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We investigate, in detail, the consequences of the assumption that "scaling in the mean" and Koba-Nielsen-
Olesen {KNO) scaling remain valid at asymptotic energies for which pL & p~ m and (n) &) 1. We argue that
the scaling function ${t) can be fit by the simple function e ' with no free parameters. We show that,
asymptotically, the semi-inclusive distributions satisfy Feynman scaling and vanish at x = 0, and that the
inclusive distributions satisfy scaling in the mean, vanish at x = 0, and break Feynman scaling through an
implicit s dependence through the variable (n). For Slattery's fit to the KNO function, we obtain the
inclusive distributions for various values of (n). We assume that scaling in the mean holds for two-particle
semi-inclusive distributions and obtain the normalization conditions for the two-particle scaling function. We
obtain an expression 'for the two-particle inclusive distribution and define correlation functions in terms of the
scaling functions. We show explicitly that even if the semi-inclusive distributions factorize, the inclusive
distributions do not.

I. INTRODUCTION

Inspired by the Koba-Nielsen-Olesen (KNO) scal-
ing law for the multiplicity distribution, Dao et al.
have proposed' that the single-particle semi-in-
clusive cross sections could sca,le in the same
way as functions of both the longitudinal and trans-
verse momentum. This assumption is commonly
referred to as the "scaling-in-the-mean-hypothe-
sis." Both Dao et al. ' and Ezell et al. ' have shown
that the sealing-in-the-mean hypothesis is in good
agreement with the data. The implications of the
scaling-in-the-mean hypothesis have been con-
sidered by several authors, ""including the pres-
ent author. ' We shall refer to our previous com-
ment on the subject as (I) below.

The question of whether the data require scaling
in the mean is by no means settled. Svensson and
Sollin have shown' thai the data of Dao et al. can
be fit with a simple ansatz that satisfies Feynman
scaling, which scaling in the mean does not. "' The
violation of Feynman scaling arises from an im-
plicit dependence on s through the variable (n),
the average multiplicity. However, since (n) is
a very slowly varying function of s, it can be ar-
gued' that it is not possible to tell, on the basis of
presently available data, ' whether this energy de-
pendence is actually present or not. The question
of scaling in the mean for transverse momentum
will be even more difficult to resolve than for lon-
gitudinal momentum. The data seem to indicate
that the average value of transverse momentum
varies slowly, if at all, with both s and n. If, in
fact, asymptotically, the average value of trans-
verse momentum turns out to be a constant, in-
dependent of both s and n, then the assumption
of scaling in the mean in transverse momentum
would convey no additional information at asymp-

totic energies.
We shall address the same question that we con-

sidered in (I), namely, if scaling in the mean and
KNO scaling remain valid at asymptotic energies,
what consequences would follow? We hope that
some of these consequences may be amenable to
direct experimental confirmation or contradiction.

