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Baryon-baryon scattering in a one-boson-exchange-potential approach.
II. Hyperon-nucleon scattering
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From a combined analysis of nucleon-nucleon and hyperon-nucleon scattering with a one-boson-exchange
potential model the AN and XN results are presented. The model consists of local potentials due to exchanges
of members of the pseudoscalar .and vector-meson nonets and the scalar meson e taken as a unitary singlet.
The multichannel Schrodinger equation is solved in configuration space with phenomenological hard-core
potentials at short distances. The coupling constants are calculated via SU(3) with the coupling constants of
the NN analysis as input. Charge-symmetry breaking between the Ap and An channels is included. A least-
squares fit to the low-energy Ap, X+p, and X p data yields a very satisfactory. result. Predictions up to the
pion production threshold are given, and, whenever possible, compared to the experimental data.

I. INTRODUCTION

The hyperon-nucleon (Y'N) calculations of the
present paper together with the nucleon-nucleon
results of paper I' form model D in our program
of constructing potential models which can des-
cribe simultaneously all experimentally studied
baryon-baryon (88}systems.

The purposes of a combined study of the NN and
YN interactions are as follows:

(i) To test the assumption of SU(3) symmetry. In
particular we want to investigate in this model
whether a combined analysis of NN and YN is con-
sistent with the assumption that the isosinglet
scalar meson e (-700 MeV) is dominantly a uni-
tary singlet. Moreover, we want to determine
E/(F +D) ratios for the meson-baryon interaction.

(ii) To give a good theoretical description of the
YN interaction by using the results for the meson-
nucleon coupling constants from the NN analysis,
such that in spite of the scarce experimental in-
formation many experimental quantities like scat-
tering lengths, effective ranges, existence of res-
onances, etc. , still can be extracted.

There is a large difference in the effort (both
experimental and theoretical) which has been put
in studying the NN or YN systems. The situation
is now that one-boson-exchange potential (OBEP)
models can give a. good quantitative description of
the rich and accurate NN data (for references see
Ref. 2}. The theoretical effort on models of yN'
scattering is orders of magnitude smaller than on
NN scattering (for reviews see Refs. 3, 4). In ad-
dition, most of the models describe only a limited
number of YN channels, for example only AN scat-
tering and no ZN scattering. Besides they usually
do not show any results for NN scattering with the
same model. Our model A (Ref. 5) involving OBEP
from the members of the pseudoscalar- and'vec-

tor-meson nonets, and the Brueckner-Watson two-
pion-exchange potential gave a qualitative account
of NN and a good description of YN. Models B and
C (Refs. 6, 7} are pure OBEP models. These pro-
duced a reasonable quantitative fit to the NN
phase shifts and showed that also the YN channels
can be described well in an OBEP approach. In
fact these models are the precursors of the pre-
sent one. The differences are spelled out in pa-
per I.

The meson dynamics in'model D are due to the
exchanges of members of the following:

(i) The pseudoscalar-meson nonet m, q, K, X',
with the q-X' mixing angle 0~= —10.4 from the
Qell-Mann-Qkubo mass formula.

(ii) The vector-meson nonet p, P, K*, &o with
the @-&u ideal mixing angle tan 8~ = I/v 2 .

(iii) The scalar-meson unitary singlet e. The
treatment of the isosinglet meson e as a unitary
singlet has important consequences for YN scat-
tering, since the coupling of the e meson to all
BB currents is the same in that case. In NN an-
alyses the ~ and e couplings turn out to be large.
The central potentials of these mesons cancel each
other largely, whereas the spin-orbit forces re-
inforce each other to build up the strong spin-or-
bit potential necessary for the splitting of the 'P
phase shifts in N¹ When the e meson is a unitary
singlet, the large cancelling of the central poten-
tials will occur in every BS channel, since the
large uNN coupling is mairQy due to the large
coupling of the unitary-singlet part of the e.

Contributions of a possible octet of scalar me-
sons are neglected. These have all a rather high
mass (-1,.2 GeV). The reason for neglecting the .
scalar octet here is to prevent the introduction of
one more free parameter in the YN model. In that
case there would be four SU(3) parameters for the
scalar nonet to be determined [the octet and sin-
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glet couplings, the F/(F+D) ratio, and the sin-
glet-octet mixing angle]. In the NN analysis
three coupling constants can be determined. One
more free parameter in FN can then fix, in prin-
ciple, the four SU(3) parameters for the scalar-
meson nonet. However, the scarce YN data allow
only a few free parameters in order to have a
nontrivial model. The effects of the contributions
of an octet of scalar mesons have been studied al-
ready in model C, ' and will also be in the next
model E.

For very short ranges (r &0.5 fm) we assume a.

strong repulsion in all J3B channels, which is
described phenomenologically by using hard-core
potentials.

For FN we have five free parameters, three
short-range parameters, and two F/(F +D) ratios.
These parameters are determined in a fit to a
selected set of the 35 best YN data, ' i.e., total
cross sections for AP-AP, Z'P-Z'P, Z P-Z P,
&on and An and r~, the Z branching ratio at
rest. These experimental data are described
very well by the model with g'/data=0. 65. The
same applies to the angular. distributions.

The plan of the paper is as follows. In Sec. II
we describe the definition of the potentials in the
Lippmann-Schwinger equation. Sections III and IV

give the OBEP's in momentum and configuration
space. The results of the calculations for Z'P,
AN, and Z p scattering are presented and dis-
cussed in Sec. V. Section VI contains a discus-
sion of the coupling constants and an overall dis-
cussion of the results.

center-of-mass (c.m. ) frame P =(Z s 0), P,
=(E,(4), 4}, P. =( E.(q), -q }, P; =(E,~ (q'), q'), and

P, =(E@(q'), -q'}, where s =-(P, +P,)', Hence in
the c.m. frame q and q' read

q =(~,E,(q) —V,E.(q), |I},
(2.3)

q' =(V.E, (4') —
V Pq(q'), 4')

The relativistic two-particle states are normal-
ized as (suppressing the spin dependence)

(p,', p2 I p„p.) = (2x)'2E, (p, )5'(pl -p, )

x (2m)'2E, (p2) ~'(p,' —p, ). (2.4)

In looking for a definition of the potential for the
7N channels we start with the Bethe-Salpeter eq-
uation in the c.m. frame for a transition from a
state with relative four-momentum q; to one with

~fi(qfv qii P) 3II f$ (qf) qadi P)

+Q, ,» 3R y„(qj, k„; P)G„(k„;P)

x3iI„,(k„, q, ; P) . (2.5)

u3(qf ss)u»( Q s»)AIf Lf (qz, q„P).
x u, (q„s,)u, (-q;, s,). (2 5)

The transition-amplitude matrix M&& is related to
the 8 matrix via

+, is defined as the matrix which yields the trans-
ition-amplitude matrix M«when. sandwiched be-
tween the Dirac spinors, i.e.,
M«-(yiM(i)

II. DEFINITION OF THE POTENTIALS FOR THE

LIPPMANN-SCISVINGER EQUATION Sy~ = &fli& —(2&)'i ~'(&y —P()~g;. (2.7)

In order to have a proper prescription for how to
handle field-theoretical potentials in the nonrela-
tivistic Lippmann-Schwinger equation, we shall
start with the Bethe-Salpeter equation, reducing
it via the Blankenbecler-Sugar approximation into
the Lippmann-Schwinger equation.

We consider the hyperon-nucleon reactions

9R&,' (q&, q;; P) consists of the contributions of all
two-particle-irreducible Feynman diagrams. The
Green's function is diagonal in channel space and
reads'

(p, , Pk„+) +M,„—ie

F+N- F'+ N'. (2.1) y (ij. P k„)+iM„—
(p2P- k„) +M2„—ie (2.8)

p~ = /J, )P +qp p2 = p2P (2 2)

with p, , + p, , =1. Similarly we define the relative
momentum q' for the particles I' and 2'. In the

In the following we often refer to F and F' as par-
ticles 1 and 1' (or 3) and to N and N' as particles
2 and 2' (or 4). For details of these channels see
Bef. 5. The four-momentum of particle i is
P; =(E(p, ), p, }, where E(p, ) = (p, '+M, ")'~', and M,
is the mass. The total and relative momentum P
and q are introduced by

The summation extends to all two-particle chan-
nels that couple to the initial and final states.

