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D. G. Caldi~
Department of Physics, Rutgers University, ¹wBrunswick, ¹wJersey 08903

Heinz Pagels~
The Rockefeller University, New York, ¹wYork 10021

(Received 15 December 1976)

This article is a continuation of our previous work on the p-vr puzzle. It examines further consequences of the
unification of partial conservation of axial-vector current (PCAC) and vector-meson dominance (VMD) in
which the pion is a Goldstone state and the p is "dormant" Goldstone state. Our new picture of. the vector
mesons does not require an Ai meson although such a state is not ruled out, The %'einberg sum rules which
provide the raison d'etre for the A, are reexamined. The first Weinberg sum rule can be accommodated
without a narrow Al state although some enhancement seems required. Examining the J c = 1+ nonet we
conclude that a new state, the isoscalar octet partner of the B(1235) should exist around 1.7 GeV assuming
ideal mixing. Without a detailed assumption on the mixing angle, its mass should be in the range 1.4 to 1.7
GeV. We also discuss the photon-p interactions. In the standard VMD picture the predicted rate for p —lm + y
fails by five standard deviations, while in our picture this undesired result is averted.

I. INTRODUCTION

In a previous paper, ' hereafter referred to as
I, we proposed a new interpretation of vector me-
sons and vector-meson dominance (VMD) in which
VMD is seen to be a consequence of spontaneous
symmetry breaking. In this way partial conserva-
tion of axial-vector current (PCAC) and (VMD)
are unified. In this article we shall develop this
idea further by .considering how our picture deals
with some aspects of vector-meson phenomenology
which we did not discuss in I.

The essential feature of the interpretation of
vector mesons which we proposed in I is that they
transform as members of a (3, 3) 8 (3, 3) repre-
sentation of chiral SU(3) SSU(3). Hence, the p
vector meson, for example, has the same chiral
representation content as the pion. So the p and
the m can be in the same SU(6) multiplet, the 36,
and still the m can be a Nambu-Goldstone boson
without difficulty. Under chiral SU(6) SSU(6) the
vectors and pseudosealars transform as members
of (6, 8) $(8, 6).

This solves the p-vr puzzle. In this picture the

p is considered to be a "dormant" Goldstone bo-
son. A dormant Goldstone boson i.s a state which
in a nonrelativistie theory wouM be a true Gold-
stone boson. So in the static SU(6) limit both the
m and the p masses are degenerate and zero; they
are both Goldstone bosons.

The importance of the chiral representation of
the vector mesons is that in order for the vector
mesons to be in a (3, 3) 6 (3, 3) representation, the
components of the vector-meson field operator
must be part of an antisymmetric tensor operator
in the quark model, that is, q'o„„2X'q. Letting

t'„„(x)=q(x)o„„,'vq(x), -

we then project out the phenomenological vector-
meson field,

(1.2a)

gVpa O (1.2b)

(1.4a)

This is analogous to the expression for the pion-
axial- vector- current coupling

(0 IA;(0) Im'(k)) =tk„f, 5" .

The relation we obtain between I/y, and f, is

(l.4b)

This effective vector field p,' is normalized so that

g i/2
(o

I
t'„„(0)

I
p'(k, ~)) = ' 6"(k„~„-k„~,),

(1.3)
(oI p', (o) I

p'(k, ~)&=-t6"~, .
The relation (1.2a) is called partial conservation
of tensor current (PCTC). It serves the purpose
of defining a three-component field p,' transforming
like (3, 3) 8 (3, 3) under the chiral group.

The implication of putting the vector mesons in

(3, 3) 6 (3, 3) is that vector-meson dominance is a
consequence of spontaneous symmetry breaking. -

Just as the m[(3, 3) 6 (3, 3)] couples to the axial-
vector current [(1,8) 6 (8,1)] via a o' going into tL
vacuum [Fig. 1(a)], so also the p[(3, 3) $(3,3)]
couples to the vector current [(1,8) 63 (8, 1)]by the
same mechanism [Fig. 1(b)]. Using this picture
we have obtained (I) an expression for the current—
vector-meson coupling, 1/y„defined by



15 SPONTANEOUS SYMMETRY BREAKING AND VECTOR-MESON. . .

which is similar to the Kawarabayashi-Suzuki-
Biazuddin-Fayyazuddin (KSRF) relation as we
have discussed in I.