Scaling in the mean could hold only for the pion-
ization component and not for the diffractive com-
ponent. Thus, in reactions of the type p+p-p+p
+nm, Dao et al. and Ezell et al. consider only the
pion distribution and ignore the leading baryons.
However, even in pionization events, the leading
particles will carry off, on the average, about
one half of the total c.m. energy. In such events,
the multiplicity is usually fairly large, so that the
energy remaining to the pions must be shared by
a large number of particles so that the average
value of the longitudinal momentum (p~) will not be
large. In diffractive events, the multiplicity will
be small, but the leading particles will carry off
almost all of the available energy. Thus, as long
as the product (n) (Pr) rises slower than Ws, as the
data seem to indicate, eventually, as s continues
to increase, the asymptotic condition (p~)»(pr)
must eventually hoM. Unfortunately, this is not
yet the case with the 300-GeV/c data of D'ao et al.
and is certa, inly not true of the lower-energy data
of Ezell et al. It is for this reason that it is not
possible to distinguish clearly between scaling in
the mean and the Svensson-Sollin ansatz' on the
basis of the data at these energies. Thus, the
asymptotic results that we shall obtain below can-
not be checked against data at these energies eith-
er. However, we hope that it may be possible to
check at least some of these results with data from
the CERN ISR, from cosmic rays, and, in the
future, from ISABELLE.
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In Sec. II we consider the form of the scaling
function P for the semi-inclusive distributions.
In See. III we consider the consequences of scaling
in the mean for the single-particle inclusive dis-
tribution, In Sec IV we consider the consequences
of the assumption that scaling in the mean is also
valid for the higher-order semi-inclusive distribu-
tions, inyartieular, the two-particle semi-inclu-
sive distributions. For simplicity, we shall con-
sider a model where all produced particles are
identical and spinless. Application of the energy-
conservation sum rules then becomes straightfor-
ward. Since it is reasonable to assume that, if
scaling in the mean is valid when n is the charged
multiplicity, then it would also be true when n is
the total multiplicity (although this would be dif-
ficult to verify since to determine the total mul-
tiplicity experimentally one must be sure that all
neutrals are detected), and since there is experi-
mental evidence to indicate that the average num-
ber of neutral particles in an event is directly
proportional to the number of charged prongs, '
no generality is really lost. The additional as-
sumptions that must be made in order to apply
these results to the real world where one must
differentiate between different particle species
and, in particular, between charged particles and
neutrals, have been discussed in detail else-
where '"

dt Q(t) = dt tP(t) = 1.
0 0

We shall call the scaling variable x„,

which should not be confused with the usual Feyn-
man scaling variable x,

x=2p /vs. (6)

E = (pz, '+pr'+ nz')'~'=—pz = —,'-xmas,

%e ean then use the .energy-conservation sum.
rule'- to show that

&p,&„=V s/n,

(7)

(6)

%'e must use the noninvaxiant inclusive cross sec-
tion in (1) because the right-hand side is a function
only of the dimensionless variable x„, and so the
left-hand side of (1) must also be dimensionless.
If we multiplied by an additional factor of E to get
the invariant inclusive cross section, the left-hand
side would have the dimensions of energy.

We assume that the product (n&(pr& increases
significantly slower than 9 s, while the energy
available to the reaction in the c.m. frame is Ws.
Hence, as s-~, essentiallyallofiheavailable
energy must go into the longitudinal kinetic energy
of the produced particles. Thus, for sufficiently
large s, for any particLe with x+0, we can write

x Qnx (9)
II. THF SCALING FUNCTION FOR THE SEMI-INCLUSIVE

MSTRIBUTIONS

Scaling in the mean, for the noninvariant semi-
inclusive cross section, integrated over transverse
momentum, can be written'

The factor (pz&„/na„multiplying the semi-inclusive
cross secbon has been chosen so that the normal-
ization conditions' can be satisfied:

"
dpz; ——no

yp

f (doJdpz)psdpz, (p ) (3)f (da„/dp~)dpi

Since we assume that the target and projectile are
identical, we will have symmetry between hemi-
spheres. We thus lose no generality if we take the
variable to be not the longitudinal momentum it-
self, but rather the magnitude of the longitudinal
momentum which is always positive. The range
of integration in (2) and (3) is then 0 to ~ instead
of -~ to ~. Then' (2) and (3) are satisfied if g
satisfies"

so that we can immediately obtain from (1) for the
invar iani semi -inclusive distribution.

.Qo'„' n x nxF„(p„s)= E "=—nx„p—(x„)=
n ~I

(10)

@PII'„(pi, s)=n, -

which, of course, is a fixed constant. On the other
hand, there is a theorem due to Bali, Brown,
Peccei, and Pignotti" that states that, if Feynrnan
scaling is satisfied, E„(pz,, s) =f(x), then for large
s, the integral on the left-hand side of (11) must
behave like f(0) lns. Hence, the only way to avoid
a contradiction is to require that f(0) = 0. » short,
the fact thai, asymptotically, each of the seMi-

Two things are apparent from (10). First, since
there is no explicit or implicit s dependence, each
of the semi-inclusive cross sections satisfies
Feynman scaling. Second, as x-0, each of the
semi-inclusive cross sections goes to zero linearly
with x, so thai there is a "hole" in the center of
each distribution. I'hese two facts are not unrela-
ted. We must have
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inclusive cross sections satisfies Feynman scaling,
with a scaling function that vanishes at the origin,
is a consequence of the scaling-in-the-mean hy-
pothesis, irrespective of the particular choice of
the scaling function.

