu-
tion is axisymmetric as wel, l as being stationary,
though we have not been able to prove that there
is necessarily any axis on which K vanishes.

Let E be the Killing vector which coincides with
the generators of one component of the event hori-
zon. If K is not hypersurface orthogonal and if
then space is empty or contains only an electro-
magentic field, one can apply a generalized
Lichnerowicz theorem"" to show that K must be
spacelike in some "ergoregion" of I (A). One can
then apply energy extraction arguments"'" or
the results of Hajicek" to show that this ergore-
gion contains another component of the event hori-
zon whose generators do not coincide with the or-
bits of K. It therefore follows that either K is
hypersurface orthogonal (in which case the solu-
tion is static) or that there are at least two Kill-
ing vectors (in which case the solution is axis-
symmetric as well as stationary). If there is
only a cosmological horizon and no black-hole
horizon, then the solution is necessarily static.

One would expect that in the static vacuum case
one could generalize Israel's theorem" to prove
that the space was spherically symmetric. One
could then generalize Birkhoff's theorem to in-
clude a cosmological constant and show that the
space was necessarily the Schwarzschild-de Sitter
space described in Sec. II. In the case that there
was only a cosmological event horizon, it would
be de Sitter space. In the stationary axisymme-
tric case one would expect that one could general-
ize and extend the results of Carter and Robin-
son"' to show that vacuum solutions were mem-
bers of the Kerr-de Sitter family described in
Sec. II. If there is matter present it mill distort
the spacetime from the Schwarzschild-de Sitter
or Kerr-de Sitter solution just as matter around
a black hole in asymptotically flat space will dis-
tort the spacetime away from the Schwarzschild
or Kerr solution.

The proof given in Ref. 13 of the zeroth law of
black holes can be generalized immediately to
the case of nonzero cosmological constant. One
thus has:

The zeroth laze of event horizons: The surface
gravity of a connected component of the event hori-
zon I (A.) is constant over that component. This
is analogous to the zeroth law of nonrelativistic
thermodynamics which states that the tempera-
ture is constant over a body in thermal equili-
brium. We shall show in Secs. IV and V that
quantum effects cause each component of the
event horizon to radiate thermally with a

temperature proportional to its surface gravity.
One can also generalize the first law of black

holes. %e shall do this for stationary axisymme-
tric solutions with no electromagnetic field and
where I (A} & J'(S) consists of two components,
a black-hole event horizon and a cosmological
event horizon. Let K be the Killing vector which
is null. on the cosmological event horizon. The
orbits of K will constitute the stationary frame
which appears to be nonrotating with respect to
distant objects near the cosmological event hori-
zon. In the general case the normalization of K
is somewhat arbitrary but we shall assume that
some particular normalization has been chosen.
The Killing vector K which coincides with the gen-
erators of the bl.ack-hole horizon can be expressed
in the form

K=K'+0 K, (3.1)

where OH is the angular velocity of the black-hole
horizon relative to the cosmological horizon in
the units of time defined by the normalization of
K and E is the uniquely defined axial Killing vec-
tor whose orbits are cl.osed curves with parame-
ter length 2r.

For any Killing vector field $' one has

(a;b It a Tb
4

(3.2)

where the three-surface integral on the right-hand
side is taken over the portions of 8 between the
black-hole and cosmological horizons and the
two-surface integrals marked H and C are taken
over the intersections of S with the respective
horizons, the orientation being given by the direc-
tion out of I (A.). One can interpret the right-hand
side of (3.3) as the angular momentum of the
matter between the two horizons. One can there-
fore regard the second term on the left-hand side
of (3.3) as being the total angular momentum, Zc,
contained in the cosmological horizon, and the
first on the left-hand side term as the negative of
the angular momentum of the black hole, JH.