Another important consequence of the chiral-
representation assignment of (3, 3) 6 (3, 3) to the
vector mesons is that soft vector mesons decouple,
just as soft pions decouple. This decouplin. g cari
be seen from the relations

8 aA; (x) = m, 'f, m',

s"t' ( )= z'/-p'
(1.6a)

(1.6b)

Since the left side of (1.6a) must vanish between
states of zero momentum transfer (q =0), pions
must decouple as q„-0. The same a,rgument ap-
plies to (1.6b), so vector mesons must decouple
as q„-0. But physical vector mesons are not
soft, so this decoupling theorem is hard to test
experimentally. Nevertheless, it does present a
different picture for the way in which the vector
current couples to hadronic states in that a di-
rect coupling is required as well as a vector-meson
pole term. Otherwise the charge associated with
V; would vanish. (See Fig. 2.)

It should be noted that the relation (1.6b), usually
called PCTC (1.2), is not the analog of the PCAC
relation (1.6a). Rather, one must separate the
vector current into two pieces as depicted in Fig.
2(a),

Q&o &- f~p 7T

(~,8) e (8, i) (&,&) 8 (~,&)

A L

Q(cr&-f~
p 7T

(I,8) 6 (8, I ) ( 5,5) 6 (5,5)

V~ p

(b)

2) q (-q +ma )
( 2).

P P
(1.13)

Since G„,(m, ') =g„„T(q') has a p pole. Further-
more, since T(q') has no pole at q'= 0 (assuming no
zero-mass vector-meson states), we have G„,(0)

PIG. 1. Coupling of (a) axial-vector current to pion
and (b) vector current to ihe p vi:a spontaneous break-
ing of chiral symmetry.

symmetry for simplicity, and

F,(0) =1.
The pionic matrix element of the ten. sor current is

(n'(p)
~ t;„jm'(k)) = iT(q') e'"(q, P„—q„PJ . (1.11)

The effective p field is defined by (1.2) and the p
source is defined by

( + m, ')p,' = ad', .
Then the pm m matrix element,

(w'(p)
i

' J'„
i
~'(k)) = G„,(q') ~'"P„,

is related to T(q') in this way:

g Z x/2
VQ Vct

4 " Z P

(1.7)

Aa Aa y Z -1/ae &a
ff

where A'„has no pion pole [Fig. 2'(b) j. Then one
can derive a tensor-field identity (TFI),

I

(1.8)

where V'„has no p-pole terms. This corresponds to
to the standard separation of the axial-vector cur-
rent,

(Cl t', —e ~y,
s"C"), (1.9a)

which is the analog of PQAC, written. kn the form

f z -&/a
1F

(1.Qb)

(q=P —k, P=P+k) where we have SU(2) internal

In (1.9a) Ca is a second-class axial-vector current.
The picture of vector mesons presented here is

consistent with the observed behavior of electro-
magnetic form factors. For example, let us con-
sider the pion form factor F,(q') defined by

(~'(p)
i

V'„
i
~'(k)) = F,(q') ~'"P„, (1.10)

FIG. 2. (a) Separation of the vector form factor into
a direct plus a p-pole contribution. The p coupling to
hadrons vanishes at zero-momentum transfer. (b} Se-
paration of the axial-vector curp-'nt into a pion-pole
piece and nonpole contribution.



D. G. CALDI AND BEIN Z PAGE Ls

=0„ the decoupling theorem. So G„,(q ) is not a
slowly varying function.