The function Q is determined by the data. Both
Dao et al. and Ezell et a/. fit their data with the
form

y(f) +e-(bt+ct )

Dao et aE. obtain a=0.91+0.15, b=0.83+0.04,
c=0.03~0.01, while Ezell et al. obtain a=1.0
+0.02, b=1.08+0.01, c= -0.012+0.03. Both Dao
eg al. and Ezell et al. obtain the best fit without
imposing the constraints (4), but the constraints
are satisfied by their fits to a very good approxi-
mation.

Since the parameter c is small in both cases,
one might try a fit of the form ae ", setting c = 0.
The constraints (4) immediately give us a= b = 1,
so our function, with no free parameters, is simply

y(t) = e-'. (13}

In Fig. 1 we plot this function (13) and the functions
fitted to the data by Dao et al. and by Ezell et al.
The three curves are quite close over the range of
their arguments for which data exist and, in ad-

I,O

dition, the two fits lie on opposite sides of (13). ,

Hence, not only do the data satisfy the scaling law

(1}, but the scaling function can be fit remarkably
well with a simple exponential. A glance at Fig.
2 of Ref. 1-convinces us that it is impossible to
distinguish between these three curves on the basis
of the data of Dao et al. The error bars are smal-
ler on the data of Ezell et al. , but these data are
all at lower energy and thus further away from
asymptopia. Hence, for simplicity we choose. the
form (13) for the scaling function.

An additional point is that scaling in the mean
cannot be.valid for all n, even at asymptotic ener-
gies. The limit on the magnitude of the longitudin-
al momentum is 0—p~~ —,v s. Therefore, given

(8), for a given n, the function p(x„) can be nonsero
only for' x„' ——2ri, , and the limits of the normalization
integrals (4) should also by 0 to &n. Hence, P
should depend on n, which would contradict the,
scaling in the mean hypothesis. However, - because
of the exponential falloff of P with its argument,
for sufficiently large n, say, n~ 7 or 8, such boun-
dary effects can be neglected, and no contradiction
results. In the experimental data, which is. mea-
sured in ri„ the chaxged multiplicity, which-is al-
ways less than the-true multiplicity. This could
explain why scaling in the mean seems to -hold". 3

for n, as low as 4.

III. THE INCLUSIVE DISTRIBUTION

The invariant inclusive distribution is givenby a
sum of semi-inclusive distributions:

O. I

where

0.0I

Q.ool--

FIG. 1. The scaling functions p(t). p(t) =e ~ (solid
line), the Dao et al, . fit, fI5(t)=O 9le
(dotted line), and the Ezell et al. fit, P(t)
=e '0 '0~ (dashed line), where t is the scaling'
variable, t=p&/(pr, )„. Since these curves are almost
indistinguishable over the rarige, O~t ~ 5, for which
data exist, we argue for the first choice, which has no
free parameters, on the basis of simplicity.

F(n, :~)=
2 f «~'0(*N( 2 ) . (16)

Using the energy sum rule for the inclusive cross
section, we can use the same argument that we
used to obtain (8) for the semi-inclusive distribu-
tion to obtain the average value of p~ in the inclus-
ive reaction as

n

In order to say anything about the inclusive distri, -
bution, we must make an assumption about o.„. .The
data seem to indicate that n„satisfies Koba-Niel-
sen-Olesen (KNO) scaling'

(m) ((m))
'

proximating the sum over n by an integral over
the variable z = n j(n), we obtain
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(Pz& = Ws/(~&

and defining

written as

(n&'x~ &~&x
=&n&x~(x),F(ps~ s) =

w'ith

@(x)=J dzzd(z)d(xz) .

