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%'e show that a natural explanation of the various hadron cross-section sizes, in particular of the small size of
o.T(pp), is possible in a dynamical mode1 of the Pomeron based on quantum chromodynamics.

The approximate energy independence of ha-
dronie total cross sections is one of the oldest
problems of elementary particle physics. Re-
cently, two dynamical models for Pomeron be-
havior have been proposed within the framework
of quantum chromodynamics, In the model of Low'
and Nussinov, 2 which we pursue in this paper, the
forward amplitude is dominated by the exchange of
two colored gluons (Fig. I). The amplitude for
one-gluon exchange is zero for color-singlet
hadrons and the two-gluon amplitude is purely
imaginary 1n the 8 ~ fixed-t limit. Fxchanges
of more than two gluons, which might be a source
of embarrassment to the model (the exchanges
being C-odd as well as C-even in the f channel)
are ignored or assumed to be numerically small.

A second models for the Pomeron postulates
that the forward amplitude is dominated by the
exchange of "wee" quarks, (Fig. 2). This ap-
proach explains naturally the universality of

multiplicity between hadron reactions, deep-
inelastic processes, and e' e annihilation and
also explains fragmentation power laws, in par-
ti.cular, in hadronic processes.

Both of these models are consistent with Feyn-
man's original wee-parton-exchange approach
and each has attractive features. It is clearly im-
portant to pursue both approaches further in order
to define their distinguishing features and to
reveal possible specifically dynamical regulari-
ties of Pomeron behavior.

To this end we explore further the two-gluon-
exchange model, concentrating specifically on the
effects of the size of the bound-state hadrons and
of the number of quarks they contain. We demon-
strate, in particular, that the observed small (-
nucleon cross section is the natural result, in this
model, of the color-singlet nature of hadrons and
the relatively small size of the g, considered as a
bound state of heavy charmed quarks. The basic
picture, Fig. 1, begins with incoming bound states
described, in general, as a superposition of Fock-

space states (valence+valence qq+ ' ' ) which
are considered as established prior to interaction.
The I.ow-Nussinov approach, to first approxima-
tion, neglects all but the simplest valence Fock
component. (In comparison, Ref. 3 presumes that
it is precisely the higher qq-sea Fock components
which are responsible for pomeron behavior. }
One then considers the lowest-order (second-
order) nonzero gluon-interaction graphs involving
the- component valence quarks. Certainly there are
many possible correcti. ons to this picture, but all
involve exp/hei tly higher-order gluon mechanisms.
For instance, there ax'e components of the bound-
state Foek space which contain gluons and, of
course, there are explicitly higher-order correc-
tions to the two-gluon interaction itself such as
three-gluon exchange, "vertex" corrections to a
gluon attachment, etc.

Our approach differs from that appropriate to the
bag model' in the dynamics by which the momentum
brought in by one of the gluons i.s transferred to the
outgoing gluon. We employ a standard eikonal
formalism which has built-in momentum conserva-
tion at all intermediate stages, unlike the static
bag-model approximation. The important differ-
ences to which this leads will be noted later.

Let us consider meson-meson scattering in the
limit s -~, f fixed. (Later, we will state how our
results generalize in the somewhat more compli-
cated cases of meson-baryon and baryon-baryon

Fgo. 1. The two-gluon diagram for the bare Pomeron
(Befs. 1, 2).
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scattering. ) It is instructive to include all crossed
and uncrossed ladder graphs to begin with, since
these graphs sum, formally, into a simple eikonal
expression. We will shortly specialize to the two-
gluon-exchange term. The amplitude can be most
elegantly derived by considering quark scattering
from an external gluon field using null-plane field

theory, ~ then tying together the scattering of the
right-moving and left-moving quarks using func-
tional differentiation. (The result for quark-quark
scattering by two-gluon exchange has been obtained
by Nieh and Yao' and by McCoy and Wu. ')