One can also apply Eq. (3.2) to the Killing vec-
tor K to obtain

(4lr) ' ll"'dE., +(4lr) 'fir"'dE

= JiE(T., ', T;4 ,)A r)E, + fA(4rr) AdE=. ',
(3.4)

Choose a three-surface 8 which is tangent to K,
and integrate (3.2) over it with )=K. On using
Einstein's equations this gives

(8rr) f(C d'E+(8"')rr' lC"'dE„JT"Cr,dE, , =
H C

(3.3}
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One can regard the terms on the right-hand side
of Eq. (3.4) as representing respectively the (posi-
tive) contribution of the matter and the (negative)
contribution of the A term to the mass within the
cosmological horizon. One can therefore regard
the second term on the left-hand side as the (nega-
tive) mass Mc within the cosmological horizon
and the first term on the Left-hand side as the
negative of the (positive) mass Ms of the black
hole. As in Ref. 13, one can express M„and M~

M„=K„A„(4ir) '+2Q„J„,
Mc —-KcAc(4i(')

One therefore has the Smarr-type" formulas

(3.5)

(3.6)

M, =-x,A, (4v}-'

=«„A«(4«) '«2()«Z„«J2(T., T;(! ,)K-'«():.

+(4)(') ' AK, dZ'. (3.7)

IV. PARTICLE CREATION IN DE SITTER SPACE

In this section we shall calculate particle crea-
tion in solutions of the Einstein equations with
positive cosmological constant. The simplest ex-
ample is de Sitter space and particle production
in this situation has been studied by Nachtmann, "
Tagirov, "Candelas and Raine, "and Dowker and
Critchley, "among others. They all used definit-

One can take the differential of the mass formu-
la in a manner similar to that in Ref. 13. One ob-
tains:

The first lacu of event horizons.

l5T~E'dZ = —z,5Ac(8tr) K„t')A„(8z)--Q„5J„,
(3.8)

where &T„ is the variation in the matter energy-
momentum tensor between the horizons in a gauge
in which 5E'= 6E'=0.

From this law one sees that if one regards the
area of a horizon as being proportional to the en-
tropy beyond that horizon, then the corresponding
surface gravity is proportionaL to the effective
temperature of that horizon, that is, the tempera-
ture at which that horizon would be in thermal
equilibrium and therefore the temperature at
which that horizon radiates. In the next section
we shall show that the factor of proportionality
between temperature and surface gravity is (2i(') '.
This means that the entropy is & the area. In the
case of the cosmological horizon in de Sitter
space the entropy is SmA '&10" because A & 10 " .

ions of particles that were observer-independent
and invariant under the de Sitter group. Under
these conditions only two answers are possible
for the rate of particle creation per unit volume,
zero or infinity, because if there is nonzero pro-
duction of particles with a certain energy, then
by de Sitter group invariance there must be the
same rate of creation of particles with all other
energies. It is therefore not surprising that the
authors mentioned above chose their definitions
of particles to get the zero answer.

An observer-independent definition of particles
is, however, not relevant to what a given observ-
er would measure with a particle detector. This
depends not only on the spacetime and the quantum
state of the system, but also on the observer's
world line. For example, Unruh" has shown that
in Minkowski space in the normal vacuum state
accelerated observers can detect and absorb par-
ticles. To a nonaccelerating observer such an
absorption will appear to be emission from the
accelerated observer's detector. In a similar
manner, an observer at a constant distance from
a black hoke will detect a steady flux of particles
coming out from the hole with a thermal spectrum
while an observer who falls into the hole will not
see many particles.

A feature common to the examples of a uniform-
ly accelerated observer in Minkowski space and
an observer at constant distance from the black
hole is that both observers have event horizons
which prevent them from seeing the whole of the
spacetime and from measuring the complete quan-
tum state of the system. It is this loss of informa-
tion about the quantum state which is responsible
for the thermal radiation that the observers see.
Because any observer in de Sitter space also has
an event horizon, one would expect that such an ob-
server would also detect thermal radiation. %e
shall show that this is indeed the case. This can
be done either by the frequency-mixing method in
which the thermal radiation from black holes was
first derived, "'"or by the path-integral method
of Hartle and Hawking. "We shall adopt the Latter
approach because it is more elegant and gives a
clearer intuitive picture of what is happening.
The same results can, however, be obtained by
the former method.