Following the procedure of Logunov and Tav-
khelidze, ' and Blankenbecler and Sugar" (LTBS)
we write

G. =g. +(G. -~.) (2.9)

and replace (2.5) by a set of two matrix equations,
the LTBS equation, written in symbolic form

(2.10)
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and the corresponding pseudopotential equation We choose for g„(k„,q„') the form

&=Ã +II '(G -g)%". (2.11)
2~5(k„'- j,z,„(Q„)+ j,z (Q))

Two-particle unitarity -is ensured when g„ is
chosen to have the same singularity structure as
G„ in the physical region between the two- and
three-particle production threshold, . i.e., when
both Y„and N„are on the mass shell (see, e.g. ,
Ref. 11). Hence

Img„(k„, P)

=--,'[y (jj,,P+ k„) i+M j]2 ij5j+((Ij,,P+k„)' M+,„')

x[y (jj,P-k„)+iM2„]2jji5'((jj,P-k„)'+M ')
2

=—(-y.'Z, „+y %„+iM,„)(-yoz,„-y k„+iM,„)

x5(v s —E,„—E,„)5(ko —jj+,„+jjjz~)/(E, „E2„),

(2.12)
where always E;„=(k„'+M,„')' ', whenever the ar-
gument has been suppressed.

Generalizing the method of Partovi and Lomon"
to unequal-mass scattering, we rewrite the de-
pendence on P in Img„(k„, P) as a function of q„',
the on-energy-shell momentum, via

yn + 2n

1 px 2, . (-y E,„+y k„+iM,„)q„-K„+ie

x(-y'E,„-y %„+iM,„). (2.14)

This form involving the Lippmann-Schwinger
Green's function has the correct imaginary part
as required by (2.12) and (2.13). The choice is
far from unique (see also Ref. 11), but the occur-
rence of the on-shell momentum in the 5 function
in (2.14) has the virtue of making the potentials and

thus the scattering matrix independent of the
weights jj, and jj, (see the end of this section).

We note that

-y E,„(%„)+y ~ %„+iMj„=2iM,„Ai+ (%„),

(2.15)
-y'E~(% ) —y k„+iM,„=2iM2„Aj2)(-%„),

where A, (k„) is the projection operator on posi-
tive-energy states. Therefore Eq. (2.10) can be
rewritten as

9Rf j(qz qj P) Nf j(qz, q;; P) +Q d kn 2M&„M2„A(&) k
(2 )' '"(q' "' )E,.(k.).z..(&.)

(2)1 k
g2jj5(k jj Ej (q )+P~E (4)) 6|Iq„—k„+ic ni, &kn& ~' & ~ (2.16)

So and~ can be restricted to the positive-energy states only. Using

2MA, (p) =g u(p, s)u(p, s),
e

and defining the pseudopotential Wanalogous to (2.6)

Wf j(gf q;; P) = u, (q f sg)ug( gf& 84)%7fj(qf» qji P)uj($~, s~)u3(-qj s2) i

one gets after performing the k„ integration in (2.16) for the scattering matrix Mz;

(2.17)

(2.18)

Mf j(qfp fiji Ms) Wf j(qfp qji Ws) +
(2~P ~"(q~ " ') 2[z,„(k)+E (%)] q2-k„+2i.

(2.19)

In (2.19) the zeroth component of k„ is given by

k:= j,z,.(q.) —j,z..(q.) . (2.20)

Equation (2.20) can be converted into a I ippmann-Schwinger equation by introducing a nonrelativistic nor-
malization of the two-particle states

(p» s&r pj's s& [p» s» p» s2) —(2&)'5 (pj —p&)5 (p2 p2)5$)s 58~8 2 1

and by the definition of the nonrelativistic scattering-amplitude operator T such that"

(2.21)

I q, &y IMI i&

sees
I qj ~

(flTii)2+: 34 12 ~
(2.22)
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where M,4 and M» are the reduced masses in the final and initial states. Another way of defining T via the
nonrelativistic unitarity relation leads to the same result. Qeneralizing the relation between M&;, and T&;

off the energy shell

(f I T I i ) = [4M,4(E, +E,)] '~' (3, 4 IM I 1, 2)[4M„(E,+E,)] '~',

yields from (2.19) the Lippmann-Schwinger equation

(2.23)

(3, 4IT Il, 2) =(s, 4I vI1, 2)+Q (2.24)

with the potential analogously to (2.23)

(3, 4I ~I1, 2) =[4Ms4(ES+E4)] '"
&3, 4IWI1, 2&I 4M,.(Ei+E.)] '" (2.25)

For the following it is convenient to pass to the Pauli spinor space. %e define the so-called nonrela-
tivistic amplitudes V'and 'U by

~3N4 T~i~2 =
X3 X 4 FXi X 2 ~

+3 4 ~+&+2 -
X3 X 4 U X y X 2 ~

(2.26)

It is easy to verify from (2.24) that the amplitude E satisfies the Lippmann-Schwinger equation in 4 x4
Pauli spinor space with the potential '0

(3, 4l~ll 2)=(3 4IVI1 2)+Z d'jp„
, ", (3, 4IVIn„n, ) =, "',"'.-(n„n, IrI1, 2) .2M', ff,

qn
(2.27)

Using rotational invariance and parity conservation
one can expand the 4 x 4 transition matrix V'(Refs.
14, 4)

(2.28)

where K; = 5, (qz', q, ', q; ~ qz). We shall choose for
the operators I'; in spin-space

I2 =G~ ' 02,

P, = (a, ~ k)(o, ~ R), P~ = (i/2)(v, +o,) ~ n,
P, =(o, ~ n)(o, ~ n), P, =(i/2)(o, -o,) ~ n, (2.29)

P, = (&r, ~ q)(o, ~ k) + (&x, ~ k)(o, ~ q),
P, = (o, ~ q)(o, ~ k) —(a, ~ k)(a, ~ q),

where

q =(q +qg)/2

P'1 —O',.= V,E,(q) —V,E.(4) —p.E,.(4.) + p, E,.(q.)

=E,(q) —E,.(q.),
and therefore

V% 4 ~s) -[.-I E,(q) —E,.(q.)l'

+(q —k„)'+m'} ',

(2.31)

(2.32)

i.e., independent of the weights p., and p,
In the case of nonzero contributions of [E (q)

—E,„(q„)]' (e.g. , AZ transitions or strange-
meson exchanges) we approximate

(P, —P,„)'+m'= (p, —p,„)'+m' (2.33)

III. OBEP IN MOMENTUM SPACE

by absorbing (E, -E,„)' into the mais term by
changing the mass to an effective mass m. All
cases of interest to us are discussed extensively
in Ref. 4.

k =qf —
Qg q

n=q,. xq~=kxq.

(2.30) In the QBEP approximation we consider only
second-order irreducible diagrams contributing
to the kernel

A similar expansion can be made for the potential
'V.

Finally, we consider the dependence of the po-
tentials on the weights p. , and p, The zeroth
components of the momenta occur only in the com-
bination P', —p', „, e.g. , in the propagators for me-
son exchanges [(p, —p,„)'+m'] '. With our choice
of g„(k„, P), Eq. (2.14), we have in the potentials

birr(2) (3.1)

Similarly to (2.28) we expand the nonrelativistic
potentials V as

6

V

=RSVP(,

(3.2)

where the P, are given in (2.29). This means that
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we neglect the potential forms P, and P,. In this
paper we will make the local approximation for 'U, ,
'Terms like P, and P, would lead to nonlocal po-
tentials and hence are neglected. In deriving these
local functions 'U, (k') we make the following ap-
proximations:

(i) E= (k'/4+ q~+M2)'i2 =M+ k'/8M . (3.3)
(ii) 1/MN'+ 1/M„' = 2/(M„MY) . (3.4)
(iii) We keep only terms up to order k'/M'.
(iv) In the meson propagators [(p, -p3)2+m2]

= (k'+ m') [cf. (2.33)]. When two different hyperons
are involved (AZ) the average mass is used in the
potentials.