The amplitude, normalized so that do/dt= ~8~'/
16))s', or =8/s, with Zi=g[[)y, ][.'[1)di,", is

db e- f'g. b

x d~ d'r, , mr*, , or d ds~. . .s*.. . s
0 0

8

xezp -i 'dg[ z
'z(v,zz)e(z ) (z,') v(z, z)-z'(z')ev(z, x) (z') z,'v{x, —z)]I.

i =1

Here Q' = —f and vectors V with arrows denote
tra, nsverse components (V', V'). We will write
V' = (V'+ V')/][2 for the other two components.
The notation for a typical two-gluon-exchange
graph is illustrated in Fig. 1, The wave function
[I], , (n, r) describes the initial meson I. The in-

Cy 62
dices a„a2 are the color indices for quark 1 and
antiquark 2; for a color-singlet meson state, P
=3 '~'5...4. The subscript on an SU(3), ][. matrix
indicates the quark line on which it acts. (Note
the minus signs for antiquark lines. ) A circular
color trace within each meson bound-state loop is
implied. Spin and flavor indices are suppressed,
(The exchanged gluon itself does not flip the quark
spin though bound-state effects can. ) Quark 1
carries a fraction {)( of the large-P, [= (s/M2)') ']
momentum component of meson I and quark 3
carries a fraction p of the total P«[ =(s/v 2 )' ']
of the (left-moving) meson II. The impact pa-
rameter b is the transverse separation between
the center of I" of meson I and the center of I'
of meson D.

The transverse positions of the four quarks are

x, =-, b+ (1 —n)r,
x =2b —Qrq

x, = ——,b+ (1 —P)s,
1x = ——,b —Ps .

In the eikonal exponential factor, the one-gluon
potential V is

V(x)= —f dx'dx X (x', x, x) . (2)

The distinguishing feature of a, non-Abelian gauge
theory in this approximation is that the order of
the X matrices acting on a given quark line must
be specified. The correct order is given by ex-
panding the exponential, with the x' and x in-
tegrations (2) left undone, then x'-ordering the
A, matrices on the quark lines for meson I and
x -ordering the X matrices for meson II. In the
related case of quark-quark scattering the x' and
x integrations would contain logarithmic di-
vergences, which indicate the presence of logs
factors in a more carefully derived result. "

In the special case of interest to us, two-gluon
exchange between color-singlet mesons, the ampli-
tude is proportional to the trace of the two X

matrices that act on meson I (and similarly meson
II). Thus the order of the X matrices is irrelevant,
the x' and x integration are trivially done, and
we obtain

1

de Ix(ez) I fdd d, e Ix'({{.e) I*
0 0

2 2

Vx, —x +Vx —x —Vx, —x —Vx —x

The integral (2) for V(x) gives

V(x) =(2v) ' dke'"'"(k'+ p, ') '

Here ILL is a fictitious gluon mass, which we insert
to mimic the confinement of the colored gluons to
a region of size 1/p. For instance, in the bag
model, the infrared cutoff is provided by the com-
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FIG. 2. The quark-exchange diagram for the bare
Pomeron (Ref.- 3).

bined two-bag size. (Our result for the forward
amplitude is finite and independent of p. as p, -0.
In contrast the slope of da/dt at t=0 diverges
logarithmically as t(, -0.) We will take p, =m, .

Finally the reduced wave function 0 is normal-
ized so that the meson's electromagnetic form
factor is,

('(Q) fu» =a»(»(», »)('»'»- "'" (4)
o

if only quark 1 is charged [&(0)= 1j.
What are the experimental implications of Eq.

(3) for forward scattering'? First, we notice that
8 -0 as the size of either of the mesons vanishes.
Simply put, this is because color-singlet point
particles do not radiate colored gluons, and thus
cannot interact via gluon exchange. In Eq. (3) we
no te that if say Ix —x, I= IrI is sm»I we can
write

[V(x, —x,)+ V(x, —x,) —V(x, —x,) —V(x, —x,)]"
=(r v(V[o.x, + (1 —o.')x, —x, ]

—V[ nx, + (1 —a)x, —x4]j )' .
Thus as the size (x'), of meson I tends to zero the
amplitude vanishes like' 6 ~ (r '), .