As in the method of Hartle and Hawking, "we
construct the propagator for a scalar field of
mass m by the path integral

G(x, x'}= lim (I dWF(W, x, x') exp[-(im'W+eW ')],
0 0

(4 &)

where
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—T'+S'+X'+ F'+Z'=3A ' (4.3)

in the five-dimensional. space with a Lorentz me-
tric:

ds =-dT +QS +/X +d Y +dZ (4.4)

Taking T to be i w (T real}, we obtain a sphere in
five-dimensional Euclidean space. On this sphere
the function F satisfies the diffusion equation

Q2F (4.5}

where 0 = i W and 2' is the Laplacian on the four-
sphere. Because the four-sphere is compact there
is a unique solution of (4.5} for the initial condition

Z(O, x, x') = 5(x, x'), (4.6)

where 5(x, x') is the Dirac 5 function on the four-
sphere. One can then define the propagator
G(x, x') from (4.1) by analytically continuing the
solution for F back to real values of the parame-
ter W and real coordinates x and x'. Because the
function F is analytic for finite points x and x',
any singularities which occur in G(x, x') must
come from the end points of the integration in
(4.1). As shown in Ref. 10, there will be singu-
larities in G(x, x') when, and only when, x and x'

can be joined by a null geodesic. This mill be the
case if and only. , if

(T T')' = (S -S')'+-(X-X')'+ (Y'- 1")'+(Z -Z')'.

(4.7)

The coordinates, T, S,X, F, Z can be related to
the static coordinates t, r, 8, Q used in Sec. 11 by

T=(A3 ' r')')'sinhA'~'3 -'~ t

S= (A3 ' r')'~'coshA'~'3 -'~'t

X=r sin8cos{t),

Y=r sin8sing,

Z =~ cos8.

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

The horizons Ax'=3 are the intersection of the
hyperplanes T = ~S.with the hyperboloid. As in

)l())', x, x') = f()x{w]exp 4 ){i,i)dw (4.2)
0

and the integral is taken over all paths x(w) from
x to x'.

As in the Hartle and Hawking paper, ' this path
integral can be given a well-defined meaning by
analtyically continuing the parameter W to nega-
tive imaginary values and analytically continuing
the coordinates to a region where the metric is
positive-definite. A convenient way of doing this
is to embed de Sitter space as the hyperboloid

Ref. 10 me define the complexified horizon by Ax'
=3, 8, Q real. On the complexified horizon X, Y,
and Z are real and either Z'=S=p-'~'3'~'V, U=O
or T=-S=A '~'3'~'U, V=O. By Eq. (4.7) a com-
plex null geodesic from a real point (T', S', X', Y', Z')
on the hyperboloid can intersect the complex hori-
zon only on the real sections T=+S real. If the
point (T', S', X', Y', Z') is in region I (S&lTl) the
propagator G(x', x) will. have a singularity on the
past horizon at the point mhere the past-directed
null geodesic from x' intersects the horizon. As
shown in Ref. 10, the e convergence factor in (4.1}
will displace the pole slightly below the real axis
in the complex plane on the complexified past hori-
zon. The propagator G(x', x) is therefore analytic
in the upper half U plane on the past horizon. Sim-
ilarly, it will be analytic in the lower Vplane on
the future horizon.

The propagator G(x', x) satisfies the wave equa-
tion

(o;-m')G(x', x) =-5(x, x) (4.13)

Thus if x' is a fixed point in region I, the value
G(x', x) for a point in region II will be determined
by the values of G(x', x) on a characteristic Cauchy
surface for region II consisting of the section of
the U=O horizon for real V&0 and the section of
the V=O horizon for real U&0. The coordinates
x and t of the point x are related to U and V by

82 KQg

r= (1+UV)(1 —UV) 'Kc '
(4.14)

(4.15)

If one holds r fixed at a real value but lets t = 7+ia,
then

U= lUl exp(-ioKc),

V=
I Vl exp(+ivKc).

(4.16)

(4.17)

(4.19}

commutes with the Klein-Gordon operator H„'- m'
and is zero when acting on the initial data for a

For a fixed value of o' the metric (2.3) of de Sitter
space remains real and unchanged. Thus the val-
ue of G(x', x) at a complex coordinate t of the point
x but real r, 8, Q can be obtained by solving the
Klein-Gordon equation with real coefficients and
mith initial data on the Cauchy surface V=O,
U= IUI exp(-tKco') and U=O) V= IVI exp(+iKc(T).
Because G(x', x} is analytic in the upper half U

plane on V=O and the lomer half Vplane on U=O,
the data and hence the solution will be regular pro-
vided that

(4.18)

The operator
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satisfying (4.18). Thus the solution G(x', x) de-
termined by the initial data will be analytic in the
coordinates t of the point x for o satisfying Eq.
(4.18).

This is the basic result which enables us to
show that an observer moving on a timelike geo-
desic in de Sitter space will detect thermal radi-
a,tion.

