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We reexamine and extend the analysis of the effects of right-handed currents on the EI = 1/2 rule in

nonleptonic decays. The VA'lson coefficients and anomalous dimensions of new operators generated by right-

handed currents are computed. We apply the recently developed techniques of heavy-quark expansion to the

resulting e6ective weak Hamiltonian. We point out that the short-distance-enhanced operator

(~Ly„cl c~y X~) is expected to have large matrix elements, contrary to the naive implication of Zweig s rule.

This may well account for the EI =1/2 rule, if right-handed currents exist,

I. INTRODUCTIOW AWB SUMMARY

An understanding of the bI = ~ rule in nonlep-
tonic decay is of importance in helping us un-
ravel both the strong and the weak interactions.
In this paper, we would like to make some more
remarks on the subject, especially on the effect
of introducing right-handed currents ~ into the
weak interaction. This aspect of the subject has
received some attention in the recent literature. '
%'e will rely particularly on Ref. 3, summarizing,
amplifying, and amending some of the remarks
made there.

We will restrict ourselves to the standard view'
that the nonleptonic weak interaction is formed out
of a product of the hadronic weak currents occur-
ring in semileptonic weak interaction. (We will
assume the standard framework of gauge theories
for both weak and strong interactions. } Thus the
effective nonleptonic interaction density is of the
form

i

d'xn'"(x, M ) T(J,(x)J „'(0)),

where 6""denotes the intermediate-boson propa-
gator. Since d "' is largest for y ~ M~ ' the suit-
able framework for analyzing (l.l) is the short-
distance operator-product expansion:

J.(x)J,'(0) QC,.(x)6,.(0). (l.2)
i

We suppress Lorentz indices on the operators 6,-.
The operators 6,. relevant for the nonleptonic de-
cays of strange hyperons can then be classified
according to whether they carry isospin & or iso-
spin &. We denote these operators and their as-
sociated Wilson coefficient functions C,. by the
generic notation

2

The hI =-
& rule could then arise because of one

or the other, or b5th, of the following possibili-
ties:

(A) The matrix elements (o.
~
8,&2 ~I3) for a given

decay process n - p are larger than the matrix
elements (o [8,&, fP).

(8) The coefficient functions C, ~,(x) are larger
than C„,(x) as x-O.

It is most likely that in the real world (A) and (8)
are both operative. Let us examine each of. these
jn 'turn.

There are a number of dynamical arguments'
suggesting that (A) is true. Of these, the most
reliable is the well-known one based on soft-pion
theorems, ' which, however, does not apply to all
nonleptonic weak decays. This argument also
provides an important constraint on the handed-
ness' of the nonleptonic weak interaction, namely
that right-handed 5' and 9E quark fields cannot play
a significant role in ordinary nonleptonic decays.
The other arguments are somewhat weaker than
the soft-pion argument. However, taken together
they add significant plausibility to (A). Indeed, the
8 I =- & rule is undoubtedly partly due to the same
mechanism that renders the particle spectrum
into low-lying multiplets. "

The possibility (B), first suggested by Wilson, "
has been examined" in the gauge theory of strong
interaction and found to be valid. However, the
evaluated enhancement of C»,(x) over C,&,(x) ap-
pears to be somewhat too small to account for the
observed accuracy of the hI = & rule.

In summary, we deem it fair to say that while
the hI = & rule is far from completely understood,
it is not a total mystery either.
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How does the possible existence of right-handed
hadronic currents affect the situation~ This ques-
tion was first raised in Ref. 1 (see Ref. 13) and
was subsequently discussed by the authors of Ref.
3 and by others. ' It is the purpose of this paper
to add to this discussion.

Right-handed currents can affect the b, J. = —, rule
in two ways:

(n) They can generate new operators, of the
type 8,&, (and in general also of the type 8,&,).

(P) They can modify substantially the behavior
of the Wilson coefficient C(x).