as thet'We ~ho~ld notetha
d a factor of

tthisis not the sa,me
function C in (I) as we have remove a
x.t

KNQ function must satisfyWe recall that the KN
the norm ial za'tion conditions

(1.7)

(18)

(j.9)

(20)

@ functions arecorresponding @'

@ (x)=e

) (
—

) 3(] 8 [(x+ 1) +x ])t

9}D
4 ( ) =- -) + (E+. )'

(27)

(28)

(29)

Iot the function x@(x)gn Fig 2 p . d. tribUtion-
~ sha e of the inclusive ismines the s ape

1 tterys fit For cornso],id line co»
—

@(
—

) for the othe~
res onds to Sla ery

e also plottedparison we hav
. lt is clear thatfor the KNQ «ntwo choices o

' d' t 'bution is note inclusivethe shape of the 'n
f the shape oft on the details ostrongly dep

the KNQ function.
.

d stribution willinclusiveyn orde~ t»
n with s, we Plot in igth (~& and through n w'

3 the inclusive distribu oded(z) Jdz ed=(z) = ),
0 0

J dh z'g(z) = (n'&/(n&',
0

(21)
(n&'x (n&xF(pz, s) = — C,

so that we have, defining v=xz,

dx4 x = dzz 8 dv v =1~

x dx e (x) fdz d (z=) f e de d e = ) .

is iven by (13), (20) becomesIf we assume that p is given y

(23)

5 D 7 Eg(z)=(Az+Bz'+Cz +Dg e

A —1, = . , — 2 D=0.166, E=3.04.2 =1.90, B=16.9, C= -3.32,

(26)

(I

e(x)= f z'd(z}e *'dz
0

n 4 is just the Laplace transformm ofi

)the function z P,
it is clear t ah t the inclusive cross s
satisfies scaling i.n the mean

&Pz& « ~ Pz (24)(z)z dd, ((d,)) '

n depen s onp d on s the invariant in-However, since ( ) p
elusive is rid t 'bution does not satis y

t' 'll d d

ed in (I).
he scaling func ion

of the KNO function g.on the form o
forms for the KNG function a
malization conditions 22 are

y, (z) = 6(z 1),
(25)

z =0, z&2.g, (z)= —,', 0 z~2; g, (z =0,

meaningful choic,m ' ' e however,py y™
would be Slattery's fit' to the mu ip i
normalization (21)

y XC}i
/

09-

xc)(x)
0.2-

O. l

'o I

IO

x 4 x) that determines the shape

'
g o 4Q).

—j.). C (dotted line c
( olid line) corres=o, z&2. 3 s

th dponds to Slattery s
t losely to the realps onds mos c os

e clear that the s ape o
de endent on e sth 'f h

'd' tribution is not very p
of KNO function.

e Fe nman scaling variable, g,
~ bt 'df"ues of (n&. We use, ofor various value

Slattery's fit to the KNQQ function as

bt d d th
in ful choice.

Fi . 3 were o aine
tion (7) is valid. This

h th "hol" tand there wiill thus be a dip rather an
the error in using thee can estimate t e err

approximation (7) by explicit y c
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elusive distribution at x=0. Since we wish to in-
tegrate over transverse momentum, we make the
approximation of replacing P& everywhere with

(pr) and we define

{(p )2+ m2)1/2 (31)

Using (1) without the approximation (7) we obtain
for the semi-inclusive distribution at x = 0

F„(0,s) =n'(m, /~sy(0). (32)

E(0, s) = (n') {mr/Ws) P(0},

and since

(33)

@(O)=f «x'0&x)&&0) «x')l&x)'=)«&0)

(33) could also be written

F(0, s) = (n)'(mr/0 s)4 (0) . (35)

A.s discussed by Ernest and Schmitt, ' as long as
(n) increases with s slower than s'~', F (0, s) will
tend asymptotically to zero. In fact, the multipli-
city data for pp interactions at higher energies can
be fit wj.th the form