The propagator we have defined appears to be
similar to that constructed by other authors. " '
However, our use of the propaga, tor will be dif-
ferent: Instead of trying to obtain some observer-
independent measure of particle creation, we shall
be concerned with what an observer moving on a
timelike geodesic in de Sitter space would mea-
sure with a particle detector which is confined to
a small tube around his world line. Without loss
of generality we can take the observer's world
line to be at the origin of polar coordinates in
region I. Within the world tube of the particle
detector the spacetime can be taken as flat.

The results we shall obtain are independent of
the detailed nature of the particle detector. How-
ever, for explicitness we shall consider a particle
model of a detector similar to that discussed by
Unruh" for uniformly accelerated observers in
flat space. This will consist of some system such
as an atom which can be described by a nonrela-
tivistic Schrodinger equation

where t' is the proper time along the observer's
world line, B, is the Hamiltonian of the undis-
turbed particle detector and g(t)C is a coupling
term to the scalar field P. The undisturbed par-
ticle detector will have energy levels E, and
wave functions 4', (R')e 's~', where R' represents
the spatial position of a point in the detector.

By first-order perturbation theory the ampli-
tude to excite the detector from energy level E,
to a higher-energy level EJ is proportional to

dt' d'R'4
& gal+, exp[ i(E& —E-~) t'].

In other words, the ctetector responds to compo-
nents of field Q which are positive frequency along
the observer's world line with respect to his
proper time. By superimposing detector levels
with different energies one can obtain a detector
response function of a form

f(t')&(R)

where f(t') is a purely positive-frequency func-
tion of the observer's proper time t' and h is zero
outside some value of z' corresponding to the
radius of the particle detector. Let 6' be a three-

surface which completely surrounds the observ-
er's world line. If the observer detects a par-
ticle, it must have crossed 6' in some mode k&

which is a solution of the Klein-Gordon equation
with unit Klein-Gordon norm over the hypersur-
face O'. The amplitude for the observer to detect
such a particle will be

(4.20)

where the volume integral in x' is taken over the
volume of the particle detector and the surface
integral in x is taken over 6'.

The hypersurface 6' can be taken to be a space-
like surface of large constant r in the past in
region III and a spacelike surface of large con-
stant r in the future in region II. In the limit that
r tends to infinity these surfaces tend to past in-
finity 5 and future infinity d, respectively. We
shall assume that there were no particles present
on the surface in the distant past. Thus the only
contribution to the amplitude (4.20) comes from
the surface in the future. One can interpret this
as the spontaneous creation of a pair of particles,
one with positive and one with negative energy
with respect to the Killing vector K = a/St. The
particle with positive energy propagates to the
observer and is detected. The particle with neg-
ative energy crosses the event horizon into region
II where K is spaeelike. It ean exist there as a
real particle with timelike four-momentum. .

Equivalently, one can regard the world lines of
the two particles as being the world line of a
single particle which tunnels through the event
horizon out of region II and is detected by the
observer.

Suppose the detector is sensitive to particles of
a certain energy E. In this case the positive-
frequency-response function f (t) will be propor-
tional to e '~'. By the stationarity of the metric,
the propagator G(x', x) can depend on the coordi-
nates t' and t only through their difference. This
means that the amplitude (4.20) will be zero ex-
cept for modes k& of the form X(r, 8, y) e ' '. H
one takes out a 6 function which arises from the
integral over t —t', the amplitude for detection
is proportional to

(4.21)

where R' and R denote respectively (r', O', Q') and
(r, 8, (t)) and the radial and angular integrals over
the functions h and X have been factored out.
Using the result derived above that G(x', x) is
analytic in a strip of width me~

' below the real
t axis, one can displace the contour in (4.21)
down my~

' to obtain
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ii (R', B)=exp( wE~-s )f'dei' 'G(O, R', t-ivy ',H), (4.22)

By Eqs. (4.16) and (4.17) the point (t-isxc, r, 8, cp) is the point in region III obtained by reflecting in the
origin of the U, V plane. Thus

~ ~ /amplitude for particle with energy)amplitude for particle of energy E to propagate =exp mE-xc ' E to propagate from region III and
from region II and be absorbed by observer

gabe absorbed by observer

(4.23)

By time-reversal invariance the latter amplitude is equal to the amplitude for the observer s detector in
an excited state to emit a particle with energy E which travels to region II. Therefore

probability for detector to absorb, probability for detector to emit
~

~ ~

=exp 2@Ex-c '
a particle from region II a particle to region II

(4.24)