Let us take up both of these possibilities in turn,
but first, some preliminary background remarks
are necessary. Right-handed currents, (which are
relevant to b,S = 1 nonleptonic decays) proposed in
the literature may be broadly divided into two
classes, those in which X~ is coupled' to a heavy
quark (typically the charmed quark) and those in
which X~ is coupled. "We will not enter into the
dispute of which (if either) will prove to be ul-
timately correct. It will be seen that the follow-
ing discussion will apply to both types of theories.
(Differing types of theories differ in various over-
all proportionality constants which will not par-
ticularly concern us here. ) Right-handed currents
involving P„and a heavy (negatively) charged
quark will not contribute to LS W 0 decays and will
not be relevant to our discussion. It should be
straightforward to extend our discussion to cover
AS= 0 nuclear processes and charm-changing de-
cays. We may perhaps also stress that our dis-
cussion, since it is not specific to any given mod-
el, is a fortior not committed to the so-called
vector theories.

Having made these remarks, we will now con-
sider (o.) and (P}.

(o) bS=1 operators coupling X~'to X~ (or equiv-
alently Z~ to Xz) can now participate in nonleptonic
interactions. However, one must take care to note
that they are in fact operative. For example, the
operator %~X~ may be absorbed in the mass
term. '4 Qther operators may be reduced by the
equation of motion to operators of lower dimen-
sion. A list of these operators up to canonical
dimension 6 was given in Ref. 3 and will not be
repeated here. In this paper we would particularly '

like to focus much of our attention on the canon
ical-dimension-5 operators 8, —= X~D D"X~ and

8, =X~o „E~"Xz. (Here D„de tneos the covariant
derivative and E~" denotes the gluon field
strength. } Another operator that requires atten-
tion is the canonical-dimension-6 four-quark op-
erator 8 =- Z~y cJ„c~y X~.

(P) The anomalous dimension of the operator 8,
happens to be twice as large" as the correspond-
ing four-quark operators of "pure-handedness"

X~y c~c~y'&~ and X~y, c~c~y"~„. Recalling that
the anomalous dimension appears effectively in
the exponent of a (InM~} factor, one sees that
this "arithmetical" fact makes a substantial dif-
ference. ' To.the extent that theories involving
right-handed currents often involve more quarks,
this also has an effect on C(x) as follows: The
addition of more quarks (up to a point) increases
the value of the P function of the renormalization-
group equation and thus enhances the exponent of
the (InM~) factor. See Ref. 3 for a discussion on
this point.

Before presenting the reader with our discussion
we will for the sake of clarity summarize and high-
light the chief assertions of this paper.

(1) In Ref. 3 it was asserted that the operator 8,
does not appear in the operator-product expansion
of the currents. It was then claimed, erroneously,
that the operator 8, can then be neglected. In
fact, 8, does appear. This was pointed out recent-
ly by R. K. Ellis. " The numerical values of these
anomalous dimensions will be given below. It turns
out that they are such as to suppress the appear@tee
of these operators in the operator-product expan-
sion.

(2) While there is no reliable way in genei. al of
evaluating the matrix element of a given operator,
it was thought"" that the operator 8,
=—'Z~y c~c~y"X~ would have a rather small matrix
element between ordinary noncharmed hadrons on
the basi. s that it might be valid to apply some ver-
sion of the so-called Zwig rule" to this case.
Through the recent work of Witten, "however, it
has become clear that there are fundamental limi-
tations to the validity of this rule, and that blind
and indiscriminate invocation of this rule could
in some cases be totally misleading. It may be
proved" that, in the limit in which the charmed-
quark mass is much larger than the relevant
strong-interaction mass scale, the matrix ele-
ments of 8, are equal to the matrix elements of
8, and 8, times a universal factor calculable in
terms of the effective strong-interaction coupling
constant g and proporti. onal to the charmed-quark
mass. The charmed-quark mass enters because
charmed quark fields of opposite handedness enter
into 8,. This situation is to be contrasted with
the apparently successful application of Zweig's
rule to the decay of J/$(3100).

Note that the proportionality factor relating the
dimension-6 operator 8, to the dimension-5 op-
erators 8, and 8, is not set by the ordinary had-
ronic mass scale. To be sure, in the real world,
the relevant mass of the charmed quark may well
not be large enough for this theorem to be of
quantitative relevance. It is important to note,
however, that the remark made here applies to
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any quark x which couples to both X~ and X~ gen-
erating the operator 8„=—X~y x~~y~~~. If there
exist several such heavy quarks in the world their
cumulative effect could be quite substantial despite
the fact that these operators 8„are associated
with small "Cabibbo-type" angles.