(n,) = 2.04 ln(s) -4.33, (36)

with s in units of GeV', (n,) is the average charged
multiplicity, whereas what appears in (19), is the
total multiplicity (n). Making the reasonable' as-
sumption that, on the average, the same number
of positive, neutral, and negative particles are
produced, we would have (n)=-,'(n,). Thus (n)=60
corresponds to (n,) = 40, which from (36) would

20

l2

'0 0.2 04 0.6 0,8 I.O

FIG. S.The inclusive cross section((n) x/2) e2((n)x/2),
corresponding to Slattery's fit to the KNO function,
as a function of the Feynman scaling, variable x for vari-
ous values of the average multiplicity (n) . (n) is a
slowly varying function of , and (n) = 60 would corres-
pond to a c.m. energy, Ms=5&&10~ GeV.

And, from (32) and (14) we obtain the inclusive dis-
tribution at x= 0

occur at a c.m. energy, Ws= 5&& 10' GeV.
If a dip is to be observable, "the value of the in-

clusive distribution at x= 0 should be significantly
smaller than the maximum value of approximately
(n)/e which occurs near the point x= 2/(n). Taking
mr —=0.4 GeV, and for Slattery's function (n')/(n)'
= 1.3, we can estimate the value of E(0, s) and thus,
the error in using the approximation (7) in this
region. Thus, at Ws= 25 GeV, in the Fermilab
energy range, we would have E(0, s) = 3.5 com-
pared to the maximum value of E at this energy
of 4.8, whereas, at the top of the CERN ISR ener-
gy range v s = 60 GeV, we would have E(0, s) = 2.6
compared to a maximum value of 6.8.

The results that we have obtained were for a
model where all produced particles are identical,
whereas in pp interactions we must have two lead-
ing baryons. Dao et al. have removed the leading
particles by considering only negative secondary
tracks. In nondiffractive events the leading par-
ticles carry off, on the average, approximately
half of the available energy, whereas in diffractive
events the leading particles will have most of the
energy. Thus the energy available to the nonlead-
ing particles in p-p collisions will be considerably
less than Ws and it is not true (p~)» (pr), n1 for
the 300-GeV/c data of Dao et a/. Thus even though
scaling in the mean is satisfied by the data at
I ermilab energies, a violation of I"eynman scaling
is not apparent for p-p interactions in this energy
range. Svensson and Sollin' obtained a good fit to
the data of Dao et al. with the ansatz

(p +) +e br(n+1)/&-n)

(3V)
Z&&xx, x) = I &x «&x)e '*'=f&x).

The semi-inclusive distribution has no hole at
x= 0 and an s dependence through the variable (n).
The inclusive cross section has ng hole or dip at
x=0, no s dependence, and thus satisfies Feynman
scaling.

It is probably the case that if scaling in the mean
holds up to the highest CERN ISR energies, a viola-
tion of Feynman scaling should be apparent. Un-
fortunately there has been no investigation of
whether scaling in the mean does, in fact hold for
the CERN ISR data. However, a violation of I eyn-
man scaling at the CERN ISR has been observed
by the British-Scandanavian-M. I.T. collaboration, "
who found a rise of approximately 12% in the in-
clusive m' distribution over the ISR energy range
in the region of x=0. They have not observed the
type of structure that we have obtained in Fig. 3.
Enrst and Schmitt'" have speculated that the ob-
served behavior could be explained by scaling in
the mean with the additional assumption that the
average multiplicity behaves like s~'. The ques-
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tion is by no means settled and further analysis of
the data in the ISR energy range would prove fruit-
ful.

In pp' annihilation, there are no leading particles
and, as a first approximation, one can take all of
the produced particles to be pions. At a given en-
ergy, the average multiplicity will be larger than
in Pp interactions. Our simple model should thus
provide a better approximation to annihilation
reactions than to p-p interactions. If scaling in the
mean holds for pp' interactions over the Fermilab
energy range, a violation of Feynman scaling and
a dip in the region of x=0 should be observable.
It would be interesting if experimentalists with
access to the raw data could tell us whether, in
fact, scaling in the mean does hold in pp annihila-
tion reactions.