Now we assume that after removing the p pole
from the tensor current what remains is smooth
(i.e. , does not vary rapidly), so that (-q"+»,')
T(q ) =- constant is slowly varying, and

Gp„(q ) —
2 &n~~Rl p

(l.14)

from (I.],3). If we calculate the contributions to
the pion form factor E,(q') as depicted in Fig. 2(a),
they are given by

», G, (q)
q+m,P

(1.15)

where we have denoted the direct coupling by 1.
Using (1.14) we finally obtain

2

F (q2) 1 + Pew

Jp ~Q + Alp
(1.16)

The no subtraction hypothesis, E,(~) =0, yields
the usual vector universality relation

r.=G...(».') =g.„
Hence (1.16) is identical to

(1.18)

the usual vector-meson dominance (VMD). For al-
ternative derivations using dispersion relations,
as well as treatment of nucleonic form factors,
see I.

The treatment of the form factor can be general-
ized to other matrix elements. In the conventional
treatment of VMD, besides definitions one must
invoke a smoothness hypothesis to extract interest-
ing results. In our new treatment of the vector
mesons, besides definitions, one must also in-
troduce a smooi;hness (or equivalently a no-sub-
traction) hypothesis as we saw above. In either
our new treatment or in the old treatments one
requires a single smoothness assumption.

In the present instance the general smoothness
assumption is that

[(q —q )' —» 'j (n it'„(0) i P),
where n and P are hadhonic states, is slowly vary-
ing for 0 ~ (q —qz)' ~ »~' in those invariant ampli-
tudes corresponding to channels coupling to the
vector mesons. There are also invariant ampli-
tudes in this matrix element to which axial-vector
mesons can contribute, and for these one may
make another smoothness hypothesis.

Although the picture presented here may seem
at first more complicated than the usual picture of
VMD owing to the requirement of a direct coupling,

there is no inconsistency with the experimental
behavior of the vector mesons. Furthermore,
there are a riumber of advantages and simplifica-
tions to this scheme as we have discussed in de-
tail in I. What we might stress here is that VMD
and PCAC are consequences of the same mechan-
ism in this picture.

Another advantage of having the p in a (3,$)
$(3,3) representation of chiral'SU(3) IISU(3) is
that the chiral partner of the p is then the B(1235)
meson, J~=1', a welk-established resonant
state. This is in contrast to the ca'se of the A,
meson J~c 1 + which would be the chiral partner
of the p if the p were in a (1,8) $(8, 1) representa-
tion. But the canonical A., does not seem to exist
experimentally. '

The remainder of this paper is organized as
follows. In Sec. II we discuss the Weinberg' spec-
tral-function sum rules in the absence of an A,
resonance. We find that saturating the vector
spectral function with just the p pole in the first
steinberg sum rule leads to the relation

(1.5) .
Jp mp

(1.20)

We discuss the possible reasons and signifi-
cance of the discrepancy between (1.1S) and (1.20),
and point out the need for better experimental in-
formation before the sum rule can be accurately
tested. What is evidently required for the sum
rule to be saturated by just low-lying states is an
enhancement in the axial-vector spectral function.
This need not be a narrow A, state but could be
a large continuum or broad enhancement as is
suggested by recent experiments. 4 An alternate
possibility is that there is no large structure in
this spectral function. Instead the integral con-
verges very slowly with the axial-vector spectral
function slightly larger than the vector spectral
function asyriiptotically.

Section III describes the situation concerning
the remaining members of the axial-vector nonet
of which the B meson is the I=1 member. We find
that the mass relation among the low-lying meson
octets derived in I,

S2 ~ m SZ
Jg

~ Pl2 2 2 2
9 fy

(1.21)

is well satisfied for all the observed members of
the octets. We also estimate the mass of the miss-
ing I=O, J =1 octet member to be approxima-

Pp Plp

which agrees with (1.5) in the SU(6) limit for which

Z, =Z, . Including finite-p-width corrections alters
this relation by only 10%. However, the relation-
ship which agrees with experiment is
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tely 1.5 GeV. The physical mass of this state then
depends on the mass of the I=0, SU(3) singlet and
the mixing between the two (which need not be
ideal). If one assumes, as given by the quark mo-
del, ideal mixing and a physical mass for the sing-
let around the mass of the B(1235), then the phys-
ical mass of the I = 0 octet member comes out to
be 1.7 GeV.