These two effects a,re both favorable to the en-
hancement of hI = ~ amplitudes. We are thus en-
couraged to think that the hI = & rule is quite under-
standable within the present framework of gauge
theories for weak and strong interactions, if the
appropriate right-handed currents exist. These
remarks will be explained and elaborated on in
Secs. II and III. Technical details will be relegated
to the Appendixes.

8=-%DDT, (2.1)

II. DIMENSION-FIVE OPERATORS FROM
OPERATOR-PRODUCT EXPANSION

There are two operators of canonical dimension
five and transforming like I = & which may appear
in the product expansion of the currents J„=%~yacc~
and J„' = e~y"X~. These operators are

P P

I
I \

(c)

N boson
gluon
quark

FIG. f. Calculation of the Wilson coefficients of the
operators 8& and 82 (see Sec. II).

To begin with let us extract the coefficient of p'
in the graph of Fig. 1(a) by differentiating the
graph with respect to p'. A simple calculation
then yields in the limit of large M'

, [Fig. 1(a)j-,(-2m, )—
(2.5}

This result informs us that the operator 8, does
appear in the operator-product expansion of J
with J,'. To determine whether or not 8, also ap-
pears we have to calculate the graph in Fig. 1(b}.
We find

(2.2)

(2.3)

by the identity

These two operators are related to another op-
erator

@n -=&A»i

[Fig. 1(b)] . (2m )(— )(2) + q)„
W

(2.6)

183= 8.—282 ~ (2.4)

It must be emphasized that this relation is purely
arithmetical and follows from the identity y„y,
=g,„-~io„„. However, using the equation of mo-
tion, one finds that the operator 8, is actually
equal to m~'%„X~, an operator of lower (scaling)
dimension. (One should keep in mind, however,
that the equation of motion applies only in matrix
elements between on-shell states. )

To determine whether these two operators in
fact appear we calculate the (off-shell) matrix
element of the effective weak interaction
fd4x a(x) T(J"(x)J„'(0))[b(x) = intermediate-boson
propagator) between two fermions, between two
fermions and a gluon, and between two fermions
and two gluons. The relevant graphs are displayec
in Fig. 1.

By chirality, these graphs are all proportional
to m, . We wish to compare the value of these
graphs in the limit of large M~ with the matrix
elements of 8, and 8, between two fermions, be-
tween two fermions and a gluon, and between two
fermions and two gluons. (These matrix clem. ents
are given in Fig. 2.)

p2 0

-g —(2 p+q}+ 2ig —a+~ q"pv

q, a, p

2 X ~ p 2X~ abc-g g ~,~ 2g

k, b, V q, a,P
FIG. 2. The off-shell matrix element of 6& and 8& be-

tween two fermions, two fermions and a gluon, and two
fermions and two gluons, respectively.
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Vfe thus conclude that 8, does not appear in the
operator-product expansion.

It is not necessary to calculate Fig. 1(c) except
as a check on our calculations of Figs. 1(a) and
1(b). Indeed, some arithmetic leads to

x' x'
[Fig. 1(c))-,(2m, )(-g'g, ) —,—

(C)

3.67] 2
(2.7) (e)

which is a result consistent with gauge invariance
as it should be.

,In conclusion, we have found that
(

4'(x)J"(0) c(x)8, + other terms. (2.8)

In Ref. 3 it was asserted correctly that 8, does
not appear in the operator-product expansion.
However, it would be wrong to conclude that 8,
also does not appear.

Vfe next turn to the evaluation of the anomalous
dimensions of these operators. The two operators
8, and 8, mix- under renormalization. Using the
subscripts 8 and 0 to denote renormalized and
bare quantities respectively we can write

8R=Z 180 (2.9)

Here 8 is a two-dimensional vector which equals
(8„6,), and the cutoff-dependent renormalization
factor Z is a two-by-two matrix. The multiplica-
tively renormalizable operators are then

e 8„=eZ '80=x 'e 8, , (2.10)

where e are the two left eigenvectors of Z '.
(2.11)eZ =8 e.

.The operators e 8~ have anomalous dimension

8y=- A in@, (2.12)

(„„'}g' A'
~
1«'

aa 5k'

(We should note that the relation between 6„8„
and 8, [E{l.(2.4)] is manifested here in the fact
that (Z» —,'Z») =- 2 (Z» —,'Z„).)