'The interaction Hamiltonian densities are
(i) pseudoscalar -meson exchange

(iii) vector -meson exchange

'U1 = (g,3g24[l —k /(8MYMN)] g,—3f24k /(43RMN)

'

g24 f13k /(43RM Y) +f» f24k /(16II2M YMN)]'4 3

U3 [g13g24 + g 13f24MN/JR +g24f13MY/3R

+f»f„[l-k'/(8M YMN)]M YMN/SR'ja/(4M„M„),

4 [ g13g24+ (g13f24+g24f13)( Y N) /~
—f„f, Sk'/3l'] 4/(8M „M„),

P Zg13 4Y5(1$ i

(ii) scalar -meson exchange

&S =g,@31t1,4'1

(iii) vector -meson exchange

(3.6)

(3.6)

5 [g13g24+ (g13f24+g24f») (MYMN)

+f„f248M YM N/3R2] 6/(16M Y2MN2),

'U, =
I (g„g„+f„f„k'/43R')(M „'-M„')/'(4MY'MN')

'U3 = g,3 g244/(4MY—MN),

(ii) scalar -meson exchange

'U, = -g,3g24[l+ k /(8MYMN)]41

(3.8)

&Y=3g»43&.(,4'+ $3c. A, (s'0" —s"0").

(3.7)
Similar interactions apply to the 24 vertex. The
scaling mass 3Rgn (3.7) is chosen to be the proton
mass.

Using the approximations described above we
find, for the 'U,. in the case of nonstrange-meson
exchange,

(i) pseudoscalar-meson exchange

where

~ = (k'+ m')-'

(3.10)

(3.11)

For the mesons carrying hypercharge (K and K*)
we find a completely symmetrical occurrence of
MY and M„and an additional minus sign. " The
potentials can be obtained from (3.8)-(3.10) by
replacing both M„and M„by (MYMN)'i2 and adding
a minus sign. Furthermore we get nonzero con-
tributions from the second part of the vector-me-
son propagator (k"k"/m2). Hence we have"

'U4 =g13g24b/(2MYMN),

'U, = g» g24&/(16M„'M„'),

g,'= g„g„~(M„'-M„')/(4M, 'M„'),

(3.9)
-'U ='U —(M3 -M, )(M4 —M2)'U~ i/m, (3.12)

where in 'U' ' the vector-meson coupling constants
p]3 g2q have to be inserted, and M Y and M„have to
be replaced by (MYMN)'i2.

1V. THE POTENTIAL MODEL IN CONFIGURATION SPACE

'The potentials in configuration space are obtained via Fourier transformation. " The additional approxi-
mation of the quadratic spin-orbit terms is described in paper I. From (3.8)-(3.10) we get

(i) pseudoscalar -meson exchange

v (Y) = "g'4 m[-'. (o, c,)@(x)+s„q(x)]a,
Y N

(ii) scalar-meson exchange

2 2 4

Y E X X Y

Y N

(4.1)

(4.2)
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(iii) vector -meson exchange

v, :: . Pfl m' SZ m' m'
4 " ' 8M M ""4%M ""43RM ""163K'M Mr Y N N Y . Y N-

(M M )'1' 3m' 1 1
g g +{g3f2+g f ) "~ +f~~f 8~ +~ ~(x

. Y N 3R 8% x

MY MYMN m
+

4M M g 13g24 +g 13f24 lR
+ g 24f13 5R +fi3f24 5R2

1+
8M M [ 3 {oi o2) 0(+) Si2X(+)]

Y N :Y N

m 4(M rMg)'1' 8MrM~ 3
+

16M M ~ g.g-+ «.f..+g-f.)
5R

+f.f..
Y N J x

m' rn'(M „",-M„')
g13g24 flaf24 45R2 4M 2M 2 (gi3f24 g24fis) 3R/M M 'il/2 + 2 0(+)2 i i 2)

Y N Y N/, . X . X

(4.3)

(M, -M, }(M, -M, )
2 (4.7)

where in V the vector-meson couplings py3+2g
have to:be inserted.

Qur treatment of the relevant baryon-baryon
channels and their SU(3) classification has been
described in detail in Ref. 5. There also the
SU(3} conventions for the coupling constants are
spelled out. We mention two differences. Firstly,
we do not use here any SU(6) relation for the coup-
ling constants, although we keep vv=1 for the
direct couplirig of the vector mesons, thus coupling
the p meson universally to the isospin current. The
NN coupling constants having been determined in
paper I, we determine in this YN analysis n~ and
nv. Secondly we have included p -X' mixing

~X') = cos 8~ ~X',) + sin8~
~
il,),

(r1) = -sin8 ~X,')+ cos8 ~q,),
The singlet-octet mixing angle is t+en from the
Gell-Mann-Qkubo mass formula 8~= -10.4'. The
treatment of the broad mesons p and g has been

In these formulas x= mr, where rg is the average
mass of the isomultiplet, and

y(x) = e "/x, y(x) = (-,'+ 1/x+ 1/x')e ."/x, .(4.4)

q„=—,'[(o, ~ L)(v, 1)+ (o, L)(a', 'L)]. (4.5}

= 1 for hypercharge K=0 exchanges and

(4.6)

for 1'00 exchanges (K,K*), where &„and 6', de-
note the space and spin exchange operators. In
the latter case we have to replace both MY and

M„by (M„M„)'~' in the expressions (4.1)-(4.3) and
reverse the sign of the antisymmetric spin-orbit
term —,'(o, —'o, ) L." For K* exchange we have in
addition to (4.11) also the term $(r) = 1 —exp[-(~ —x)/X] . (4.10)

The modification parameter A. is required to be
small such that only the inner part of the potentials
is affected, and the tail is still determined by me-
son exchanges only.

The treatment of the hard cores in the p and
higher L waves is discussed in Sec. 7 A.

V. RESULTS OF THE CALCULATIONS

A. Determining of the free pgramqters

Having obtained in the NN analysis' the values
for the coupling constants of the nonstrange me-
sons with the nucleons, all meson-baryon coupling
constants can be calculated via SU(3) relations. But
we still need to determine the short-range param-
eters and the E/(E+D) ratio of the pseudoscalar-
meson octet. Furthermore, we check the value
of nP keeping f„» fixed in view of the small sen-
sitivity of NN to f~z„.'

Tracing the dependence. of the s waves on the
hard core r adii, we-find that the 'S,{ZN, I= —,')
potential is always weak and repulsive. Therefore
the dependence of the 'S, (ZN, I =-', ) scattering

described extensively in paper I.
The hard-core scheme for the s waves in YN

reads (for more extensive discussion see Refs.
1 and 5)

~, hard core in 'S, (A1V; Z1V, I= „,), -—
X modification parameter in 'S, (ZN, I= 2), (4.9)
~, hard core in 'S, -'D, (AN; ZN, I= —„-,) .

In order to be able to calculate in the particle
basis, we account for the difference which can
exist in principle between the hard cores of
ZN(I = ~) and Z1V {I= —,') in the 'S, wave by multiply-
ing the potentials in the I= —,

' state by a phenomeno-
logical function
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length and the total nuclear cross section on the
hax'd-core radius is very weak. " So we can take
the hard-core radius x,(ZN, I =-,') the same as
x, (AN; ZN, I=-.') =-x,.