IV. THE TVfO-PARTICLE INCLUSIVE DISTRIBUTIONS

f
0'", Ip, ldp, dp,'=(n —1)&s&r„

PL PL
(42)

Using (38) and recalling (4), (41) and (42) give,
r espectively,

«ltl e,(t, t') =---—, e, (t'),J n —t t')
(43)

dtdt' t, t, t' =1. (44)

Equation (43) obviously cannot be satisfied if &f&,

and Q, do not depend on n, so scaling in the mean
cannot be valid for all n for the two-particle inclu-
sive cross section. However, because of the ex-
ponential falloff of P, with its argument, data will
only exist for relatively small values of t', say
t'&4 or 5. Hence, for small t and sufficiently large
n, we can write (43) as

dt t 2t, t', =—,t' (45)
If scaling the mean is valid for the single-par-

ticle semi-inclusive cross sections, it is reason-
able to assume that a similar scaling law should
hold for higher-order multiparticle semi-inclusive
cross sections. In the case of the two-particle
semi-inclusive distribution, we assume that the
scaling law takes the form

and scaling in the mean can be a good approxima-
tion for large n. We shall assume that (40), (44),
and (45) determine the normalization of Q,. We
shouldalsonotethat, as a direct consequence of
(39) and (42), we get the same average value (p~)„
as before, "

&p, &.
' d'~„p p'

n)n —))a„d),dt's
' (),)„' (P,)„)

' (38) f (d 'o'/dp~dp~) Ip~ Idp~dpj, Ws

f (d'~/dp~dp~)dp~dp',
Now, of course, we cannot use the magnitude of the
longitudinal momentum instead of the longitudinal
momentum itself as the appropriate variable since
we must allow for the case where pL and pL have
opposite signs. Hence, the limits of all integrals
below should be understood to be from -~ to ~
and the functions should be normalized accordingly.
Since there is no data on scaling in the mean for
two-particle inclusive cross sections (a situation
which we hope that experimentalists will soon rec
tify), we shall discuss no specific functional forms.
It is clear that the normalization condition,

which is the same as (8). We can also use (43) and
(4) to write

t t'
2 t, t' dtdt'

If we assume that &f&, (t) has the exponential form
(13), then the last integral is just

t'e 'dt=2,
", dp~dp~ =n(n —1)a„,

0'„

PL PL

is satisfied if )t), satisfies

dt dt')t), (t, t') = 1 .

(39)

(40)

so we have

I tilt'I ~.(t, t')««'= ",,

which, for sufficiently large n, we can write

(49)

Now, let us consider the energy sum rule, assum-
ltllt'le. (t t')««'=-1, (50)

PL dpL ~ PL r (41)

or, integrating once again and using the energy
sum rule and the multiplicity sum rule for the
single -particle distribution,

and below we shall assume that all n's are large
enough so that (50) is valid. Thus, while we have
assumed no specific form for the function )t)„we
have obtained a number of constraints that it must
satisfy.
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Let us now define a new function of the scaling
variables C, by the equation

x dxdx 4 x) x

~.(t, t') = e,(t)~,(t') &.(t, t').
Then we must have

d«t'~. (t t') = ««'I tl C, (t, t')

(51)

x x EKdx 4' x~x

dzz 8 v Qvdv 2 v~v

(59)

dtdt'
~

t
~~

t'
~
C, (t, t') = 0. (52)

C, thus does not correspond to the usual two-par-
ticle semi-inclusive correlation function" which
would have to satisfy '

dz y(z)
(
v

((
v'

)
dv dv'y, (v, v')

dP dP'p, .(p, p') = -n, (53) dxdx'C(x, X')= dzz'(t(z) dvdv'(t), (v, v')

but is a semi-inclusive correlation function in the
sense of Koba and Olesen. "

In analogy with (10), we can use (38} to write for
the invariant semi-inclusive distribution,

z„(p„p,', s) = zz' d'0„

dz z'q(z) = &n'&/&n&', (SO)

which depends on the choice of KNQ function. If
we assume that C, = 0 so that the two-particle
semi-inclusive distribution completely factorizes,
we have