This is just the condition for the detector to be in
thermal equilibrium at a temperature

T =(2m) 'xc-=(12) "'v 'A'" (4.25)

The observer will therefore measure an isotropic
background of thermal radiation with the above
temperature. Because all timelike geodesics are
equivalent under the de Sitter group, any other
observer will also see an isotropic background
with the same temperature even though he is
moving relative to the first observer. This is
yet another illustration of the fact that different
observers have different definitions of particles.
It would seem that one cannot, as some authors
have attempted, construct a unique observer-
independent renormalized energy-momentum ten-
sor which can be put on the right-hand side of
the classical Einstein equations. This subject
will be dealt with in another paper. "

Another way in which one can derive the result
that a freely moving observer in de Sitter space
will see thermal radiation is to note that the
propagator G(x, x') is an analytic function of the

coordinates T, S, T', S', or alternatively U, V, O', V'

except when x and x' can be joined by null geo-
desics. On the other hand, the static-time co-
ordinate t is a multivalued function of T and S or
U and V, being defined only up to an integral mul-
tiple of 2n'ice '. Thus the propagator G(x', x) is
a periodic function of t with period 2mi~~ . This
behavior is characteristic of what are known as
"thermal Green's functions. '"' These may be de-
fined (for interacting fields as well as the non-
interacting case considered here) as the expecta-
tion value of the time-ordered product of the field
operators, where the expectation value is taken
not in the vacuum state but over a grand canonical
ensemble at some temperature T =P '. Thus

Gr(x', x) =iTr[e 8 "gy(x)y(x))/Tre 8",

(4.26)

where 8 denotes Wick time-ordering and H is the
Hamiltonian in the observer's static frame. P is
the quantum field operator and Tr denotes the
trace taken over a complete set of states of the
system. Therefore

-iGr (R', I', R, t) = Tr [e 8 "8P(R, t) rp(R, t ') ]/T re 8"

=Tr[e 8 "8 rp(R', f'}e "e "Q(R, i)]/Tre

=Tr[e '%y(R', t'+iP)y(R', i}]/Tre '"
=-iGr(R', t'+iP; R, i). (4.27)

Since

Q(R, t}=e "@(R,t-iP}e ". (4.28)

Thus the thermal propagator is periodic in t —t'
with period i T '. One would expect Gr(x', x) to
have singularities when x and x' can be connected
by a null geodesic and these singularities would
be repeated periodically in the complex t'- t
plane. It therefore seems that the propagator

I

G(x', x) that we have defined by a path integral is
the same as the thermal propagator Gr(x', x) for
a grand canonical ensemble at temperature T
T = (2x) 'xc in the observer's static frame. Thus
to the observer it will seem as if he is in a bath
of blackbody radiation at the above temperature.
It is interesting to note that a similar result was
found for two-dimensional de Sitter space by
Figari, Hoegh-Krohn, and Nappi'4 although they
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did not appreciate its significance in terms of
particle creation.

The correspondence between G(x', x) and the
thermal Green's function is the same as that
which has been pointed out in the black-hole case
by Gibbons and Perry. " As in their paper, one
can argue that because the free-field propagator
G(x, x) is identical with the free-field thermal
propagator Gr(x', x), any n-point interacting
Green's function G which can be constructed by
perturbation theory from G in a renormalizable
field theory will be identical to the n-point inter-
acting thermal Green's function constructed from
G~ in a similar manner. This means that the re-
sult that an observer will think himself to be
immersed in blackbody radiation at temperature
7 = ~(2m) ' will be true not only in the free-field
case that we have treated but also for fields with
mutual interactions and self-interactions. In
particular, one would expect it to be true for the
gravitational field, though this is, of course, not
repormalizable, at least in the ordinary sense.

It is more difficult to formulate the propagator
for higher-spin fields in terms of a path integral.
However, it seems reasonable to define the prop-
agators for such fields as solutions of the relevant
inhomogeneous wave equation with the boundary
conditions that the propagator from a point x' in
region I is an analytic function of x in the upper
half U plane and lower half V plane on the com-
plexified horizon. With this definition one ob-
tains thermal radiation just as in the scalar case.

