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A new formalism describing statistical decay of a fireball is developed. The final state of fireball decay is
defined in the quantum-mechanical sense. The formalism allows strict conservation of internal symmetries.

I. INTRODUCTION AND STATEMENT OF THE PROBLEM

Recently many versions of the statistical boot-
strap model (SBM)"have been derived and ap-
plied to fireball decay. '~ A common feature of
the models is that according to the principle of
reciprocity the decay proceeds in subsequent
steps. A single decay step consists of the decay
of a parent fireball into daughter fireballs (or
ground-state particles). The probability of one
particular type of decay step is proportional to
the total phase space of the daughter fireballs.
The various models differ from each other in the
choice of quantum numbers of the fireballs (e.g. ,
exotics included or excluded), in the number of
daughter fireballs allowed in one decay step (e.g. ,
full bootstrap or linear bootstrap), and also in the
coupling of the parent fireball to the daughter
fireballs.

When introducing internal symmetries definite
transformation properties are attributed to the
fireballs; e.g. , isoscalar or isovector fireballs
are introduced. On the other hand, because of the
nature of the decay mechanism ( i.e. , subsequent
decay steps with the probabilities and not tke
amp/itudes specified) it is not possible to attri-
bute definite transformation properties to the final
state of the decay. Thus, strictly speaking, though
isospin or SU(3) is conserved at each decay step,
internal quantum numbers are not conserved in
the whole decay process.

To check whether the symmetry is or is not
violated in the whole decay process the branching
ratios predicted by the model should be compared
with predictions of the symmetry. It is clear that
final states with only a few particles are most
dangerous. For many particles there are many
ways of coupling into a state of definite transfor-
mation properties. According to the Wigner-
Eckart theorem different reduced matrix ele-
ments may correspond to each way of coupling,
thus the number of parameters is large and there
are only a few constraints (or none at all) due to
the symmetry. Thus it may seem that the above
symmetry violation is not a. really important

shortcoming of the models. However, it is by no
means clear that the branching ratios of a really
consistent model are close to those of a (usual)
symmetry-violating model. In fact, the opposite
is true in the specific example of a consistent
model given below (see end of Sec. III).

We want to emphasize that symmetry violation
is only a, possibility and is not necessarily present
in all the above models. E.g. , in Ref. 5, where
the coupling of the parent and daughter fireballs
is according to the statistical isospin weights,
SU(2) is not violated in the whole decay process.

In this note a new formalism describing the
statistical decay of a fireball is introduced for the
no-internal-quantum-number (NIQN) case (Sec.
II). The final state of the decay is defined in the
quantum-mechanical sense, hence the extension
to the SU(2) or SU(3) symmetric case (Sec. III)
strictly conserves internal symmetries. In the
NIQN case the formalism is general enough to
describe a rather large class of statistical mod-
els. Section IV investigates the behavior of the
models in the large-fireball-mass limit. 1n par-
ticular, the criterion for the existence of a maxi-
mal temperature is derived. Section V is a sum-
mary of the results. Some technical details of the
SU(3) symmetric models are given in Appendix A.
Appendix B contains abrief discussion of the
finite-quantization-volume case.

. II. MODELS WITHOUT INTERNAL QUANTUM NUMBERS

In this section we investigate models with a
single, neutral ground-state particle with mass
m. Generalization for the case with SU(2) or
SU(3) multiplets of ground-state particles will be
given in Sec. III.

In all versions of the SBM the generating func-
tional of fireball decay is given by

9

where Q~ is the four-momentum of the decaying
fireball and Q(q„) is the test function,
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.I
I4(Q)&= N(Q, ) Q &"z(~) („,), g,

p;, = (~'+p, ')' ' and o" is a coupling constant of
dimension GeV '. The numbers g(n) differ in the
specific versions of the SBM and contain all the
dynamical information of the model. "" It is
essential that the g(n)'s are independent of Q'.

According to the usual terminology the integrals
in Eq. (2) are called Boltzmann imariant momen-
tum-space (IMS) integrals (for Q=—1). However,
it is clear that they are in fact proportional to the
true Bose-Einstein IMS integrals for infinite
quantization volume. Thus Eqs. (1) a,nd (2) are. not
necessarily in contradiction with quantum mechan-
ics. We shall discuss the case of a finite volume
in Appendix B.