For the p waves in NN we found that a single
hard-core x~= 0.34594 fm was sufficient for the
potentials in both the I= 1 and I=0 states. The
'P, (VN) potential, which is in the 10, isrepulsive
and hence insensitive to hard-core variations. In
the 'P(NN} waves, which belong to the 2V, the
'P, (NN) potential and the inner part of the 'P, (NN)
potential are repulsive, but the 'P, (NN) potential
is attractive at short distances. So x~ in NN is
essentially. determined by the 'P, phase shifts.
Considering the p waves in YN, we notice that in
the 'P, waves apart from the potentials in the 10*
also potentials in the 10 and 8, occur, and in th'e
'P waves next to potentials in the 2V also potentials
occur in the 8, representation. We have performed
a tedious investigation of the hard-core dependence
of the various p waves in YN with the following
results":

(i} For ZN, f=2 we have
(a) strong dependence of 'P„ leading to x &0.40

fm~

(b} almost no dependence of 'P„
(c) almost no dependence of 'P„,
(d) slight dependence of 'P, -'E, .
(ii) For AN and ZN, I= ', we have-
(a) strong dependence of 'P» leading to x &0.39

fm,
(b) almost no dependence of 'P„
(c) moderate dependence of 'P»
(d) strong dependence of 'P, -'E„ leading to

x&0.34 fm.
We try to describe the p waves in YN with a

single hard-core radius x~ &0.40 fm. The value
of x~ can be searched by fitting to the data that
depend genuinely on the p waves: the angular dis-
tributions of Z'p -Z'p at pc, = 1VO MeV/c and of
Z P -Z P and Z P —An at pc- = 160 MeV/c.
The results show that indeed with a single hard-
core radius for the p waves we can get an excellent
description of the experimental angular distribu-
tions. It appears that the best fits are obtained
when x~ =0.31m, '. Hence we have kept

x~, =0.66254 fm. (5.2)

B. Z+p scattering

The values of the five free parameters from
the overall fit lead to the scattering lengths and
effective ranges of the Z'p s waves with statistical

TABLE I. Comparison of the theoretical and experi-
mental values for the selected set of 35 best FN data
(Ref. 5). The superscripts BH and M indicate the Be-
hovoth-Heidelberg {Ref. 17) and Maryland (Ref. 18) Ap
data. The lab momenta are given in MeV/e and the cross
sections in mb.

Ap Ap X =3.1
RH

+exp 0th

Ap Ap X2= 1.9
M

ph, 0exy +th

145
185
210
230
250
290

180~ 22
130+17
118+ 16
101+12
83+9
57~9

210.2
145.6
115.4
95.9
79.7
55.4

135
165
195
225
255
300

209+ 58
177+38
153+ 27
111+18
87+ 13
46+ 11

229.9
175.2
132.7
100.4
76.1
50.7

~'P- ~'P X'=0.1
pC+ sexy. 0th

~"p Z"p y =.3.6
pc +e~ +th

l45 123+ 62 108.5
155 104+ 30 99.1
165 92 + 18 91.1
175 81+ 12 83.7

142.5
147.5
152.5
157.5
162.5
167.5

152+ 38
146+ 30
142+ 25
164+ 32
138~19
113+16

142.0
134.6
128.1
122.1
116.3
111.2

The last step is the determi'nation of the five free
parameters: three s-wave short-range parameters
(x„X,x,), ar, and a~ (thereby keeping f„» and

f»„ fixed). This is done in a least-squares fit
to the selected set of the best 35 YN data [Table
1(data are from Refs. 1V-19, 26, 2V)]. The values
which emerge are given in Table Q together with the
covariance matrix n ' and the correlation matrix
C. In Table I we compare our calculated values
with the experimental ones. 'The total x'= 19.5
for 35 data and 5 degrees of freedom, i.e., y'/
data = 0.65.

We shall present the results concisely. 'Those
who need more details can get these on request.

(5.1)xp ——. 0.31m, '=0.44314 fm,

leading to X'= 2.9 for seve@. Z'p differential-cross-
section data and X'=12.4 for the six Z"p-Z"p
together with ten Z p -An differential-cross-sec-
tion data.

For the higher l. waves (L ~ 2) we have no clue
to determine the hard-core radius x~, in Y¹In
view of the small sensitivity of these peripheral
waves to hard-core variations, we just take over
in YN the hard-core radius needed in NN (Ref. 1)

Z-p- Z'n X'=5.5
pC sexy 0th

110 396+ 91 192.9
120 159a 43 168.4
130 157+ 34 149.0
140 125+ 25 133.4
150 111+ 19 120.6
160 115+ 16 110.2

r~~~= 0.468~ 0.010

110
120
130
140
150
160

174+47
178+39
140+ 28
164+ 25
147+ 19
124+ 14

236.3
201.4
174.1
152.3
134.7
120.3

r~=0.4775 X =0.9

Zp An X =4.3
ps &exy +th
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errors

a, = -3.66+0.33 fm, r, =3.52+0.25 fm,

a, =0.34+0.01 fm, r, = -7.31+0.20 fm,
(5.3)

o [mb]

g+ g+

where the superscript C denotes the presence of
the Coulomb potential.

For the case that the Coulomb interaction is not
present as in Z n scattering we obtain

a, = —4.61+0.60 fm, x,=3.69+0.27 fm,

a, =0.32+0.01 fm, r, = -6.01+Oe12 fm.

The Z'p "total" cross sections (for definition see
Ref. 5) are compared with the experimental values
in Table I and Fig. 1. An excellent fit is obtained,
since we have here essentially one free parameter
(A), which fixes the 'S,(f= —,') contribution.

In Fig. 2 we compare the calculated values with
the experimental angular distribution from the
Heidelberg group, " showing good agreement. A
few remarks ean be made about the differential
cross sections. The Coulomb interference with
the triplet waves, which is almost entirely due to
the 'S, wave, is constructive. The destructive
Coulomb interference with the singlet waves, which
is almost completely due to the 'S, wave, is larger
in absolute value yielding a total destructive Cou-
lomb-interference result. The shape of the an-
gular distribution, however, is apart from the
Coulomb forward peak essentially determined by
the 'S, -'P, interference term, which is large.

We have calculated also the polarization of the
scattered Z' along the normal at pc. = 170 MeV/c.
The result is (P n) = —0.001, and it agrees with

TABLE II. Values of the free parameters in the best-
fit point and the covariance matrix n in units of fm to-
gether with the correlation matrix C.

150—

50

0
140

I

150

I

160

I I

170 180

&, [bieV/cj

FIG. 1. Calculated Z'p "total" cross sections com-
pared with experimental values of Ref. 19.

[mb]

100—

g+ g+

pz+=170 MeV/c

the measured value" (P ~ n) =0.0+0.16. Note that
no singlet waves contribute to this polarization, "
which are the only oneswith slightly larger phase
shifts.

0.562 71 0.449 15 0.075 45 0.464 03 0.334 28

.0.49 —0.16 —1.55 -0.02 —0.00
60—

—0.16

—1.55

0.11

0.49

—0.02 -0.01

0.49 —0.01 0.01

9.35

0.46

0.46 0.0O x 10-4

0.58 —0.02

—0.00 0.01 0.00 -0.02 0.05
20-

-0.71 -0.73 -0.04 -0.03

-0.71 0.50 -0.06 0.14

C = -0.73 0.50

—0.04 —0.06 0.20

0.20 0.01

—0.10

-0.6 -0.2 0.2 0.6 1.0

cose

-0.03 o.14 0.01 -0.10 FIG. 2. Calculated Z p differential cross sections
compared with the data of Ref. 19.
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TABLE III. Z'p and Z"n p-@rave effective-range pa-
rameters in units of fm. The superscript C denotes the
presence of the Coulomb interaction.

ac
c

P

-2.13
2.39

-1.82
2.24

3po

-2.46
4.29

-2.01
4.91

3p

1.49
-9.18

1.20
-11.20

3p

-0.244
6.75

-0.214
13.50

100—

The p-wave Z+p low-energy parameters are
given iri Table III for the expansions Egs. (30)
and (32) of paper I. When we compare the values
of the 'P(Z'p) effective-range parameters with
those of 'P(pp) (Table V of paper I), we see that
the sign and the order of magnitude is the same,
as we expect from the fact that both 'P(pp) and
'P(Z'p) are in the 27 representation of SU(3).

In Table IV the nuclear-bar phase shifts for
Z'p are given as predicted by the model. In par-
ticular we want to mention the 'P, phase shifts,
which grow to about 75' around pc+ = 660 MeV/c.
In Fig. 3 we have depicted the total nuclear cross
section of Z'p; Very interesting is the maximum
aro nd pc. =. 420 MeV/c, which is essentially due
to the large 'P, phase shift.