U. PARTICLE CREATION IN BLACK-HOLE
DE SITTER SPACES

For the reasons given in Sec. III one would ex-
pect that a solution of Einstein's equations with
positive cosmological constant which contained
a black hole would settle down eventually to one
of the Kerr-Newman-de Sitter solutions described
in Sec. II. We shall therefore consider what would
be seen by an observer in such a solution. Con-
sider first the Schwarzschild-de Sitter solution.
Suppose the observer moves along a world line A,

of constant r, 8, and Q in region l of Fig. ..4. The
world line A, coincides with an orbit of the static
Killing vector K = s/st. Let qr' =g(K, K) on h.. One
would expect that the observer would see thermal
radiation with a temperature Tc = (2m/) 'ac coming
from all directions except that of the black hole
and thermal radiaf, ion of temperature T s= (2m@) 'xs
coming from the black hole. The factor g appears
in order to normalize the static Killing vector to
have unit magnitude at the observer. The varia-
tion of g with r can be interpreted as the normal
red-sbifting of temperature.

There are, however, certain problems in show-
ing that this is the case. These difficulties arise
from the fact that when one has two or more sets
of horizons with different surface gravities one
has to introduce separate Kruskal-type coordi-
nate patches to cover each set of horizons. The
coordinates of one patch will be real analytic. func-
tions of the coordinates of the next patch in some
overlap region between the horizons in the real
manifold. However, branch cuts arise if one
continues the coordinates to complex values. To
see this, let U„V, be Kruskal coordinates i.n a
patch covering a pair of intersecting horizons
with a surface gravity z, and let U„V, be a neigh-
boring coordinate patch covering horizons with
surface gravity K, . In the overlap region one has

VU-&—
1 1

V U 1 2K2t
2 2

(5 l)

(5.2)

Thus

(5.3)

where I'= gz, '. There is thus a branch cut in
the relation between the two coordinate patches if
K24 K~,

One way of dealing with this problem would be to
imagine perfectly reflecting walls betweeri each
-black-hole horizon and each cosmological horizon.
These walls would divide the manifold up into a
number of separate regions each of which could
be covered by a single Kruskal-coordinate patch.
In each region one could construct a propagator
as before but with perfectly reflecting boundary
conditions at the walls. By arguments similar
to those given in the previous section, these prop-
agators will have the appropriate periodic and
analytic properties to be thermal Green's functions
with temperatures given by the surface gravities
of the horizons contained within each region. Thus
an observer on the black-hole side of a wall will
see thermal radiation with the black-hole tempera-
ture, while an observer on the cosmological side
of the wall will see radiation with the cosmological
temperature. One would expect that, if the walls
were removed, an observer would see a n'. ixture
of radiation as described above.

Another way of dealing with the problem would
be to define the paopagator G(x', x) to be a solution
of the inhomogeneous wave equation on the real
manifold which was such that if the point were
extended to complex values of a Krushal-type-
coordinate patch covering one set of intersecting
horizons, it would be analytic on the complexified
horizon in the upper half or lower half U or V
plane depending on whether the point x was re-
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spectively to the future or the past of V =0 or
U=O. Then, using a similar argument to that in
the previous section about the dependence of the
propagator on initial data on the complexified
horizon, one can show that the propagator G(x', x)
between a point x in region I and a point x in re-

gion II~ is analytic in a strip of width n~ below
the real axis of the complex t plane. Similarly,
the propagator G(x', x) between a point x' in re-
gion I and a point x in region IIH will be analytic
in a strip of width wc~ . Using these results one
can show that

(probability of a particle of energy E, ) (probability of a particle of energy E,)
relative to the observer, propagating ~=expj-(E2~gzc ')] relative to the observer, propagating l,

( from g' to observer (from observer top' ~

(5.4)

and similarly the probability of propagating from
the future singularity of the black hole will be
related by the appropriate factor to the probability
for a similar particle to propagate from the ob-
server into the black hole. These results estab-
lish the picture described at the beginning of this
section.