Section IV dea1s, with the interaction of vector
mesons with photons. In particular, we try to dis-
pel some cog.fusion that may result in considering
the matrix element

« I
s"f„.(o)l r&,

which it must be realized ~ever appears in any
physical process. We illustrate the correct ap-
proach with a discussion of photoproduction. We
also investigate the process p- my from our view-

point and find that the disagreement with the mea-
sured rate' which results from applying the con-
ventional picture of VMD does not occur in our
scheme.

In Sec. V we offer some concluding remarks.

II. 9"EINBERG SUM RULES

Using the commutation relations of current alge-
bra, Weinberg' derived spectral-function sum
rules for chiral SU(2) (3)SU(2). The first Weinberg
sum rule is

(2.1)

where p~ and p„are the spectral functions of the
vector and axial-vector currents defined by

(o I('!(~)(".(»I»=(2~) '&"- d'( &((')e "'*P,((*)(-a„.+ ~+),

(OI&:(~)&!(o)l»:=(2~)*()"fd'P&(P')~" *~,((')(-s..+', ")+f.'~()'*)(.D.

(2.2)

(2.3)

The sum rule (2.1) follows just from current alge-
bra with the assumption that Schwinger terms are
either c numbers or, if operators, contain no
~I =1 terms. To derive the second sum rule,

[ p„(m') p„(m') ]dm' = 0, (2.4)

requires additional assumptions.
To examine the question of the convergence of

these spectral-function sum rules, Wilson' pointed
out the usefulness of the operator-product expan-
sion. He showed that the first and second sum
rules were valid only in the limit of exact chiral
SU(2)(3)SU(2) invariance. This analysis is in the
context of chiral- symmetry breaking by hadron-
mass terms, assum'i' the scale dimension of the
quark-mass term to be three or larger,

A fprther analysis, ' assuming that the strong in-
teractions are asymptotically free, concludes that
the sum rules are valid even in the world of broken
chiral symmetry if one takes an appropriate com-
bination of current propagators involving strange
and/or charmed quarks, as well as the up and
down quarks already present in the original SU(2)-
internal- symmetry spectral functions. For the
first sum rule to be valid only on, e term, involving
either the strange quark or the charmed quark,
need be subtracted from the "p-A, sum rule" (2.1).
However, for the second sum rule to converge in
the broken- chiral- symmetry worM, mo're. terms
are necessary and these require a detailed know-

ledge of the high-frequency behavior of the quark-
mass spectrum. Hence we do not believe the
second sum rule is amenable to saturation by low-

energy states.
Since the single correction term to the original

p-A, first sum rule is proportional to m, /m, or
m, /m„where m, is the nonstrange-quark mass,
m, is the strange-quark mass, and m, is the
charmed-quark mass, it is plausible that this cor-
rection term is small, as we shall assume. Then.
in order to test the original first Weinberg sum
rule (2.1) it is necessary to know the spectral
functions p~(m'), ideally for all m'. These spec-
tral functions are measurable in principle from
the cross sections for hadron. production in. elec-
tron-positron annihilation, for example. How-

ever, the actual experiments are rather demand-
ing. To date we still lack adequate data on even
the isovector electromagnetic spectral function
[which is related to p~(m')], let alone the axial-
vector spectral function, which can be obtained
from inclusive soft-pion. production in e'-e an.-
nihilation. '

While awaiting more satisfactory data, one may
attempt to saturate the sum rule with low-lying
resonances. This approach assumes that the in-
tegral converges already at low energies. " But
what precisely ismeantby low energy is unfortun-
ately unknown.

In this vein Weinberg estimated p„(m') by using

p dominance:
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p~(m') ~g, '5(m' —m, ') . (2.5)

He also estimated p~{m') by assuming dominance
by an axial-vector meson,

p~(m') =g„'5(m' —m„') . (2 6)

m„= m, M2

for the mass of the A,
However, it has turned out that an A, meson at

such a mass does not seem to exist. ' Further
more, in our solution to the p-n puzzle we do not
require an A, as the chiral partner of the p or
strong couplings to the A., if it does exist.