The two left eigenvectors of Z ' are

(2.13)

e (1) (I i) (2.14)

where A is the ultraviolet cutoff. The determina-
tion of Z involves the evaluation of all the graphs
listed in Fig. 3. We may perhaps remark that this
is the most tedious anomalous-dimension calcu-
lation which either of the two authors has ever en-
countered. The details are relegated to the Ap-
pendix and the values of the graphs are listed in
Table I. Suffice it here to state that the result is

FIG. 3. The relevant graphs for computing the anoma-
lous dimensions of Qi and 52. (It is understood that
graphs obtained by crossing these shown are not dis-
played separately. )

and

(2.16)

+
3 ~6 2 ~ (2.17)

It is not surprising that the operator 8"' is mere-
ly the operator 8, =%+@X~ in another notation.
In a regime where light-quark masses can be set
equal to zero, this operator vanishes by virtue

TABLE I. The matrix elements of 8i and Q2 corre-
sponding to each group of graphs in Fig. 3 are given
in terms of the two invariants Ii and I2 defined in
the Appendix. The entries are to be multiplied by
g({g2/isx2}lnA2). Thus, for example, the graph in
Fig. 3(a) with 6& inserted at the apex has the value

—'[(g /f67r )lnA j(—g& X')(2p+q) .

Figure
Matrix elements of

6i 62

3(a)

3(b)

3(c)

3(d)

3(e)

3(f)

3(g)

1—Ii
3

+-Iii
3

+TI2i

—(I,+-I2)7
12 2

+-I29

27 1-(I, I )
& 2

0

Ii+ -E2i
6

+'( 3I, + 'I, )
2 2

-(-3Ii + —I2)3 27
4 2

9——I2
2

(2.15)

The corresponding operators 8"=e"'8 have
anomalous dimension
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of the equation of motion in the following sense:
The matrix element of 8, vanishes between on-
shell states of quarks and gluons. If gauge theory
indeed confines quarks and gluons the matrix ele-
ments of 63 between hadronic states wi 1l also
vanish. Alternatively, if one prefers, one may
say that the matrix elements of 6, between hadron-
ic states is related, by virtue of the equation of
motion, to the matrix elements of the mass op-
erator %RE and so can be absorbed.

Putting together the usual renormalization-group
machinery we can now conclude that the effects of
strong interaction is to associate with the operator
6, appearing in the. operator-product expansion
the suppression factor

( lnM. 2/~2)-2/(33-2n) (3.18)

III. DIMENSION-FIVE OPERATORS FROM HEAVY-QUARK

EXPANSION

Here n is the number of flavors. On top of this,
we have an additional suppression factor coming
from the explicit mass factor m, which appears
associated with 6, in the operator-product expan-
sion. This suppression factor is

( inM.,2/ p,
')-""'

We thus conclude that the appearance of this
operator {9,with the introduction of a right-handed
current does not convincingly account for the ~
=z rule.

thing fairly rigorously about matrix elements of
operators involving charmed quarks between or-
dinary hadrons in the limit in which m„ the
"mass" of the charmed quark, goes to infinity.
(We have already taken the limit of large M~; thus
what is meant here is the situation in which M~
» m, » typical noncharmed h-adronic mass scale. )

The statements that can be made have been dis-
cussed recently in detail by Witten and applied by
him to other processes in weak interactions and
in deep-inelastic production. " These statements
will be referred to as the heavy-quark expansion.
In the present context, it is true that in the limit
of large m,

Here n and P are any two states consisting of or-
dinary hadrons. E(m, ) is a function of m, and is
universal in the sense of not depending on n and P.
The heavy-quark expansion clearly bears a close
resemblance to Wilson's operator-product expan-
sion. Indeed, the proof given by Witten" follows
closely one proof of the operator-product expan-
sion. In particular, one applies much the sp, me
reasoning used in Sec. II, namely that for a suit-
ably convergent integral one may extract the 1/M~'
dependence of a lowest-order weak amplitude.