50—

0.4 0.6

I

1.0

p, ,[sev/c]

FIG. 3. Z'P total nuclear cross sections as predicted
by the model.

C. AN scattering

In our AN calculations we get different values for
the low-energy parameters in the charge+I and 0
states, since we have taken into account charge-
symmetry-breaking potentials. The s-wave

scatt-

eringg lengths and effective ranges are given in
Table 7 for AP, An, and for AN, suppressing the

TABI E IV. Z'p nuclear-bar phase shifts in degrees. The p; denote the mixing angles for J@ J&.

p, . (MeV/c)
Trab (Mev)

So

3'
Eg

3Po

'p1
P(
3p
3p
E' 2'

3D)1'
D2

P2
'D2
3D3

3Q

P3
3Q

3
3+
E'4

3G3

G4
3G

100
4.2

30.36
-3.06
-0.38

0.94
0.94

-0.00
-0.53

0.12
-0.03

0.02
0.02

-0.00
-0.03

0.00
' -0.00

0.00
0.00

-0.00
-0.00

0.00
-0.00

0.00
0.00

-0.00
0.00

200
16.7

36.83
-6.92
-1.86

4.95
7.75

-0.02
-2.62

1.10
-0.35.

0.29
0.30

-0.00
-0.42

0.06
-0.06-

0.03
0.05

-0.00
-0.08

0.01
-0.01

0.01
0.01

-0.01
-0.00

300
37.2

31.58
-11.57
-3.42

8.80
26.18
-0.08
-5.09

3.21
-1.01

0.89
0.96

-0.00
-1.21

0.33
-0.28

0.16
0.22

-0.00
-0.34

0.04
-0.08

0.04
0.07

-0.10
0.01

400
65.5

23.47
-17.20
-4.53
9.89

52.25
-0.16
-7.49

5.83
-1 72

1.60
2.05

-0.01
-2.11

0.94
-0.61

0.40
0.49

-0.00
-0.75

0.16
—0.'23

O.ll
0.18

-0.28
0.04

500
100.8

14.60
-23.48
-5.14

8.14
68.74
-0.20
-9.92

8.05
-2.28

2.16
3.68

-0.02
-2.95

1.92
-1.00

0.70
0.88

-0.00
-1.20

0.40
-0.43

0.24
0.33

—0.53
0.10

600
142.8

5.66
-30..01
-5.32

4.39
74.55
-0.21

-12.54
9.32

-2.58
2.29
5.79

-0.03
-3.75

3.12
-1.37

1.03
1.43

-0.01
-1.62

0.81
-0.65

0.40
0.52

-0.80
0.22

700
190.7

-3.08
-36.52
-5.20
-0.55
74.57
-0.22

-15.05
9.52

-2.65
1.83
8.16

-0.05
-4.60

4.30
-1.69

1.31
2.17

-0.01
-1.97

1.39
-0.88

0'.59
0.76

-1.06
0.40

800
244.0

-11.51
-42.84
-4.88
-6.12
71.46
-0.23

—17.15
8.82

-2.51
0.70

10.46
-0.0.6
-5.60

5.23
-1.93

1.45
3.15

-0.02
-2.26

2.13
-1.10

0.79
1.07

-1.29
0.67

900
302.1

-19.59
-48.91

4 44
~ —12.00

68.16
-0.23

—20.45
7.44
2 +23

-1.04
12.36
-0.07
-6.80

5.75
-2.10

1.37
4~33

-0.03
-2.51

2.98
—1.29

0.96
1.48

-1.47
1.03

1000
364.5

—27.34
-54.71
-3.95

-17.95
64.78
-0.24

-24.36
5.59

-1.85
-3.30
13.63
-0.08
-8.24

5.77
-2.18

1.02
5.67

-0.04
-2.77

3.87
-1.46

1.09
2.00

—1.60
1.48
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TABLE V. Ap, AN, and An scattering lengths and ef-
fective ranges in fm. The subscripts s and t refer to the

Q and S& states, respectively.

Ap

as
s

-1.77 + 0.28
3.78*0.35

-2.06 + 0.12
3.18+0.10

-1.90+ 0.30
3.72*0.34

-1.96+ 0.11
3.24+ 0.11

-2.03 + 0.32
3.66+ 0.32

—1.84+ 0.10
3.32+ 0.11

charge-symmetry-breaking potentials in the last
case. The correlation coefficient of 4a, and Aa,
turns out to be -0.72. The values of x, and r, are,
of course, correlated with the values of a, and a„
since the model provides x, and r, as functions of
a, and a, . r, and x, become smaller" when ~a, ~

or (a, [ get larger. The statistical errors in a, are
much smaller than in u, because the AP cross
section is more sensitive to-the 5, contribution
than to the contribution of the 'S, wave because of
the statistical factors ~3 and —,

' for -triplet and sing-
let waves.

When we compare our AP s-wave scattering
lengths and effective ranges which are obtained
from the scattering data with the values from the
analysis of the s-shell hyperfragments, "we find
almost agreement within the one -standard-devia-
tion bounds for AP and An. We note that our ef-
fective ranges in the '$, waves are larger than the
ones from the hyperfragment analysis. In a Fad-
deev-type calculation of the binding energy of ~3H

(Ref. 21) it appeared that larger effective range's
in the 'S, waves gave better agreement with the
experimental value for the binding energy of the
hypertriton. We note that the sign of the theoreti-
cal charge-symmetry-breaking potential is the
same as in the purely phenomenological treatment
in the hyperfragment analysis. "

For the scattering lengths of the charge-sym-
metric potential (Table V) we just violate in the
best-fit point the requirement (a, (&ja, ~, needed
because of the spin assignment of ~SH. However,
in viem of the large statistical error on a, this
poses no serious problem.

For the six Rehovoth-Heidelberg data me obtain
y' = 3.1 and for the six Maryland data X' = 1.9, indica-
ting an excellent fit to the low-energyAP total cross
sections (cf.Table I and Fig.4). Inthe momentum re-
gion of these data (Pa ~ 330MeV jc)the total cross sec-
tions are strongly dominated by the s waves. Even at
p~ = 330MeV/c the contributions of the higher I,
waves to the total cross section are still less than @.
In the calculated angular distributions we have a
slight rise in the forward directions and a slight
fall in the backward directions in agreement with
experiment. "

The AP elastic total cross sections up to P~ = 1
GeV/c are drawn and compared to experiment in

Fig. 4. In the momentum region above 0.3 GeV/c
we see a reasonable agreement with the Berkeley
data. "" In particular we notice that the calcula-
ted elastic total cross section in the region
0.6-0.7 GeV jc is well compatible with the experi-
mental point of Berkeley 71(Ref. 22), but at about
two standard derivations away from the point of
Berkeley 74 (Ref. 23). We obtain g'= 14 for the
seven Berkeley 71 data and X'= 10 for the seven
Berkeley 74 data. The large cusp of 39.0 mb at
the Z'n threshold is an enhancement in the '8, -
'D, waves. This peak is in very good agreement
with the results of Ref. 24, where a large peak in
the AP invariant mass is found at E .=2128.7
+0.2 Me7, the Z'n threshold being located at
2128.97 Me7. The large cusp is-not due to a mul-
tichannel virtual-bound-state resonance, since the
eigen phase shift corresponding to the eigenvector,
which is dominantly 'S,(AP), fails to pass through
90'. In fact the maximum value 72.4' of this phase
shift is reached just above the ZQ threshold.
This means that the pole in the 'S,-' D(ZN, I =2)
amplitudes in the 10*, analogous to the deuteron,
is not on the second Riemann sheet in the complex
energy p1ane, although it is close to that.
Changing the values of the n's in a large domain
does almost not change the position of the pole.
When we make the hard-core radius x, about five
standard deviations smaller, a multichannel vir-
tual-bound-state resonance appears at the Z'p
threshold. However, for this case we have also a
Ap bound state. So we conclude that a 'S, 'D, (Ap)-
virtual-bound-state resonance is unlikely to exist.
The situation for An is similar.