= n(n —1)x~„'It,(x„,x„') C,(x, x') = dz z'y(z) y, (xz)y, (x'z)

n'(n —1)xx' nx nx'
4 P 2 2

then the inclusive distribution has the form

I" (PI, Pz, s)= Z &P (Pz, Ps, e)

and, in place of (17), we have

dz z'((n&z —1)g (z)

(n&xz (n)x'z
2

(54)

(55)

(55)

dz z'y(z) e-'"'"'"

= C (x+ x'),

where the function 4 is the Laplace transform of
the function z'((z). The inclusive distribution does
not factorize [except in the trivial case g(z}
= 5(z —1)] but becomes a function of the single vari. -
able x+x'. 'This is an example of correlations
created by interference between the single-particle
semi-inclusive distributions. "

We could go on to assume that scaling in the
mean holds for the k-particle inclusive distribu-
tion,

(, )
&n)'xx'

dz z'(t)(z)

(z)zz (z)z'z)
2 ' 2

which, for sufficiently large &n), can be approxi-
mated by

&pz&'„d'o„
n(n —1) (n —k)o„dp~dPz ~ dPz( '

&P &.
'

&P &. &P &.
'

but we shall leave the derivation of any further re-
sults as an exercise for the reader.

V. DISCUSSION

= &n&'xx'4, (x, x'),

with

Z, (z, z') fdzz k(z}((z=zz'z) '.
. , ,

0

And we could write

(5 t) In Sec. II we considered the single-particle semi-
inclusive distributions and argued that the data
could be fitted with a simple exponential form. %'e

showed that scaling in the mean implies Feynman
scaling for the semi-inclusive distributions as a
consequence of which each semi-inclusive distri-
bution must vanish ai x= 0 at very high energies.
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In Sec. III we showed that scaling in the mean for
the semi-inclusive distributions, together with
KNO scaling for the multiplicity distribution, im-
plies scaling in the mean for the inclusive distri-
bution. However, since the average value of the
longitudinal momentum in the inclusive reaction
(Pz) depends on the average multiplicity (n) which,
in turn, depends on s, Feynman scaling will be
violated. However, since (n) is a slowly varying
function of s, one cannot say for certain, on the
basis of presently available data, whether such a
scaling violation is present in the real world or
not.

For any reasonable choice of the KNO function,
the inclusive distribution will also vanish at x = 0
at asymptotic energies. If (n) rises slower than
s' ', there is a rapidity plateau in the central re-
gion but its height is zero If .(n) rises like s'~'
or faster, there will be no plateau but a more com-
plicated structure in the central region. One can-
not say anything about the rise in the inclusive
cross section over the ISH energy range at 90' in
the c.m. frame (y =0) without making additional
independent assumptions about the behavior of (n).
The explanation of the rise by Ernst and Schmitt
depends critically on the additional assumption that
(~) ~ sl/3

We have obtained the function x4(x) that deter-
mines the shape of the inclusive distribution for
three different forms for the KNO function and have
shown that its form does not depend very much on
the particular form of the KNO function. We have
also obtained the inclusive distribution in the case
where the KNO function is given by Slattery's fit

for various values of (n) to see explicitly how Feyn-
man scaling is broken.

In Sec. IV we investigated the consequences of
the assumption that scaling in the mean is valid for
the two-particle semi -inclusive distributions. We
obtained a set of constraints that the scaling func-
tion must satisfy and obtained an expression for the
two-body inclusive distribution. We have shown
that, even if the two-particle semi-inclusive dis-
tributions factorize, the two-particle inclusive
distribution will not.

' We must re-emphasize that the results that we
obtained are for asymptotic energies and cannot
be expected to hold at Fermilab energies and con-
ventional accelerators where the data supporting
the scaling-in-the-mean hypothesis was obtained.
In fact, it is not really possible to distinguish con-
clusively between scaling in the mean and conven-
tional Feynman scaling on the basis of data at
these energies alone. More higher-energy data
are needed.
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