It is easy to verify that the various distributions
which may be derived from Eqs. (1) and (2) are
identical to those which may be derived from as-
suming a quantum-mechanical state vector of the
final state of the form

wher«'(p, ) are usual creation operators with the
commutator s

[a(P), a'(p')] = 2P.6'(p —p')

and N(Q') is a normalization factor.
In fact the probability density of observing an n

particle state with momenta p„p„.. . ,p„ is
given by

l(((a) !,' ~'(i;) 0)I' (4)

The scalar product in Eq. (4) may be easily eval-
uated and we immediately arrive at the generating
functional of Eqs. (1) and (2). To calculate the
total weight of n-particle states Eq. (4) should be
integrated over the momenta avd multiplied by
(g!) '. The last fa,ctor takes into account the fact
that a specific final state is reproduced 'jul times
by the momentum integration.

Introducing the unnormalized state vector

I k(Q)& = N(Q')
I P(Q)& (6)

we can prove that
I P(Q)& satisfies the integral

equation

with

and

N = at(p)a(p)
d'p

2Po

the particle-number operator. Vice versa, postu-
lating Eq. (6) as an integral equation describing
fireball decay, we arrive at Eqs. (1) and (2), i.e.,
the usual result. The normalization factor squared
N(Q')' just corresponds to o[Q; n']

The most natural choice of the function f(n)
seems to be f(n) —= 1. In this case Eq. (6) may be
interpreted in the usual way recalling the recip-
rocity principle4 as a linear bootstrap equation.
A fireball is characterized by the state vector of
its decay final state

I Q(Q)&. The decaying fireball
is either a ground-state particle [first term on
the right-hand side of Eq. (6)], or it consists of a
ground-state particle and another (daughter) fire-

ball [second term on the right-hand side of Eq.
(6)]. As the ground-state particle and the daughter
fireball (of the second possibility) are independent
of each other, the product of their wave functions
should be taken [as done in Eq. (6)j. Unfortunate-
ly, the choice f(n) = 1 corresponds to a model with
rather unphysical high-mass properties (see Sec.
IV). In the following we shall not confine f(n) to
any specific choice.

It is clear that Eq. (6) is only a formal descrip-
tion of fireball decay. Many other integral equa-
tions" may lead to the same generating functional,
some of which may have better intuitive physical
justification than Eq. (6). For our purposes the
important feature is that Eq. (6) can be easily
generalized to a consistent model with internal
symmetr'ies.

III. GENERALIZATION TO THE SU(n)-SYMMETRIC CASE

In this section we write down the analog of Eq.
(6) for the case of pseudoscalar-nonet ground-state
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particles and SU(3) symmetry. Inclusion of vector
and tensor mesons (neglecting their spins) as well
as extension to higher symmetries [e.g. „SU(4)]
is straightforward.

To obtain the required generalization the crea-
tion operator a"(p) of Eq. (6) is replaced by a
matrix of creation operators [the SU(3) meson
matrix]:

—QII 0+ C OS ~ Q~ + 8]Ln 0~0a

—a~~ sin&+ f7~~, cosa

where 8 is the mixing angl. e of pseudoscalar mesons relative to the ideal mixing. We assume fireballs
with SU(3) nonet transformation properties, thus the (unnormalized) state vector will also carry two SU(3)
indices:

~
(t)(Q),;. The generalization of Eq. (6) is then given by

l
»((t)&: .y() )

=' ~ ,~
'"- »'(()):l o&"I.J—,"-"-d'"»'('):—"" '

~
(")&,*()'( —.-"&, (8)

0 cz 2~0

xo= (nz'+ r')'~2, where m is the common mass of the pseudoscalar nonet, and N is the particle-number
operator, /

]" d'
M'(p);——M(p)'. .