In the present case of a small color-singlet
meson, this cancellation in the amplitude occurs
because the quark and the antiquarks couple to the
color gluon with opposite signs. The same can-
cellation occurs for color-singlet baryons in the
limit of zero size, due to the identity

~~+ Ca5c bb+ Eggs ~c

Similarly the amplitude will vanish like t'2 for
small x in higher-order gluon exchange; there is
one factor of x for the first (in x') gluon absorbed
and one factor of x for the last.

The two-gluon forward amplitude (3) can be re-
written in a useful momentum-space form:

8(~=o(= —"(»*)'(&») '

dk[(k/2)'+ p, 'j

&& 2[1-ff'(k')]2[1-f f~z(k') j (~)

f(k')=g; g, (6)

where the important "size" is I/X, tbe inverse
form-factor scale.

We have employed a monopole form for f(k')
as required by dimensional counting. ' In tpat
approach one envisions tbe momentum k/2 as
entering on, say, the quark line and being trans-
ferred to the antiquark line by means of a ba,sic
interaction with dimensi. onless coupling constant
(perhaps also gluon exchange). The Feynmann
"Born" graph for this as compared to that for the
meson electromagnetic form factor makes clear
their equality for ~ = —,

' and predicts monopole be-
havior for both. The structure of these "off-
diagonal. " form factors where the two gluons hit
different quarks in the hadron is very different in
the static bag model. ' There each gluon probes
the static charge distribution yielding the hadron
form factor at each interaction. Thus, instead of
f«(k2) one has [f';(k'/4)]' and, of course, tbe
form factors predicted by the static charge dis-
tribution in the bag model are not necessarily
power -law-behaved.

The two-gluon model can also be used to de-
scribe meson-baryon and baryon-baryon scat-
tering. One uses a wave function P(n„u„n„.
r„r„r,)„,= (I/O 6 )z„,4' to describe a baryon as
a color-singlet bound state of three quarks. We
omit the details of the intermediate steps here
because the notation is somewhat cumbersome.
The result for forward scattering of, say, a
meson from a baryon is simple: in Eq. (8) one
makes the replacement

2[1-fbi(k')]-3[1-fry(k')] .

A natural quark counting facto& app-ears in the
result. In the baryon case the "form factor, "
f;,'(k') is a bound-state expectation value of
e~~~2 ~ » -x~) where x,- —x,. is the distance be-
tween some pair of the quarks. Because f»(k2)
is a diquark form factor, its large-k behavior
should reflect the short-distance behavior of the
product of two quark fields: f ff(k') -1/k'. Indeed,
an examination of the simplest possible Feynman

Here f (k2) is aform factor for meson I: f~'(k~)
= (e&«2'&*i""2&), where ( ) denotes the expectation
value in the meson bound state. Thus f«(k') dif-
fers from the meson's electromagnetic form
factor, Eq. (4), only by the replacement (1 —n)- —,

' in the exponential, as would be.a good ap-
proximation for weakly bound quarks of equal
mass. Thus for phenomenological purposes we
can regard f as the true electromagnetic form
factor and approximate it by
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diagrams appropriate to theories that obey dimen-
sional counting, shows that fff and f '„' should have
identical large-k behavior, as the third quark of
the baryon is not probed. Even the mass scale is
approximately the same for f" and f" in the di-
mensional-counting "Born" graphs. Therefore we
will approximate f,'f(k') by the same monopole
form used for mesons, Eq. (6). This equalzty
fb" „,„(k')=f"„,„(k'), foz similar quaz"k type,
leads to quark count&@ „for total cross sections.
However, the cross section is also sensitive to
the bound-state "size,"I/X, which may vary
drastically in going from hadrons composed of u

and d quarks to those that contain strange or,
especially, charmed quarks.

