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It is shown that there are only two distinct conformally flat solutions of the coupled Einstein scalar field

equations. One of them has recently been given by Penney.

I. INTRODUCTION

When one puts certain symmetries on a space-
time and assumes the Einstein field equations, the
number of independent solutions is either one or
two for a given source. Conformally flat space-
times constitute an excellent example for this. It
has been shown that there are only two independent
conformally flat solutions of the Einstein-Maxwell
field equations. " For perfect-fluid distribution,
the Sehwarzschild interior metric is the unique
stationary conformally flat solution. ' When the
fluid admits an equation of state, Robertson-Walker
metrics are the only eonformally flat metrics. 4

Recently, Penney' gave a simple solution of the
conformally flat metric of the coupled massless
scalar and the gravitational field equations. In
this work, we prove that there are only bvo dis-
tinct solutions when the source is a massless scal-
ar field. The other solutions are related to these
by coordinate transformations.
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Equations (4) and (5) imply that
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Using Eqs. (3) and ('I), we get

0, p;v =r(%p4v, ~, gpv) ~

where

If A =0, instead of Eq. (8) we have
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where

W =y-'(3y y -3Q),
B = gQ (3Q —P $)(9Q —5$ Q) .

For the solutions, we need the following identity:

II. FIELD EQUATIONS

Conformally flat space-time has a metric tensor'

Equation (ll) was obtained from

R pnRv =RRpv y (13)

where p is an arbitrary function of coordinates.
The corresponding Hicci tensor is
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where

Q=q""y „y, ,

vy =q"'s„s„y.
Conformal flatness implies both the vanishing of
the conformal tensor and of

1
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The field equations are

(3)

which describes the case when the source is a
scalar field. Finally, we write the Einstein-scal-
ar field equations to be solved:
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III. SOLUTIONS

By use of Eqs. (8), (11), and (14) it is straight-
forward to show that

g q=aQ p

Q p=c(f) q,
1

Rpv ——,gi, vR = -KTpv,

where T„, is the energy-momentum tensor. For a
scalar field g, it reads

where

p~ =Ka Q ~ Q „+by~„, (18)

where a and c are functions of p and its deriva-
tives. Then Eq. (14) becomes

with h =-,'y '(3Q —y y). (19)
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It is possible to find all solutions of Eq. (18). To
this end, we separate these solutions into two
classes

|'a) b=O case, o~

p —3A =0.

Equation (18) reduces to

(21)ov=xa P o(f) „~

Contracting p, and v with q"" in Eq. (21) and using
Eq. (20), it follows that

Ka =3/ (22)

With this result, Eq. (21) becomes simpler, i.e.,
(23)

yj—3j'+ 5s 'y j=0, (32)

where

where dots on p denote differentiation with respect
to s. The general solution of (32) is

~o
=bo—

where Qo and $0 are arbitrary positive constants.
The corresponding scalar field P is

tanh '(~ '8'), & 's'~& I6 i/a

cot '(~ '~'), & 's'»,6 '/'

K

=kox +ao, (24)

j./2
ln(a, +k„x"),

2K
(25)

where ao is an arbitrary constant which may be
taken to be unity by a coordinate transformation.
The solutions p

' and P are those obtained by
Penney.

(b) bgO case. When we take one more derivative
of Eq. (18) with respect to x", the left-hand side
becomes completely symmetric with respect to the
indices p. po, . Therefore, the right-hand side must
also be symmetric. Hence we obtain

2eag „(a „P „-a,P ~) +ma b(q„„P v-q» P ~)

+b .q„„-b,q„.=0. (26)

It is trivial to show that Eq. (26) reduces to the
following set of equations

a ~=A (g /~a s)P p,

b o=Ka bQ p ~ (28)

With the help of Eq. (28), the partial-differential
equations in (18) reduce to

(b P, o), v 'gov

or

4, o =b«o+Iv)

where E„ is a constant vector which may be re-
moved by a translation. Equation (30) implies that

p is a function of s, where

s =(q„vxvxv)'/ (31)

Combining Eqs. (19) and (30), we obtain

where k„ is an arbitrary constant vector. The cor-
responding scalar field is

The space-time becomes Qat when either a, or 5,
vanishes.

IV. DISCUSSION AND CONCLUSION

We have shown that there exist only tyro solutions
of the conformally flat coupled Einstein-scalar-
field equations. One of the solutions had been
found previously by Penney. He also showed that
p&

=
Q 0& is a Killing vector when k„, which ap-

years in the metric, is a null vector. It is trivial
to prove that any vector g„=p 'n„ is a Killing vec-
tor, where n„ is an arbitrary constant vector orth-
ogonal to k&. Hence, under the infinitesimal trans-
formation x„-x„'=x„+e$„ the metric is form invari-
ant.

There is yet another method to find the two met-
rics we have obtained in the preceding section.
Bekenstein' has shown that if g„„and g form a so-
lution of Einstein equations for a space-time con-
taining an ordinary massless scalar field, then
g„„=&o 2g„„and @ =g 'tanhfg is the corresponding
solution for a conformal scalar field @, where u '
= cosh/( and f = (a/6) ' o. .it is interesting to note
that the vanishing of the energy-momentum tensor
does not necessarily imply that the conformal scal-
ar field @ vanishes. Instead @ satisfies'

(@ )iov Yogpv s

where yo is an arbitrary constant. This equation
is valid for types N, 0, or flat space-times. In
our case, the type 0 and flat space are the same,
because there is no source. Hence, if we assume
that g&„ is a flat metric, there exist only two dis-
tinct solutions of C . Then using Bekenstein's the-
orem we obtain two distinct solutions for g» and

These solutions are nothing but those we ob-
tained in the preceding section.
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