Qn this basis we have estimated the first sum
rule (2.1) by using the measured" cross section
for e'e - p and the relation8'"

(2.7)

Then using (2.4) which implies g, '=g„' and the
relation" g,' = 2f, 'm, ' Weinberg obtained his rela-
tion.

conflict with our solution to the p-z puzzle.
To begin with the mass, it is more than 3 too
large compared with the Weinberg prediction (2.'I).
Furthermore,

~
having the p in a (3,3).$ (3, 3) rep-

resentation of chiral SU(3) 8SU(3). and having the
B(1235) as the chiral partner of the p is indepen-
dent of the existence or not of an A, . To be sure,
there is always the possibility of representation
mixing, but so far this seems an unnecessary com-
plication.

Our general conclusion is that with just the p
contribution to the vector spectral function the
first%einberg sum rule fails by a factor of 2. Addi-
tional contributions to the vector spectral function can
only make the agreement worse. Hence there must be
structure in the axial-vector spectral function
but this need not be the conventional 4, meson.
Furthermore, there remains the possibility that
the correction term due to broken chiral SU(2)
SSU(2) is not negligible.

~(P') = (I«'o" /P') (2.8) &II. THE J~c = 1' NONET

along with the estimate for the continuum contribu-
tion to p„(p') = p„-"'(p') =pp" (p'). This procedure
yields a value for the left side of (2.1) approxima-
tely 2f,' instead of f,'. Essentially the same re-
sult is obtained by using (2.5), i.e. , dropping any
continuum, and setting p„(P') =0. Hence the con-
tinuum contribution to p„(P') up to about 1.2 GeV'
was either badly estimated or is negligible. The
latter alternative is the conclusion of +hen et al. '
from their examination of Weinberg's second sum
rule (2.4).

But one must not take the failure to obtain agree-
ment very seriously with the crude data currently
available. As we have already rema, rked, the
procedure is merely makeshift until adequate data
are available. In particular, no mea. surement
of p„(m ) exists Never. theless, it is surprising
that pr(m') and p„(m') should behave so differently
at low energies. Indeed, there are now some
preliminary indications that this may not be so.
Apparently a candidate for an A, axial-vector
meson (i.e. , 8" = 1'') exists, ' but at higher mass
(1.4-1.5 GeV) and broader width (- 300 MeV) than
previously expected. If such a. state proves to be
real, then depending on the strength of its coupling
to the axial-vector current it may be what is needed
to saturate the first sum rule at low energies. It
is worth remarking that without the original second
sum rule (2.4) there is no detailed constraint on
the A, mass since g, and g~ are not necessarily
equal.

We should point out, however, that were such
an A, state to exist, it still would not necessarily
be the chiral partner of the p nor would it

In I we derived the following mass relation among
the low-lying meson octets:

RZ ~ PB VE B ~ Pl2 2 2 2
P B 6 (3.1)

This relation follows from breaking chiral U(6)
U(6) by an explicit spin-dependent U(6) breaking

term independent of SU(3) breaking. It was pointed
out in I that the relation holds very well for the
I=1 members of the octets, i.e. , 7, p, B, and 6.
One obtains

Pl» Vl» —VEQ ~ Ale
2 2= 2 -2

5 6

0.574 vs 0.577 Qe&2 ~

(3 2)

We can now test the relation further since a
strange partner for the B meson seems fairly well
identified. A Stanford Linear Accelerator Qroup'~
has recently reported evidence for the existence
of two strange axial-vector mesons Q, and Q, .
A European collaboration" fairs the existence of
only one such state. Furthermore, a unitary-
Deck-model analysis" of the data also concludes
that there is only one axial-vector strange reso-
nance, the Qa between 1.3 and 1.4 GeV with a
width of order 150 MeV. This is in agreement
with the prediction of our mass relation (3.1), now
putting in the strange members of the octets,

2 2= 2 2Alga ~ Vlg 7%q ~ VEg oB (3.3)

Again each side of the relation is Bpproximately.
0.6 GeV'. Here we have used m„= 1250+100 MeV."