Before me consider the higher L waves we first
mention that me have neglected in the coupled AN
and ZN channels the singlet-triplet transitions
'Z~='J~ (j -1). The inclusion of these transitions
mill not change the results of the fit, since the
contributions of the p waves were already small.
The contributions of the singlet-triplet transitions
are expected to be very small because of the fol-
lowing reasons. In the first place we notice that
the antisymmetric spin-orbit potentials, which
are responsible for the singlet-triplet transitions,
occur only in the scalar-meson and vector-meson
potentials [cf. (4.2), (4.3)]. In the scalar-meson
case and partially in the vector-meson potential
the antisymmetric spin-orbit potential is propor-
tional to mass differences. In exact SU(3) sym-
metry these contributions mill vanish. The only
contribution, which survives in exact SU(3) sym-
metry, appears in the vecto"-meson potential: the
term proportional to (g»f, 4

—g,~f») in Eq. (4.3),
which means that also here large cancellations
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g rnb

Rehovoth- Heidelberg Ap~Ap Berkeley 7]

400—
Maryland BerkeLey 7t.

3QQ— 30—

200—

I ~ ~ ~

M
~ ~ ~ ~

I)IM 10,—
I

g+ gp
n p

0.90.6Q.2 0.70.3Q.l Q.S 1.0

p& BeV/c

FIG. 4. .Calculated Ap elastic total cross sections compared with the Behovoth-Heidelberg (Bef. 17), Maryland (Bef.
18), and Berkeley data (Befs. 22, 23).

!

occur. In E'P, where the singlet-triplet transi-
tions will vanish in the limit of full SU(3) sym-
metry, we have seen that the effects of incorpora-
ting these potentials are very small. In an energy
region where the P and higher waves dominate the
scattering the inclusion of singlet-triplet transi-
tions is more important, although the effects are
still expected to be small. Neglectmg the 'JJ cJJ
transitions has the consequence that we have in
general two decoupled 3 &&3 Schrddinger equations
for the 'JJ arid 'JJ wave instead of the 6@6 Schrd-

" dinger equation for the coupled 'JJ -'J» waves.
The effective-range-expansion parameters for

the p waves are given in Table VI for Ap, An, and
the charge-symmetric state AN. The AP and An
nuclear-bar phase shifts in the momentum region

TABLE VI. Ap, AN, and An p-wave effective-range
pa.rameters in units of fm.

Ap

oelow the ZN thresholds are given in the Tables
VII and VIII. We notice that the potentials are
overall attractive in all partial waves. The total
cross sections for Ap-Ap, Z+n, Z p above the ZN
thresholds are given in Table IX. In the region up
to roughly P„=800 MeV/c there is considerable
breaking of the isospin relations between the
AP-Z'4 and AP-ZOP cross sections, mainly due to
phase-space effects. In Fig. 5 we compare the
calculated total cross seer, ions for the experi-
mentally poorly constrained reaction AP-LOP with
the data of the Berkeley groups. ' The calcula-
ted cross sections seem a little lower than the
experimental ones, especially with respect to the
Berkeley V1 data, yielding X' =5.4 for four data
points. However, a comparison of the total-cross-
section data of Ap-Z p with Z p-An using isospin
relations and detailed balance" shows a clear dis-
crepancy, indicating that the Ap-Z p experi-
mental total cross sections of Ref. 22 are perhaps
too high (see also Sec. VD).

~Pg -0.17
Pp -0.08
Pg -0.09

3P2 -0.26

-0.04
9.76

57.7
5.37

-0.20 4.88
-0.14 26.0
-0.05 64.0
—0.26 5.26

-0.22
-0.20
-0.010
—0.26

7.07
24.6

-1470
5.19

D. Z p scattering

(i) Z P-Z P. The fit to the most recent "total"'
cross sections of the Heidelberg groups" is given
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TABLE VII. Ap nuclear-bar phase shifts below the ZN thresholds. The phase shifts of the
not-displayed L =4 waves are smaller than 0.20 everywhere and for L = 5 smaller than 0.03'.

p& (MeV/c)
~„„(MeV)

1
Sp

3$

3Pp
iP
3p
3P

Eg

Di
D2

'D2
3D

E3
3F
iF
3F
3F

~t.t (mb)

100
4.5

19.07
21.97
0.17
0.06
0,12
0.06
0.18
0.00
0.00
0.00
0.00
0.00
0.00
0.00

-0.00
0.00
0.00

309.6

200
17.8

24.31
28.48
0.86
0.37
0.92
0.32
1.27

-0.00
0.03
0.05
0.08
0.05
0.00
0.00

-0.00
0.00
0.00

126.7

300
39.6

21.15
26.54
1.96
0.67
2.76
0.63
3.50

-0.04
0.21
0.33
0.41
0.28
0.02
0.01
0.00
0.02
0.02

50.7

400
69.5

14.66
21.70
3.41
0.24
5.55
0.71 .

6.27
-0.13

0.71
1.08
1.19
0.86
0.05
0.06
0.03
0.06
0.08

22.3

500
106.9

7.04
16.57
5.46

-1.39
9.03
0.45
8.72

-0.24
1.88
2.39
2.44
1.85
0.13
0.21
0.10
0.16
0.25

13.1

600
151.1

-0.64
15.35
10.35
—4.14
13.37
0.35

10.30
-0.25

5.30
4.16
3.98
3.13
0.25
0.52
0.24
0.30
0.56

14.4

633.8
167.5

-2.76
38,15
25.86
-5.23
15.38
0.91

10.63
-0.17
13.66,
4.81
4.53
3.58
0.31
0.75
0.30
0.37
0.71

- 39.0

in Table I and Fig. 6. The data are described well
and the energy dependence seems good. In Fig.
7 we compare the calculated angular distribution
with the experimental one measured by the Heidel-
berg group. " A good description is reached. The
shape is essentially determined, apart from the
Coulomb forward peak, by the '$', -'P, interfer-
ence and constructive Coulomb interf erence.

In Table X we give the total nuclear cross sections
for Z p elastic scattering up to pz- =600 MeV/c.

The scattering is strongly dominated by the 'S,
wave for pr„- ~ 300 MeV/c. At the higher energies
the p waves dominate the nuclear total cross sec-
tions. The contributions of the higher I. waves are
always very small.

(&&) Z p-Z'n. The calculated total cross sec-
tions are compared with the measured values of
the Heidelberg group in Table I and Fig. 8, show-
ing good agreement. Only the datum at Pq- =110
MeV/c is two standard deviations off.

TABLE VIII. An nuclear-bar phase shifts in degrees below the ZN thresholds.

p~ (MeV/c)
7'lab (MeV)

i
Sp

S
E'i

P
ip
3p
3P

3D
iD
3D
3D

f3
3F
iF
3F
F4

atot (mb)

100
4.5

21.31
20.04
0.12
0.13
0.15
0.01
0.18

-0.00
0.00
0.00
0.00
0.00

-0.00
0.00
0.00

-0.00
0.00

284.2

200
17.8

26.46
26.45
0.70
0.68
1.07
0.08
1.26

-0.03
0.05
0.07
0.05
0.05

-0.00
0.00
0.00

-0.00
0.00

117.9

300
39.6

22.90
24.72
1.73
1.22
3.10
0 ~ 18
3.48

-0.11
0.27
0.39
0.31
0.29

-0.00
0.02
0.02

-0.00
0.02

47.1

400
69.5

16.10
19.98
3.13
0.90

. 6.12
0.06
6.21

-0.24
0.82
1.17
1.01
0.88
0.01
0.09
0.05
0.01
0.09

20.6

500
106.9

8.26
14.74
5.03

—0.72
9.84

—0.37
8.59

—0.39
1.96
2.53
2.17
1.87
0.06
0.25
0.14
0.06
0.26

12.1

600
151.1

0.36
11.90
8.86

-3.56
14.32
-0.77
10.08
-0.43

4.77
4.36
3.62
3.15
0.17
0.56
0.30
0.17
0.58

12.3

641.7
171.4

-2.51
21.09
17.68.
-4.99
16.7d
—0.43
10.43
—0.36
10.92
5.20
4.26
3.71
0.23
0.81
0.38
0.24
0.76

23.1
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TABLE IX. Ap Ap, Z'n, & p total cross sections in mb above the ZN thresholds.
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p~ (MeV/~)

Ty@b (MeV)
650

175.5
700

201.4
750

228.7
800

257.2
850

286.9
900

317.8
950

349.7
1000
382.6

Ap-Ap
Ap Z+n

Ap-Z'p

15.88
8.53
3.02

12.41
8.89
4.03

12.59
9.79
4.69

12.85
10.01
4.92

13.09
9.78
4.85

13.37
9.30
4.64

13.68
8.75
4.36

14.05
8.21
4.10

The angular distribution has not been measured,
because the reaction Z p-Z'n cannot be constrained
experimentally. The calculated angular distribution
at pz- =160MeV/c looks very much likethe one of the
reaction Z P An, but systematically about 5 mb low-
er. The forward-backward asymmetry is mainly
caused by the interference of the 'S,-'I', and 'So Py
%raves.

