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Scaling laws for inclusive production of hadrons in high-energy particle-nucleus collisions*
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Simple scaling laws for inclusive production of hadrons in high-energy particle-nucleus collisions are derived
from a model that has reproduced multiplicity distributions in high-energy particle-nucleus reactions. The
success of the model, applied here to large-transverse-momentum reactions, suggests the possible use of
nuclear targets and nuclear beams to investigate future energy domains of particle physics with present

accelerators.

INTRODUCTION

A recent experiment at Fermilab! on production
of hadrons at large transverse momentum p,, with
200-, 300-, and 400-GeV protons incident on nu-
clear targets, showed a strong dependence of the
invariant cross section for the inclusive production
of 7*,K*,p,p on the atomic number A of the target
nucleus. While for low p, the dependence is close
to A%, at high p, the power rises, reaching num-
bers larger than 1.2 '

In this paper we show that a simple model® that
was shown to successfully reproduce the average
multiplicity* and the Koba-Nielsen-Olesen® scaling
function in high-energy particle-nucleus colli-
sions,® leads to sum rules relating inclusive pro-
duction in particle-nucleus collisions to inclusive
production in particle-particle collisions. These
sum rules lead to an approximate scaling law
which is compared with experimental data.® Good .
agreement between theory and experiment is ob-
tained. '

THE MODEL

Let us briefly summarize the model for high-
energy particle-nucleus interactions that has been
presented in Ref. 3. The interaction of a high-
energy incident particle with the nucleus is as-
sumed to result from its simultaneous collision
with the array of nucleons that lie within a cylinder
of cross section ¢ (the inelastic particle-nucleon
cross section) along its path.

The center-of-mass energy squared in the parti-
cle-array collision is then given by s; ~2imp,
(neglecting nuclear binding), where p,, is the
laboratory momentum of the projectile, m is the
nucleon mass, and ¢ is the number of nucleons
in the array. Following the observation that vari-
ous quantities that characterize multiparticle
production in high-energy particle-particle col-

lisions are independent of the quantum numbers

of the colliding particles, it is assumed® that in
the center-of-mass systems the particle-array
collision resembles a particle-nucleon collision
at the same center-of-mass energy. Consequently
particle-nucleus collisions can be predicted from
particle-particle interactions, as demonstrated

in Ref. 3. Here we derive additional expressions
for inclusiVe cross sections.

DERIVATION OF RESULTS

Let P(i,A;b) denote the probability that the pro-
jectile incident on a nucleus at impact parameter
b will encounter ¢ nucleons, and let P(¢,A) denote
the probability that the projectile at any impact
parameter will encounter exactly ¢ nucleons.
Then”
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where the inelastic projectile-nucleus cross sec-
tion is

o‘i’;‘=fd2b [1-(1——?)1 . (3)

The thickness 7'(b) is given by

16)= [ a200,2), @)

where p is the nuclear density [ [p()d®r =A].

According to our model the inclusive cross sec-
tion for the reaction p +i-c +anything, where
(without loss of generality) the projectile is called
a proton, and ¢ is the number of nucleons in any
array, is given by
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(13 iY2(E +p,),br) .
(5)

(S E +py,bp) = E

E, p,y, and p, are the energy, longitudinal, and
transverse momentum, respectively, of the mea-
sured particle c¢; s=~2mp,,, and pp denotes pro-
ton-nucleon collision. For proton-nucleus col-
lision p +A —c + anything we average Eq. (5) over
the probabilities to find 7 nucleons at impact pa-
rameter b in a cylinder of cross section ¢ along
the beam direction, and integrate the contributions
from all cylinders along different impact param-
eters, i.e.,

3

do
E—F=5— dp3 (s E +py,bp)
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da bp . .
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where pA denotes proton-nucleus collision. Using
Eq. (2) we obtain the sum rule

d3

E (s E +py,br)
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For pp2+m2«p,% where m, is the mass of
particle ¢, Eq. (7) reduces to

3 _PA

d
E _d(;_a(s "xll ypT)

(zs %1,07) 5

gm ZP(z,A)E
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where x, =2p, /Vs. Since E(d®c®/dp®) (s,x,,pr),
for large s and small p,, is a function of x|, and
pr only, then

Ed*g® /ap® ofd

3 . pp 3 bp
Ed®c? /dp3 s la:se L O

9)

as was observed in the Fermilab experiment.!
Application of Eq. (7) to rapidity distributions
will be discussed elsewhere.