Turning our attention to the I= 0 octet member
we can make a prediction of its mass, but as yet
no I =O.partners of the 8 have been identified.
Since the relation (3.1) is valid for octet members
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only, we make use of the Gell-Mann-Okubo form-
ula to determine the masses of the unmixed iso-
scalars. %'e obtain then the following masses:
m~, = 0.93 GeV and m, = 1.33 GeV. Hence the un-
mixed mass of the I = 0 octet partner of the B
shouM be given by

suits of VMD, while avoiding those which conflict
with experiment.

First we wish to clear up some confusion which
may occur if one chooses to consider the matrix
element

(4.1)

=2.33 Geg (3.4)

In our picture the p is in a (3, 3') 8 (3, 3) represen-
tation and the effective p field is defined by

mx 0

This value agrees with that determined from the
Gell-Mann-Okubo formula

(3.5)

using m@ '=2 GeV'. This is not surprising since
(3.4) is calculated using Gell-Mann-Okubo form-
ulas, and Eq. (3.1) is consistent with the inputs to
the formulas. We might also mention that m~ '
—m„' also equals 0.57 QeV', in agreement with
(3.2) and (3.3).

The value predicted for the unmixed mass of the
isoscalar octet partner of the B, which we call
here X„may of course be different from the phys-
ical mass; This depends on the unmixed mass
(unknown) of the singlet isoscalar axial-vector
meson (C=-1) which we call here X,', and on the
mixing between the two isoscalar mesons. Al-
though the mixing is ideal for the vector and tensor
mesons, it is not for the pseudoscalars or sca-
Lars." So there seems to be no compelling reason
to assume that it is ideal here. At any rate, ave

expect an isoscalar partner of the 8 to lie roughly
in the range 2.4 to 1.7 GeV.

If we do assume ideal mixing, as would occur in
the quark model, and we also assume, again from
the quark model, that the physical mass of the
isoscalar SU(3) singlet, the X', is approximately
degenerate with the B meson mass (so say 1250
MeV), then we can determine the physical mass of
the X to be 1.7 GeV. The unmixed mass of the iso-
scalar singlet, the X,', comes out to be 1.5 GeV,
degenerate with the mass of the unmixed X0.

Although a state with the quantum numbers of the
X has not. yet been identified around 1.7 GeV or
even in the range 1.4 to 1.7 GeV, neither has it
been assiduously searched for. However, such a
search is now being undertaken. "

~a (3g 3) $(3y 3) ~ gp ga 8 W~& I ya~
~v gv a pv~ (4.2)

The conventional picture has the p in a (1, 8) E8 (8, 1)
representation, so its definition in the quark mod-
el is

„a(x,s)e(s, x) ~ — I~a
&u '1yg2 (4.3)

«I pu, 8&e(8, »I (4.5)

Thus in. our treatment it looks as though the p-y
coupling vanishes for real photons. If one were to
assume that this matrix element (4.1) was the p-y
vertex shown in Fig. 3(a) and that this vertex was
interpolated smoothly from q'= 0 to q'=mp then
one would reach the false conclusion that the pho-

l

0&,
'---

P

If one calculates (4.1) using (4.2) one obtains

(4.4a)

since

(4.4b)

and q'= 0. On the other hand, in the old treatment,
p„""+"",one finds that (4.1) does not necessarily
equal zero,

IV. PHOTON-p INTERACTIONS

Because of the decoupling theorem for soft vec-
tor mesons and the existence of a direct coupling
term as shown in Fig. 2(a), it may appear that
some discrepancies might arise when one consi-
ders the. interactions of real photons. Qn the con-
trary, it turns out that we retain. all the good re-

(c)

FIG. 3. Photon-hadron interaction via (a) VMD and

(c) direct coupling.
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tons had no couplings to vector mesons.
The reason the preceding argument is erroneous

is that the matrix element (4.1) never appears in
the calculation of any physical process. Only ma-
trix elements of on-mass-shell particles enter into
the computation of the S matrix. In (4.1) the p field
is off its mass shell since q'=0, the physical pho-
ton mass. But interpolating fields are not mea-
surable. The relevant matrix element for consi-
dering the p-y coupling is

(4.6)

and this is defined on the p mass shell by

picture, with p ~p""e"",the diagram Fig. 3(a)
is interpreted differently. One cannot treat Fig.
3(b) in isolation; it is always part of the matrix
element Fig. 3(a). Furthermore, our picture also
requires Fig. 3(c), a direct photon-hadron cou
pling. This is because Fig. 3(a) vanishes as q, -O
since it is proportional to (Oj B~t~„jhadrons). But
one should note that it is the decoupling of soft
p's from hadrons which causes Fig. 3(a) to vanish
as q„-0, and not any soft p-photon decoupling.