In Fig. 9 we compare the calculated total cross
sections in the momentum region 150 &p~- &600
MeV/c with the unpublished data of the Massa-
chusetts group, "yielding y' =108 for nine data
points. In the region 350-550 MeV/c the theoreti-
cal curve exceeds by several standard deviations
the experimental values.

In Table X we give the total cross sections for
Z P-Z'n up to Pz- = 600 MeV/c. The scattering
is strongly dominated by the 'S, wave for P&-
«250 MeV/c. At the higher momenta the P waves
dominate the total cross sections. The contri-
butions of the higher I. waves are always very
small.

(iii) Z p-An In Tab. le I and Fig. 10 we com-
pare the calculated total cross sections with the
measured values of the Heidelberg group. The
energy dependence seems good.

In Fig. 11 we compare the calculated angular

distribution with the experimental data of the
Heidelberg group. " The agreement is good, which
is also expressed in the forward-backward ratio,
at Pz- = 160 MeV/c, F/B = 1. 51c ompar edto th e
me asure dv al ueE /8 =1.40+0.24. For the

polarization of the outgoing A the Heidelberg
group" has measured, in the region 100-170
MeV/c (P.n) = —0.6 +0.4. Since most of the events
are in the higher-momentum region we compare
it with the calculated value at pz- = 150 MeV/c
&p. n) =-0.25.

In Fig. 12 we compare the calculated total cross
sections in the momentum region 150 ~Pz- ~600
MeV/c with the unpublished data of the Massa-
chusetts group, 37 yielding X' =75 for nine data.
The theoretical cross sections are larger at most
energies than the Massachusetts data. However,
we mentioned already in the discussion of AP-Z P
a discrepancy between those data and the ones for
Z p-An when using isospin relations and detailed

(r [mb]

Z p~Ep

15 '- 150—

Ap Z'p

Berkeley ?1

Berkeley 7L

100-

0.7 0.9

I

L0

pz [Gev/c]

I

130 140

I

150

I

160 170

&z- [MeVjc1

FIG. 5. Calculated Ap Z p total cross sections
compared with the data of Refs. 22, 23.

FlG. 6. Calculated Z p elastic "total" cross sections
compared with the experimental data (Ref. 19).
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100-

~I
Pq-=160 MeY/c

80-

40-

a i a I s l i i a I s I s i a i i i ~

-1.0 -0.6 -0.2 0.2 0.6 1.0
cose

FIG. 7. Calculated Z p elastic differential cross
section compared vrith the data (Ref. 19).

balance. The dashed points in Fig. 12 have been
calculated this way. So our calculations suggest
with respect to the aforementioned discrep'ancy
that the Z P-An data of the Massachusetts group
are too small, whereas the Berkeley data on
AP-Zop are a little high.

In Table X we give the total cross sections for
Z P-An up to Pz- —-600 MeV/c. The scattering is
strongly dominated by the 'S, -'8, and 'S, -'D,
transitions for Pz- (250 MeV/c. At higher mo-
menta the P waves dominate the total cross sec-
tions. The contributions of the higher t. waves
are alwa. ys very small.

Since it has become feasible to do Z p scattering
with a polarized beam, me present for the reac-
tion Z P-An the calculated values for the mea-
surable cluantities (averages or differential cross
sections and averaged polarizations), because the
A is an excellent polarization analyzer. Thereby
we have included the amplitudes of the s and p
waves and of the 'S, —'D, and 'I', -'F, transitions.

When we want to compare our predictions (Table
XI) with the measurements of the Massachusetts
group we are hampered by the small statistics in
the experiment. The value for the forward-back-
ward asymmetry (E -B)/(E+B) in the momentum
range with by far the largest number of events
50 (P~-(100 MeV/c agrees with our result. We
estimate from the experiment in this band (E —B)/
(E+B)=0.06+0.06. When we multiply our values
for the averaged left-right asymmetry c with the
experimental initial Z polarizationsp„we get
values for the left-right asymmetry in the angular
distributions (L-R)/(L+ R) =P', e close to 0. In
the band 50-100 MeV/c our values for e together
with the experimental value for I", leads to (L -R)/
(I.+R) =-0.015 +0.011, whereas the experi-
mental result reads -0.05+ 0.06. For the polari-
zation along the normal, " in the momentum region
with the best statistics 50-100 MeV/c, the Mas-
sachusetts group found (P ~ n) = -0.11+0.10 in
agreement with our values (Table XI). The ex-
perimental situation concerning the average de-
polarization Smakes any comparison at all sense-
less. The average asymmetries of the component
of the final polarization in the direction perpen-
dicular to the normal and the incident momentum,
6 (such that a right-handed coordinate system is
formed by the three directions), and of the com-
ponent of the final polarization along the incident
momentum, 6, both with respect to the plane
perpendicular to the initial polarization have not
been measured. This is unfortunate since these
are predicted to have reasonably large values
(Table XI).

Finally, we want to mention for the inelastic-
capture ratio at rest that we have obtained
x~ =0.4775 in good agreement with the averaged
experimental value4 ~~ = 0.468 + 0.010.

VI. DISCUSSION

A. Coupling constants

The values of the NE coupling constants have
been discussed in paper I. Here we shall be con-
cerned with the meson-baryon couplings involving
nonzero strangeness. These are calculated via
SU(3) with the inputs (i) the octet coupling g„(ii)
the o. =E/(E+D) ratio, (iii) the singlet-octet mix-

TABLE X. Z p Z p, Z n, An total nuclear cross sections inmb.

p - (MeV/c) 50 100 150 200 250
T „(MeV) 10 42 94 16 6 258

300 350 400 450 500 550 600
37.0 50,1 65.0 81.8 100.2 120.3 141.9

zp zp
z p z'p
Zp An

518.7 214.4 122.5 82.0 63.8
696.8 224.3 120.7 83.3 67.5
984.4 281.4 134.8 83.6 60.8

57 0 553 544 529 507 48 2 455
59.9 54.3 48.2 42.0 36.4 31.8 28.0
48 7 40 9 35 2 30 5 26 6 23 3 20 5
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cr [mb]
a [mbj

Z p~Z'n
Kp Kp

300—

50—

100-

I I I

110 120 130

I I

150 160

p&-[MeV/c]

0.2 0.3 0.4 0.5

I

0.6

p [Gev/cj

FIG. 8. Calculated Z p Z n total cross sections
compared with the experimental values (Ref. 26).

FIG. 9, . Calculated Z p Z n total cross sections
compared with the data of the Massachusetts group
{Ref.27). The datum with the black square is from the
Heidelberg group (Ref. 26).

(r [mb]

250

200—

Zj An

[mb]dcose

120-
Zp An

p = 160 MeV/c

100-

150—

50-..

I I I I

110 120 130 1LO

I I

150 160

pz [MeV/c]

FIG. 10. Calculated Z p An total cross sections
compared with the experimental values (Ref. 26}.

I

0.2 0.5-0.6 -0.2 1.0
cose

FIG. 11. Calculated differential cross section. for
the reaction Z p iin compared with the experimental
angular distribution (Ref. 26).