One can derive similar results for the Kerr-
de Sitter spaces. There is an additional complica-
tion in this case because there is a relative angular
velocity between the black hole and the cosmologi-
cal horizon. An observer in region I who is at a
constant distance r from the black hole and who is
nonrotating with respect to distant stars will
move on an orbit of the Killing vector K which is
null on the cosmological horizon. For such an
observer the probability of a particle of energy E,
relative to the observer, propagating to him from
beyond the future cosmological horizon will be
exp[- (2mgEv~ ')] times the probability for a sim-
ilar particle to propagate from the observer to
beyond the cosmological horizon. The probabili-
ties for emission and absorption by the black hole
will be similarly related except that in this case
the energy E mill be replaced by E —nQH, where
n is the aximuthal quantum number or angular mo-
mentum of the particle about the axis of rotation of
the black hole and Q~ is the angular, velocity of the
black-hole horizon relative to the cosmological
horizon. As in the ordinary black-hole case, the
black hole will exhibit superradiance for modes
for which E& nQ~. In the case that the observer
is moving on the orbit of a Killing vector K which
is rotating with respect to the cosmological hori-
zon, one again gets similar results for the radia-
tion from the cosmological and black-hole hori-
zons with E replaced by E -nQ~ and E-nQ~, re-
spectively. %here Q~ and Q~ are the angular
velocities of the cosmological and black-hole hori-
zons relative to the observers frame and are de-
fined by the requirement that K+ Q~K and K+Q~K
should be null on the cosmological and black-hole
horizons.

VI. IMPLICATIONS AND CONCLUSIONS

We have shown that the close connection be-
tween event horizons and thermodynamics has a
wider validity than the ordinary black-hole situa-
tions in which if was first discovered. As observer
in a cosmological model with a positive cosmo-
logical constant will have an event horizon whose
area can be interpreted as the entropy or lack of
information that the observer has about the regions
of the universe that he cannot see. When the solu-
tion has settled down to a stationary state, the
event horizon will have associated with if a surface
gravity z which plays a role similar to tempera-
ture in the classical first law of event horizons
derived in Sec. III. As mas shown in Sec. IV.,
this similarity is more than an analogy' . The ob-
server will detect an isotropic background of
thermal radiation with temperature (2a) 'a coming,
apparently, from the event horizon. This result
was obtained by considering what an observer
with a particle detector would actually measure
rather than by trying to define particles in an
observer-independent manner. An illustration of
the observer dependence of the concept of particle
is the result that the thermal radiation in de Sitter
space appears isotropic and at the same tempera-
ture to every geodesic observer. If particles had
an observer-independent existence and if the radi-
ation appeared isotropic to one geodesic observer,
it would not appear isotropic to any other geodesic
observer. Indeed, as an observer approached the
first observer's future event horizon the radiation
would diverge. It seems clear that this observer
dependence of particle creation holds in fhe case
of black holes as well: An observer at constant
distance from a black hole will observe a steady
emission of thermal radiation but an observer
falling info a black hole will not observe any di-
vergence in the radiafion g,s he approaches the
first-observer's event horizon.

A consequence of the observer dependence of
particle creation would seem to be that the back
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reaction must be observer-dependent also, if one
assumes, as seems reasonable, that the mass of
the detector increases when it absorbs a particle
and. therefore the gravitational field changes.
This will be discussed further in another paper, "
but we remark here that it involves the abandoning
of the concept of an observer-independent metric
for spacetime and the adoption of something like
the Everett-%heeler interpretation of quantum
mechanics. '6 The latter viewpoint seems to be
required anyway when dealing with the quantum
mechanics of the whole universe rather than an
isolated system.

If a geodesic observer in de Sitter space chooses
not to absorb any of the thermal radiation, his
energy and entropy do not change and so one would
not expect any change in the solution. However,
if he does absorb some of the radiation, his en-
ergy and hence his gravitational mass will in-
crease. If the solution now settles dowg again to
a new stationary state, it follows from the first

law of event horizons that the area of the cosmo-
logical event horizon will be l,ess than it appeared
to be before. One can interpret this as a reduc-
tion in the entropy of the universe beyond the
event horizon caused by the propagation of some
radiation from this region to the observer. Un-
like the black-hole case, the surface gravity of
the cosmological horizon decreases as the horizon
shrinks. There is thus no danger of the observer's
cosmological event horizon shrinking catastroph-
ically around him because of his absorbing
too much thermal radiation. He has, however, to
be careful that he does not absorb so much radia-
tion that his particle detector undergoes gravita-
tional collapse to produce a black hole. If this
were to happen, the black hole would always have
a higher temperature than the surrounding uni-
verse and so would radiate energy faster than it
absorbs it. It would therefore evaporate, leaving
the universe as it was before the observer began
to absorb radiation.
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