For instance, consider the off-shell element of
6, between two fermions and a gluon. A contribu-
ting graph is displayed in Fig. 4(a). Chirality im-

As was mentioned in the Introduction, the in-
corporation of a right-handed current leads to the
appearance of the four-quark operator

c ~R~e~B~L~ L ~

which obviously transforms with isospin 2. Fur-
thermore, the anomalous dimension of this opera-
tor is twice as large as the corresponding four-
quark operators of pure handedness. Since the
anomalous dimension appears in the exponent of
( lnM~), the contribution of this operator is sub-
stantially enhanced. This observation might have
offered a promising expansion of the 6/=-,' rule
were it not for the suspicion that the matrix ele-
ments of 6, between "ordinary" noncharmed had-
rons are likely to be small because of some sort
of Zweig rul. e.

We will argue in this section that this suspicion
is perhaps not well founded; in any case, one
should be cautions in applying the so-called Zweig
rule too freely.

The actual evaluation of strong-interaction ma-
trix elements is, of course, beyond the capabilities
of high-energy theory at present. However, it
turns out that it is, in fact, possible to say some-

(b)

2mc

FIG. 4. Illustrative examples of the heavy-quark ex-
pansion (see Sec. III).
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plies that the graph is proportional io m, . Noting
that the matrix element of 8, is proportional to
the external momentum q we differentiate with re-
spect to q, thus rendering the graph sufficiently
convergent to conclude that

good deal larger than many people had suspected.
If our suggestion here is correct and if right-hand-
ed currents of the appropriate type exist, then a
substantial portion of the bI = 2 rule may be ex-
plained.

g mqE(m, )
—const x m, ( lnm, )I' ~ (3.3)

IV, M= q RULE EXPLAINED BY RIGHT-HANDED CURRENT

The foregoing is certainly not meant io be any-
thing more than suggestive. There are a number of
technical questions one must answer. Firstly, the
powers of ( lnm, ) indicated in Eq. (3.3) can, in fact,
be controlled by using standard renormalizaiion-
group arguments. Secondly, the quantity vi, must
be eliminated in favor of a more physical measure
of the charmed-quark mass, such as some speci-
fied fraction of the g/Z mass or better, of the lo-
cation of the new structure observed in the elec-
tron-positron annihilation hadronic cross section.
It turns out that with reasonable assumptions,
these points can be dealt with satisfactorily. It will
be beyond the scope and province of this paper to
review these points which Witten discussed in de-
tail. The reader is referred to Ref. 19 for further
explanation.

We should perhaps remark that the present sit-
uation is to be sharply contra, sted mith the applica-
tions of IZweig's, rule jto deep-inelastic production.
In these applications the relevant operators are
such that charmed-quark fields of the same handed-
ness enter and their matrix elements between or-
dinary noncharmed-hadronic states are then sup-
pressed by factors of g(m, ).

We could also determine E by considering the
matrix element of 8, between two fermions and two
gluons. The relevant graphs are given in Fig. 4(b).

As another example, the graph in Fig. 4(c) leads
to the dimension-7 operator 8~=—g~X~E,„E'"and
can be disregarded.

We presume that the operator 8, does not appear
because all relevant graphs either vanish or are
of higher order ing'(m, ). For instance, the graph
in Fig. 5(a) vanishes. The reason is that by a
Fierz transformation 8, may be rewritten a.s

3I~X~c~c~ and the graph in Fig. 5(e) vanishes by
gauge invariance. As another example, the graph
in Fig. 5(c) is of higher order in g (m, ).

We have not undertaken the task of determining
E(m, ) more precisely in view of the fact that the
matrix element of 8, is noi reliably calculable.
Indeed E(m, } depends on the precise subtraction
prescription used to define the various operators
8, and 8,. We do not insist on the technical details
here. Rather, we would like io suggest thai the
moral of our discussion is that one should not ap-
ply Zweig's rule indiscriminately. The matrix ele-
ment of 8, between ordinary hadrons may be a

In conclusion, let us summarize the main points
of our dlscusslons.

(1) In the presence of right-handed currents new
operators 8» 8, , and 8„all transforming as ig
=-,'-, appear in the operator-product expansion of
currents.

(2) The operators 6, and 6, are found to be sup-
pressed for an asymptotically free theory of strong
interaction.

(3) In contrast, the dimension-6 operator 6, is
highly enhanced.

(4) In defiance of a. naive interpretationof Zweig's
rule the operator 8, may well have large matrix
elements between ordinary hadrons.