M. M. NAr. ELS, T. A. RIJKEN, AND J. J. DE SWART

HH

1

TABLE XI. Calculated measurable quantities for Z p
An at various lab momenta in MeV/c.

g
P~- E+B P+ E

/

/

) /

~/

50 0.03
100 0.09
150 0.18
200 0.29
250 0.37
300 0.42
350 0.43
400 p.41
450 0.38
500 0.34
550 0.30
600 0.26

0.00
0.01
0.03
0.06
0.10
0.14
0.19
0.24
0.28
0.32
0.35
0.37

0.02 -0.08
0.04 —0.18
0.06 -0.25
0.08 -0.26
0.09 -0.20
0.09 -0.12
0.09 -0.05
0.07 0.00
0.06 0.03
0.04 0.05
0.03 0.06
0.02 0.06

0.27
0.24
0.18
0.09
0.00

-0.07
-0.13
—0.17
-0.19
-0.21
-0.22
—0.23

0.13
0.08

-0.01
-0.14
—0.27
-0.39
-0.49
—0.57
-0.61
-0.64
-0.66
—0.66

-0.03
-0.10
-0.21
-0.34
-0.45
-0.52
-0.56
-0.58
-0.57
-0.55

p 54
-0.52

/[

lg
/

/

/

.. /

/

I
I

O.I 0.5

I I

0.6

&z- [GeV/c]

FIG. 12. Calculated Z p An total cross sections
compared with the data of the Massachusetts group
(Ref. 27). The datum with the black square is from the
Heidelberg group (Ref. 26). The dashed data have been
calculated from the results for Ap Zop (Refs. 22, 23)
using isospin relations and detailed balance.

ing angle 0, (iv) the singlet coupling constant g, .
The values for these parameters are given in
Table XII. Inserting these values in the SU(3) re-
lations and the mixing relations for the coupling
constants leads to the couplings of Table XIII.

The discussion of the coupling constants invol-
ving nonzero strangeness will deal practically only
with the pseudoscalar mesons, since there is vir-
tually no information from other sources about the
coupling constants of the vector mesons to strange
baryons. In the first place we mention that our
value (assuming pseudoscalar coupling) n~=0. 464
+ 0.012 is not too far from the SU(6) value o. ~ = 0.4.
Most determinations in the literature' are based on
the comparison of some pseudoscalar-meson cou-
pling constant at a vertex involving strange bary-
ons with the mN coupling. Often a result around
O.p =0.4 is reached. But it is hard to come to a more
definite conclusionbecause of the problems concern-
ingg~z„' andgA„r ' (see below). One of the advantages

TABLE XII. Parameters to be used in the SU(3) rela-
tions for the pseudoscalar (P), direct vector (V,), de-
rivative vector (V ), and scalar (S) meson coupling con-
stants.

gslr4

P
Ve
V
8

8.660 00
0.594 44
4.81696

0.464 08
1

0.334 28

-10.4'
85.264 30'
35.264 30'

4.81675
3.403 12
2.202 86
5.032 08

we have in the determination of n~ is that a~ en-
ters in a simultaneous NN and YN analysis in many
coupling constants (NNq„ZZn, ANK, ZNK, AAq„
ZZq, ) in contrast to other analyses, where usually
one or two of the aforementioned couplings are
met. This leads perhaps to a more direct deter-
mination of a~.

We start comparing our. resulting coupling con-
stants with the values from the literature. with the
least controversial ones, gzz, and gAz„. Values
of about gzz, '/4m=13+2 are given in the compila-
tion of coupling constants, ' and they agree well
with our value gzz, '/4m=11. 6. Values of gAz„'
=11+1are obtained2 for the AZw coupling, which
are considerably larger than our value gAz„2 ——5.1.
The large values in the literature for both g»,
and gAz, are sometimes considered as evidence
for the pseudovector coupling to obey SU(3) sym-
metry, . ' However, this leads to a rather large
value of g~„„'/4w, which seems to contradict in
turn the determinations of this coupling constant.
From K N forward dispersion relations it is
clear that gz„„'/4w is very small (&1).' For the
ANE coupling the results can be grouped. into two
bands, 4&@A„r'/4v ~7 and 6 SgA„„'/4m ~14, with
statistical errors of about 2.2 It seems to us that
the latter estimates are more reliable than the
former ones because of the theoretically better
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TABLE XIII. Coupling constants at vertices involving strange baryons.

—4.07 0.26 -1.45 4.65

1.19
3.22

0
3.70

-1.03
-4.64

-0.59
1.60

1.96
-4.30

-1.96
1.75

2.78
-0.34

2.78
3.94

parametrization of the unphysical region; an ef-
fective-range parametrization for ZN in contrast
to a zero-ran'ge approximation or constant scat-
tering length parametrization for Z¹More re-
cent analyses using many different inputs or con-
straints for the unphysical region show for the
coupling gr'= (g»„»—'+0.84 gz„»')/4w also typically
results in two bands, g~'= 14+4 or g~'= 8+2.'
P erhaps the values for (g~„»'+g»»')/4w = 15.2 + 2.3
(Ref. 29) or gr'=15. 2+0.7 (Ref. 30) from K+p
phase-shift analyses are less model dependent.
These values are compatible with ours, (g»„»'
+gz»»')/4m =16.7. The conclusion we would like
to draw from this comparison is that probably our
value for o.„is a little high. A somewhat sma3. ler
value would raise gzz„and lower gz„~ and gzz,
leading to a, better general agreement with the
values of the literature. Perhaps the determina-
tions of the K couplings are systematically too
low, such that one shouM prefer pseudovector
coupling above pseudoscalar coupling in view of
the large values for both g~z„and g», in the lit-
erature. -

Finally, we mention that the value from the FÃ
fit +~=0.334+0.002 is not too far from the pre-
diction of SU(6), n~ =0.4 (see, e.g. , the reviews
Refs. 31 and 32).

B. Results

Although, the obtained }f'/data = 0.65 is low, it
does not imply that it is trivial to obtain good fits.
simultaneously to Ap-Ap, Z'p Z'p, Z .p-Z p,
Z p-Z n, and Z p-An in spite of the rather
large statistical err ors. The constraints between
AP and Z P scattering are strong in our model,
especially in the coupled '8, -'D, waves. One of
the important features in the equality of the AAe
and ZZe coupling due to the assumption of the
e meson being a unitary singlet. This can be il-
lustrated best when contributions of an octet of
scalar mesons are also considered, as well as
singlet-octet mixing. Then it appears that only
when the AAc and ZZc couplings are nearly equal
a simultaneous fit to Ap and Z p scattering is
possible. %hen this is not the case, it is not pos-
sible by changing the free parameters to bring

both the Ap and Z p cross sections in accordance
with the experimental values.

The good fit to the Z'p "total" cross sections is
mainly caused by two facts: The '8, contribution
is always small, and we have essentially a free
parameter for the '8, wave. It appears that the
'I', phase shift resonates almost at higher ener-
gies. In fact, when we make the hard-core radius
a little smaller, the fit to the low-energy differ-
ential cross sections remains almost as good as
before, allowing at the same time as 'I', reso-
nance.

For Ap scattering we obtain a better fit to the
low-energy data than in model A, ' since the s-
wave effective ranges are considerably larger in
this model D. It is unlikely in our model that
there is a resonance in the '9 D, waves in the
neighborhood of the ZN thresholds, although a
large cusp appears at the Z'n threshold in the
elastic Ap channel. Above the ZN thresholds the
calculated Ap-Ap total cross sections agree rea-
sonably and the Ap-Z'p total cross sections
are a little lower than the Berkeley data.

For Z p scattering into Z p, Z'n, and An we
have good fits for the low-energy data on total
cross sections, angular distributions, and the
branching ratio at rest. The branching of Z p,
into Z p, Zon, and An largely determined the
value of the Il/(Il +D) ratio for the assumed pseu-
doscalar coupling for the pseudoscalar-meson
octet. . At the higher energies the calculated values
for the total cross sections in the reaction
Z P-Z'n come out considerably larger than the
measured values of the Massachusetts group, es-
pecially in the region where the p waves dominate
the total cross sections. Also the calculated total
cross sections for Z p-An at'higher energies
seem higher than the Massachusetts data. .
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