2p

The solution of Eq. (8) is easy to obtain:

»'(», ):»'(», ) '»'(». )l" '&' ~() —f»~) l
0),

0 i=i
(10)

with g(~) ==f(g)(~!)'~'. The probability density of a
specific final state with /, neutral pions (momenta.
p'„. . . , p~ ), I, positive pions (momenta p,', . . . .p'; ),
etc. is given by the square of. the scalar product;:

».(Q')= J ff ~
'

&'(Q -gP,), (13)

I(»!0&». ;—Q(Q~'(5]&) o) I',

where 1V;(Q') is the normalization factor of

i e(Q));.
Equation (10) shows that the integral equation

(8) implies a specific SU(3) coupling of the final-
state particles. To evaluate this coupling the
powers of the Mt matrix should be calculated.
After this the scalar product in Eq . .(11) may be
easily determined. A great simplification occurs
as M (p, )M (p,)' ~ M (p ) is multiplied by a sym-
metric function of the momenta, thus antisymmet-
ric terms cancel. (]VI~)" is calculated in Appendix
A. Here we quote only the result for the SU(2)
case and an 4= 0 fireball. In this simple case
(M~)" may be calculated directly. Only even total
pion numbers occur. , and the probability to observe
a final state with 2$ mo's and k m'm- pairs is

1 Ig(2(l+ k))l 2(„„&0+ I '

IV(Q')' [2(I ~)]]
2$

(2I) ~ (&l) p () )))(Q ) (12)

is the invariant momentum-space integral. The
specific coupling scheme mentioned above is really
very simple in the SU(2) case: pions are coupled
in pairs into I=O states. Thus for even (odd) total
pion number we have I = 0 (1). Note that the dis-
tribution (12) is very different from the (binomial
for fixed total pion number) distribution of Ref. 9.

IV. THE LARGE-F IREBALL-MASS LIMIT

In this section we study the behavior of the mod-
els for large fireball mass. In particular we want
to find those models which are characterized by a
maximal temperature.

Let us start with the NIQN case. As the gener-
ating functional is given in terms of an expansion,
Eq. (2), the most convenient method to study the
high-mass behavior is the "dominant phase space"
method of Ref. 13. (The same results may be
also obtained by the Laplace-transformation meth-
od of Ref. 4.) Excluding the possibility g(n) —= 0 for
n&n, fixed, it is clear that for M ~ the large-
multiplicity channels will be the most important
ones. Our task is then to find the multiplicity
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n Blm1=-—
M gp

(15)

Now it is easy to determine the dominant multi-
plicity by looking for the maximum of the right-
hand side of Eq. (14) as a function of n, which we
treat as a continuous variable. The p value corre-
sponding to the dominant multiplicity is determined
by the equation

— g( M/(el /SS)}-
g(-M/(si /s ))

, ( )
dg(n)

dn

(16)

for any finite M. There is a maximal temperature
T, in the model if and only if lime. „P(M) =P„turns
out to be finite. Thus we see that a maximal tem-
perature exists if lim„„[g (n)/g(n)] =q is a finite
number. The maximal temperature To=p„' is
then determined from the equation

&'z e~ = 1.

If g'/g- —~, arbitrarily high temperatures are
possible. If g'/g-+ ~ from Eq. (16) we obtain
T,= 0, i.e. the model overemphasizes the high-
multiplicity channels and in the M -~ limit all
the decay products will be at rest.

Starting from Eq. (12) the same procedure may
be applied in case of the SU(2)-symmetric model.
The only difference is that we have to look for the
dominant phase space as a function of two vari-.
ables k, l. The result is qualitatively the same
as in the NIQN case. There is a maximal tem-
perature To, when lim„„[g'(n)/g(n)] =q is finite.
The equation determining T, reads as

2a ] (18)

The above qualitative results as well as Eq. (18)
are valid for both the I= 0 and I= 1 fireballs.