We illustrate the correct procedure for treating
p-photon interactions by examining photoproduction
of hadrons off nucleons, Fig. 4.

In the conventional treatment, Fig. 4(a),
(4.7)

no matter what the chiral representation content
of the p.

Vfe might also point out that even though the ma-
trix element

(4.8)

m2

P P

So for real photons,

A, (0) =—A, .

In our treatment, Fig. 4(b),

(4.9)

(4.10)

is not measurable in strong and electromagnetic
interactions, it could possibly be measured in
weak-interaction processes if the weak currents
included t' ~.

In the usual picture, with po- p"'"+"",dia-
grams such as Fig. 3(b) can be isolated from Fig.
3(a) and still retain meaning. However, in our

8 m qA„(q') = C+—,';gp~, A~.
pp mp —q mp

(4.11)

There are some things to notice about Eq. (4.11).
The p-photon coupling is a constant independent of
q' just as in the conventional treatment. In addi-
tion, a factor of q'/m, ' appears because our p de-

(b)

(c)

FIG. 4. Photoproduction of hadrons off nucleons in the (a) p( ' ~~8 ~ picture and (p) p~3 ~ 3~& ~3 picture of VMD.
(c) p-nucleon interaction vertex.
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couples from hadrons in this process at q'=0.
There are two arguments one can employ to re-

cover the conventional and experimentally verified
result, Eq. (4.10). First, as q'-~, A„(q') is as-
sumed to go to zero, that is, we assume a no-
subtraction dispersion relation. Then qz, ez

0= C-—g, ~A. ~.
Yp

But at q'=0,

AY(0) = C.
Hen. ce,

(4.12)

(4.13)
{a)

(4.14)

Qne may instead use a smoothness argument to
arrive at the same result. That is, we assume
that after removing the p pole from A.„(q'),

q, e,

q-q
(m, ' —q')A„(q') = F(q'),

E(q') is slowly varying so that

F(O) =F(m, ').
But from Eq. (4.11),

e
E(q') = (m, ' —q')C+ g, ~'A~, —

and at q2=m ',
8

E(mp2) =—gp~mp2A~
Yp

=E(o).

Hence from (4.15) at q'= 0 we obtain

mp'A„(0) =—gp~m, 'A~,
yp

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

{b)

FIG. 5. (a) Separation of the m -yy vertex into a dir-
ect photon coupling term. and a p-pole contribution. (b)
p-n y vertex.

tional treatment, but in this case the conventional
answer turns out to be at variance with present
experiments. ~

The process is p- my. The latest measurement
of the p -w y decay width"' is approximately three
times smaller (more than five standard deviations)
than the prediction" from conventional VMD and
the well-known m -yy rate, Bs well as predictions
using quark or higher-symmetry models. "

The conventional VMD analysis relates the cou-
pling constants g,o„and g„,by

and therefore we again recover (11.10).
The preceding example shows that our treatment

of VMD is consistent with the conventional one not
only for off-shell photons, as discussed in I, but
for real photons as mell. The general nature of
the arguments leads us to believe that this agree-
ment will hold for most cases. However, me have
examined at least one process where our picture
of VMD does not lead to the result of the conven-

2eg„„
&fforr

yp
(4.20)

and it is this result that is in apparent disagree-
ment with the observed rate. Qur treatment is
depicted in Fig. 5(a). We examine VMD of only
one photon to simplify the analysis. This will not
change the qualitative result.