(5) More speculatively, we note that if there are
other heavy quarks participating in right-handed
currents of the appropriate type the sort of effect
mentioned under (4} may accumulate.

(6) If point (4), and more uncertainly point (5),
are correct, then the hI = & rule becomes less
mysterious than ever before.

The important point here is that the charmed
quark provides a mass scale larger than ordinary
hadronic mass scale.

=0

(a)

FIG. 5. Graphs illustrating the nonappearance of the
operator 8& in the heavy-quark expansion of 8~ (see Sec.
III for explanations),
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In closing, we should remind the reader that
there is at present no clear-cut experimental' '
evidence for right-handed currents. Our entire
discussion is clearly predicated on the assumption
that these currents do exist.

Note added. There is another contribution to
~d S

~

= 1 decays in the models considered here
which, although certainly negligible in the mathe-
matical limit M~- ~, may be comparable to the
contribution discussed in Sec. IV for physical val-
ues of M~. This comes about in the following way.
Our operator 6, mixes with 6, with an anomalous-
dimension matrix" of the form

(ag ' cmg' )
y(g ) i 0

Notice that under a change of normalization point
the dimension-6 operator 6, transforms into a
combination of itself and m (the effective mass)
times the dimension-5 operator 6,. This mixing
does not change the anomalous dimensions we have
computed, since the eigenvalues of a triangular
matrix are just the diagonal entries. It does, how-
ever, affect which operators are multiplicatively
renormalized. In particular, not simply 6, but
some linear combination of 6, and e, is the opera-
tor which receives the large enhancement factor.
Thus there is an enhanced piece of the effective
Hamiltonian directly from 6, as mell as the indir-
ect piece we discussed in Sec. IV. Now ~v ap-
proaches zero at large momenta, but only slowly,
so that although the mixing vanishes asymptotically
(as a. fractional power of lnM~'), it may not be neg-
ligible for the physical value of M~. We have made
a crude estimate which indicates that this contri-
bution is probably smaller than the one we empha-
sized. In any case, the qualitative conclusion that
a c~y„X~ weak current could help explain the 6I = &

rule remains unchanged.
After this workwas completed we learned of a re-

lated work by M. A. Shifman, A. I. Vainshtein, and

V. I. Zakharov, Zh. Eksp. Teor. Fiz. Pis'ma Bed. 23,
656 (1976)[JETP Lett. 23, 602 (1976)]. The empha-
sis and the viewpoint here are somewhat different.
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APPENDIX A

(8,(Ag)o =go+ v, ,l,. (A1)

Notice the appearance of the bare coupling con-
stant g,. The two-by-two matrix z is to be evalua-
ted by calculating all the graphs in Fig. 3. To de-
termine Z one writes down the relation between
renormalized and bare matrix elements:

(8;$A$Q„=Q 8;; 'A, Z, '~'(8~$Ap)0

1J jgB jk'

jk
(A2)

Here Z, and Z, are the usual wave-function renor-
maUzation factor for the fermion field g and the
gluon field A.. The renormalized coupling g„ is
given by g„=Z,Z, 'Z, ' 'g„. The value of each of
the graphs of Fig. 3 is tabulated in Table I. From
this table we obtain the matrix Z quoted in the text
by requiring that (8,$A@„be cutoff-independent.

To calculate the anomalous dimensions of 6, and

6, we must evaluate their off-shell matrix elements
to the one-loop level. There are some technical
problems concerning the mixing of these gauge-in-
variant operators with gauge-variant operators.
~e refer the reader tothe literature" for a discus-
sion of these problems. Suffice it to say that if we
evaluate the matrix elements between two fermions
and one gluon these problems can be ignored.
The relevant graphs are given in Fig. 3. %e use
the schematic notation (8,.JAP for the one-parti-
cle-irreducible matrix elements of 6,. between two
fermions and a gluon and the subscripts B and 0
to denote renormalized and bare quantities, re-
spectively. The renormalized operators 6~ are
given by

6~=Z 60,

where the cutoff-dependent renormalization fac-
tor Z is a two-by-two matrix. The anomalous-di-
mension matrix y is given by y = —Z 'A(8/BA)Z.
The matrix elements (8,.(Ag, may be written in
terms of two invariants of the form I,=(-2A.')(2p
+q) a dnl, =2i—X2'o „q'(see Fig. 2), thus
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