For pr 21 GeV the data indicates that Ed3¢”"/dp®
is independent of p,.® Using this observation and

Eq. (7) we obtain

a3 PA m
E = (s,pT)—U ZP(z A)E

ap° (ls;pr)

(10)

APPROXIMATE SCALING RULES

Comparison of Eq. (10) with experiment re-
quires both knowledge of low-energy nuclear
properties to calculate P(¢,A), and data for in-
clusive pp cross sections at momenta up to Ap,,,,
which in the cases considered here lie far beyond
the energy range of present accelerators. In or-
der to avoid an ad hoc parametrization of Ed%g??/
dp? at energies where no data are available, we
approximate Eq. (10) in the following way: We
have found that for A =10 averaging over P(i,A)
can be approximated by an average array of AL/
nucleons. Equation (10) reduces then to the simple
scaling law

o.p da bA ﬁ ¢
0,;;.14 E dl) ( ;pT) dp sapT) ’ (11)
i.e., the function
in d3 -
Z?AE (A7, ) (12)

n

is independent of A.

One can easily check that the appropriate inte-
gration of expression (8) leads to an average mul-
tiplicity as given in Ref. 3.

COMPARISON WITH EXPERIMENT

In Figs. 1-5 we compare the approximate sum
rule [Eq. (11)] ,with the data as given in Ref. 1.
We have plotted (0%2/0%*) E(d®c* /dp®) from Ref. 1
(see Ref. 9) for W and Ti for Vs =19.4, 23.8 GeV,
respectively, as a function of pr; deﬁ.ning Sefr -
=A3s we find that its values are almost equal
to each other [(s,)/2=46.2 and 45.2 GeV, respec-
tively]. Data for Ed3¢??/dp® were plotted at Vs
=44.6 GeV.® According to Eq. (11) (¢??/
o) E(d3o? /dp®) for W, Ti,p at Vs =19.4, 23.8,
44.6 GeV, respectively, should be approx1mately
equal.’® Good agreement between experiment
and theory is found for ¢ =n* K*,p, as shown in
Figs. 1-5. Deviations from our predictions are
found only at the highest p, values, where the
replacement of the sum over P(i,A) with the aver-
age A'/3 leads to the largest error.'*® We ex-
clude the comparison to the p spectra, since we
have not taken yet into account the dissociation of
the target arrays.
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FIG. 1. Comparison between data on inclusive pro-
duction of 7* in pA collisions for A =184, 48, 1 at
Vs=19.4, 23.8, 44.6 GeV, respectively, from Refs. 1
and 8. According to the approximate scaling law [Eq.
(11)], all these data should lie on the same line since
they all have the same sqge=A1/3s.
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FIG. 2. The same as in Fig. 1, for 7~.
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FIG. 3. The same as in Fig. 1, for K",
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FIG. 4. The same as in Fig. 1, for K~.
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FIG. 5. The same as in Fig. 1, for p.

CONCLUSIONS

The success of the model for the average multi-
plicity, the Koba-Nielsen-Olesen function, the
dispersion, the dependence of the average multi-
plicity on the number of knocked-out protons,?
and for the high-p, inclusive cross section has
the following important implication: The average
effective energy squared available for particle
production in particle-nucleus collisions is A/®
times larger than the energy available in particle-
particle collisions at the same laboratory mo-
mentum. At Fermilab with 400-GeV protons in-
cident on uranium one has an average effective
energy squared of S ~2AY Smp, 4600 GeVZ,
There is of course a non-negligible probability
for obtaining energy-squared values beyond 10*
GeV?, as indicated by events with a large number
of knocked-out protons.®* Moreover, for high-
energy nucleus-nucleus interactions®® s
=A11/3A21/3S.

Consequently experiments with high-energy
particles incident on nuclear targets or experi-
ments with nuclear beams with high energy per
nucleon incident on nuclear targets can provide
information on the energy domains of future ac-
celerators much before the future machines will
be actually constructed. In particular, possible
heavy particles may be produced by the cumulative
effect discussed here, using nuclear targets at
present accelerators.
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