The amplitude is a sum of two pieces: a direct
coupling as well as the p-mediated term,

2
2 S p» & nc / 2

f V~6&X &2qj.q2~~OZZ~qj. ~ ~ ~ ~ &
= &I V~~~~ 2q6'2 ~0~~+ 2 2 gPf 'Y1q1

yp mp
(4.21)

E(q') = (m, ' —q, ')A, o„„, (4.22a)

This decomposition just corresponds to the de-
composition of the vector current in (1.7). We
again assume smoothness of the amplitude after
removing the p pole,

F(m, ') = F(0) .
At q, '=m, 2 we have

em'
Yp

=E(o).

(4.22b)

(4.23)
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This development reproduces the conventional re-
sult, (4.20), providing

F(0) = mp'A;0„, . (4 24)

V. CONCLUSIONS

The picture we have presented is that the p is in
the (3,3) 6 P, 3) representation of chiral
SU(3) SU(3). This solves the p npuzzle. -In
addition, it offers a picture of VMD which is uni-
fied with PCAC —they both result from spontaneous
symmetry breaking.

This treatment of the vector mesons requires
the chiral partner of the p to be the B meson rath-
er than the A, . The A, meson may or may not
exist —it is not a requirement of our approach.
The Weinberg sum rules when properly analyzed
do not require an A, in the conventional way. More
experimental information is needed before the first
Weinberg sum rule can be adequately tested.

The remaining members of the J~~=1' nonet
are beginning to be identified. These are the
SU(3) partners of the B meson. The Q~ meson
seems fairly well established, and its mass of
order 1.4 GeV fits within experimental error our
prediction from the mass relation m~~' —mE'
=m+ ' —~„'. We would like to emphasize the im-
portance of searching for the isoscalar members

But t;his assumes g„„(q,'=0, . . . ) =0. That the de-
coupling theorem at q, '=0 does not apply to

g„„(q,', . . . ) in this case can be seen from studying
the p-7Iy decay directly as shown in Fig. 5(b).
Here the interpolating amplitude is given by

1
, , (q,

' —,')q, (,( 'jt'„~y(q„,)))Sl p p

=qx ~a~ ar6~zq~rn. (qi' ) (4 2~)

The decoupling theorem for soft p's, as q, -0, is
an automatic consequence of the I,orentz structure
of the matrix element and there is no condition on
the invariant amplitude g „(q,', . . . ). Hence

g~„(qi, . . .) is not required to have a zero at qi
=O.

The result is that we cannot make the identifica-
tion (4.20), and hence we avoid its disagreement
with experiment. Unfortunately we are not able
to calculate independently the value of the contact
amplitude A oyy, so we cannot offer a prediction
for the p-my rate.

of this nonet, one of which we predict to have a
mass around 1.7 GeV assuming ideal mixing.

Our picture of QMQ is quite successful in re-
covering the good results of the conventional treat-
ment, as has been demonstrated in I and in this
paper, in particular, for interactions involving
real photons. In addition, our treatment does not
lead to the bad result of the conventional treatment
of p-wy decay.

Putting all this together we believe that we have
demonstrated that this picture of vector mesons
is a reasonable and even a preferable one. The
conventional prejudice that the p is in a (1, 8)
6 (8, 1) representation just like the vector current
is only superficially simple. The p-g puzzle that
results from this representation assignment is a
fundamental complication. By putting the p in a
(3, 3)9{3,3) representation, not only is this com-
plication resolved, but a simple, unified account
of VMD and PCAC results.

It is difficult to imagine the construction of a
future theory of the strong interactions which& does
not take into account these ideas about the relation
of spontaneously broken. chiral symmetry and &MD.
The collective model of the pion can. be extended
to the vector mesons as well. " However, there is
a problem. For high-mass states such as char-
monium and D" mesons the spectroscopy is well
accounted for by an. atomic picture. Indeed one
might say that the charm family is the "hydrogen
atom" of the hadrons. How does one interpolate
between this atomic picture for the high-mass
systems and the collective picture for the light
mesons such as the pion and the p& Qne cannot
help but be reminded of a similar duality between
the collective and individual-particle models of
the nucleus. For the hadrons the solution of this
problem is still forthcoming. It would be valuable
to have some parametric control on this transition.
Is there some parameter such as f,'/m„', where
m~ is a hadron mass, that describes the transition
between the collective and the atomic picture P

These and other questions are quite open.
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