We were not able to study the high-mass behavior
of the SU(3) symmetric model in a fully satisfac-
tory way. The main difficulty is that the weight
of a particular final state is proportional to the
square of a finite sum, as given in Appendix A.
For specific choices of the final states (e.g. , ex-

which yields the largest contribution at a fixed
large value of the fireball mass M. Approximating
the IMS ihtegrals by the Lurcat-Mazur-Krzywicki'
formula, we have for large M

g'(n) o.'"p„(M') ~ exp[Mp + n Inz(p)

+ 2n Ino. + 21rg(n)], (14)

where z(P) = 2m(m/P)K, (mp) and p =P (n/M) is deter-
mined by the equation

eluding q, q' and K mesons) it can be proved that
the qualitative result on the existence of the maxi-
mal temperature is the same as in the NIQN and

SU(2) cases. It is clear physicall'y (and may also
be obtained from our formulas) that a larger set
of possible final states only lowers the value of
the maximal temperature. ' We conclude that
there is a maximal temperature in the SU(3)-
symmetric model if lim „[g'(n)/g(n)] is finite.
By the same arguments we can also establish
upper limits for the maximal temperature. The
best upper limit is obtained from the solution of

o."cos'ez e"= 1 (cote & 2 ' ').
T

It is amusing to note that, due to the specific
nature of coupling, excluding some particles from
the final states does not always increase the maxi-
mal temperature. An example of this is the SU(2)
model with final states containing charged pions
excluded. As can be easily checked, the maximal
temperature is given by Eq. (18}, i.e. , it does not
change at all.

V. SUMMARY

In the previous sections we have given a formal-
ism describing fireball decay which allows strict
conservation of internal quantum numbers. The
formalism is a straightforward generalization of
the usual one in the no-internal-quantum-number
case. In this case it is a formal description of a
large class of statistical decays. By the word
"statistical" we understand that a given multipli-
city is distributed according to IMS (phase space).
The characteristic of this class of models is that
the dependence on the fireball mass of the ratio
of weights of multiplicities m and n is given only
by the ratio of IMS (phase-space) integrals, i.e. ,
g(m)p (M')/g(n)p„(M') [with g(n) independent of
M].

The basic equation for the SU(3)-symmetric
model with the pseudoscalar-meson nonet taken as
ground-state particles and SU(3}-nonet fireballs
is our Eq. (8). A specific SU(3) coupling of the
final states is implied by this equation, thus SU(3)
is treated nonstatistically in the present model. "
The model is completely specified by the function
f(n) in Eq. (8). The model ean be easily general-
ized to include vector and tensor mesons (neglec-
ting spins). There is a natural way of introducing
SU(3) breaking. The prescription is to use the
observed masses of pseudoscalar mesons in Eq.
(8). The explicit solution of the basic equation is
easily obtained in both the SU(3}-symmetric and
broken-SU(3) cases. It is given by Eq. (10) and
the formulas in Appendix A.

/
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We have established criteria for the existence
of a maximal temperature in various models.
Our treatment is incomplete for the SU(3) model
as we did not succeed in writing down the exact
equation for the. maximal temperature; we have
given only an upper bound for it. Nevertheless,
with the help of the formulas in Appendix A all
the distributions of the SU(3) model may be cal-
culated for finite fireball mass.

The formalism may be extended to the case of a
finite quantization volume. The necessary modi-

fications are briefly discussed in Appendix B.
Naturally, the structure of these models is more
complicated than in the infinite-volume case,
therefore we did not attempt a study of their
asymptotic properties here.
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APPENDIX A

(Al)

As was explained in Sec. III in order to calculate the weight of a specific final state in the SU(3)-sym-
metric model we have to calculate the powers of the Mt matrix. We suppress inthefollowingmomentum
variables and denote ato by &', a~+ by &', etc. To calculate the nth power of the Mt matrix note that

1+M~+Mt'+ =(1-Mt) '

(1 —Mt) 1= [det(1 -M~)] 'M

where

(A2)

m'—
1+ "" (1 q,) K0K0

2

(1 —qPr +K K0

1+ -" K+g K

(1 -q, )0 +K0K'

(
ma+ g1 — " (1 —q,) -K'K

W2

1 — " Ko+w X-

1+ ' "" Z'+& Zo
v2

" Xo+&-X'

1 — — " 1+ " -m m'

with

q„= g cos 8+ g' sin 8, q, = —g sin8+ g' cos 8.