In order to calculate the relative magnitude of
various cross sections we must determine the
mass scales ~ appropriate to different quark types.
The simplest approach is to presume the validity
of vector dominance for the electromagnetic form
factors of the different vector mesons ppg. The
p form factor is dominated by the p, the P by the

Q, and the P by the g (given the orthogonal quark
contents, Zweig's rule prohibits any mixing)
yielding

(8)

Alternatively, dimensional-counting graphs sug-
gest that X is sensitive to quark masses and
binding energies. In the simplest case X is pro-
portional to qua, rk masses, which leads to some-
what larger differences between the X's and thus
the different cross sections. Other estimates of
X, though less directly connected to form-factor
behavior, follow from bound-state-model calcula-
tions of (r'). Linear-potential approaches' yield
ratios for the "size" parameters similar to (8),
while in the bag model (r') for the hadron states
is not so sensitive to the quark mass, being large-
ly determined by the bag parameter "B "'0

Using (8) and y, =m, =0.14 (the result is in-
sensitive to p, if p —m, ) we obtain

which is in rough agreement, with the experimental
'ratios 1:4-5:8 obtained by using the higher values
of ar(Qp) (Ref. 11) and o'r(gp) (Ref. 12) extracted
from nuclear shadowing assuming a moderate-to-
small real part of the amplitude. (Larger theo-
retical ratios can be obtained if one takes ~ pro-
portional to quark masses. ) In addition the abso-
lute size of or(pp) determines the gluon coupling
constant. Using the parameters above we obtain
g'/4zz=0. 53 (in agreement with Ref. 1) for or(pP)
=27 mb.

Finally we consider the generalization to states,

say meson states, composed of quarks, q, and q»
of unequal mass. The q, q, form factor again has
monopole behavior according to dimensional
counting, but the mass scale is no longer directly
related to electromagnetic-form-factor mass
scales. The dimensional-counting Born graphs,
in the simplest approximation, suggest that X in
f 'z'2 is proportional to the reduced quark mass.
Typical quark masses" are m„= 3.40 MeV, m,
= 5m„so that X(su ) = —,

' &(uu ). This would lead to
a cross section for K*p (or R'p) slightly less than
20 mb, in agreement with experiment. Note also
that for D mesons this same approach predicts
i&(ou) =2K(uu) and hence a roughly 18-mb total
cross section for Dp mu—ch larger than that for
p.

A discussion of Q' (or t) dependence is obviously
interesting, but is more strongly model-dependent.
For example, the forward slope of da/dt, b,
diverges logarithmically for p, -0. For finite p,
b is less sensitive to size effects than 0~.

Large-t dependence (at fixed angle) is discussed
for meson-meson scattering by Landshoff. ' Final-
ly, unitarization, eikonalization, and/or s-channel
iteration of the bare Pomeron amplitude that we
have considered strongly affects the t dependence. "
Thus we leave t dependence to a future work.

In conclusion we see that, at the very least,
dynamical pictures of the Pomeron may yield
strikingly strong dependence of the magnitudes of
total cross sections on the size of the scat-
tering hadrons. To what extent lowest-order gluon
calculations are numerically reliable is open to
question, but it is clear that the important cancel-
lation mechanism is preserved in higher orders.
Thus a natural dynamical explanation of the small-
gp cross section is possible in quantum-chromo-
dynamics (QCD) approaches to Regge behavior.
More conventional explanations" based on the
"f-dominated" Pomeron picture, and the charm
analogs, have also been given but do not appear
related to the approach given here. The alterna-
tive (within the QCD context) Pomeron model of
Brodsky and Gunion' will yield results similar to
those presented here since the higher-quark-num-
ber Fock-space components (i.e., the qq sea of the
wave function), which are responsible for Pomeron
behavior in that model, arise via pair creation
following colored-gluon emission. Colored-gluon
emission from the valence state is clearly less
probable the smaller the "chargeless" ground or
valence states. A quantitative estimation of this
effect is currently under way.
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