It is now straightforward to expand det(1 -M~) ' in terms of powers of 110,m', li', . . .. The result is

(I Mt)-ia ( 1)ka+k18 (cos e)k8+kl1(sing)k74k 8 $ ( 7+ 8) ' ( k9 k10)
b ."~k ! A!Pyk ~ o ~ 3 ky2 0 v u 1=1

ll 13' 'Ma(li 0)3kgokaoka(1T+)kl+k10(li )kkok10ilk7 kllq k8 k13(KO)kl k3+ka(K0)kk+k3 8(K+)kkok4+k8
t,'a+k +k ~!

b

X (K )' "4"8, (A4)

where

A = k~+ k2+ k3+ k4+ k5+ k6,

B= 2(k, +k, +k, + ka+ ka+k„)+k, +k, + 1.
The number of particles is given by

n = 3(kl+ kk+ k, + k,)+ 2(k, + k4+ ka+ k„)
+ k7+ k, + k,~+ k~2+ l~,

where l~=0, 1, or 2 depending on the number of
particles in a particular term of M'b. It is easy
to find (M )" from (A4): it is given by the terms

with particle number equal to n. The above for-
mulas are valid in the broken-SU(3) model, too
[i.e., when SU(3) breaking is introduced only by
the masses].

APPENDIX B

We shall discuss here the generalization of our
formalism to both the NIQN and SU(3)-symmetric
cases with a finite quantization. volume. "

We take a cubic box with volume l' as a quantiza-
tion volume. The possible values of the momen-
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turn are then p= (I1/l)k, with k„,k„k,=0,+1,
+ 2, ' ' . The set of normalized states is given by

[' j („,). . . (p ) l o&,

where the n, .'s denote the numbers of equal-mo-
mentum particles. Z,n, =n=total particle num-
ber. For the commutators we have

(normalized) state appears n!II@,! times in the
sum.

The "integral equation" [analog of Eq. (6)] reads

I e@»=f(1»o,, (. ,-,.)1i"'(4)I
0&

f(N+ 1) 1

f(N) (N )1 ~2

[~$),~'(p')] = s;,~.

Assuming equal weight. for all the possible mo-
mentum configurations of an m-particle state we
arrive at the state vector of the final state of
fireball decay

where

x l 4(~')», , „.„.', (B3)

and

+(Q)&=N
@

Qg(n)

2 . .
'

g &'$1)
I O&so, Z

kgb ~~~
~ kg

(B2)

h~
p)= —k;

N= Z ~'$)s(p),

f(„) g(n)
I

The normalized state vector is

l@(Q)&= N l 4(Q)&.

The total weight of n-particle final states is easily
obtained from (B2):

W ~

N.=,.["$).$)]!.
Sums and products are running over all possible
values of k, (compatible with four-momentum con-
servation). so c.& ' is a product of four Kronecker

Z g

5 symbols. Equation (B2) is the analog of Eq. (3).
The factor (N~)'~' in (B2) is necessary as a single

~)"), —, 0
' 'a(j,.) a'(f,.) 0) t'q „,'n

Ig(n) I'
= -N( ). o„(Q'), (B4)

where a„(Q') is the Bose-Einstein invariant phase-
space or momentum-space integral. ""

The generalization to the SU(3) case is given by

l 4(Q)&;=f(1)so„( 2,da)1i2M's(Q)+ Z (N )1"M'(r);,
(N)
—(N, ~, l

y(&')&o'so„.,'
x, r'

where

z= 2 E M')p) M)p). , x,= ".];(2 M'rp);M@)') ~

The solution of Eq. (Bs) is
1 /2

l y(q)&;= gg(n) ~, pM".1(p,)M"1(p )" M""-'$„)l0&s, „,',
n kg

where

g(n) =f(n)n! .
The total weight of n-particle states may be written in the following form:

(BS)

(B7)
nl' 1

Q

where N, (Q) is the normalization factor of
l Q(Q)&, . A great simplification in the calculation of the above

matrix element is that terms antisymmetric in p,. cancel. To evaluate (B7) essentially powers of the M
matrix should be calculated. (B7) is a sum of quantum-mechanical invariant phase-space (momentum-
space) integrals.
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