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We extend our earlier work on the Bethe-Salpeter equation for J = 0 by considering in addition the isospin
I = 1 phase shifts 'P„'P„'F„e„and 'D,. These require the solution of a system of eight (instead of four for
J = 0) coupled integral equations which have again been solved by iteration and application of the Pade
method. The kernel is the same as before; i.e., the same particles are exchanged with the same analytic form
of the cutoff, However, in order to find a fair agreement of our phase shifts with the experimental data, it was
necessary to lower the cutoff' mass. The phase shifts obtained show the general deficiency of dropping too fast
at higher energies. In addition, we have studied the operator Pade approach and find that relatively few ofF-
shel1 states are indeed sumcient to obtain reasonable accuracy for the summation of the Born series in a one-
loop approximation.

I. INTRODUCTION

A common starting point in the investigation of
the nuclear-force problem within the off-energy-
shell approach has been traditionally the Bethe-
Salpeter equation (BSE). In order to obtain more
tractable equations, one is led for practical rea-
sons to discuss certain ways of reducing the BSE
to generalized Lippmann-Schwinger-type equa-
tions, which also include some relativistic as-
pects. In a previous paper' (to be referred to as
I) the full BSE for spinors with one-boson ex-
changes has been employed as a model to study
for isospin I=1 and total angular momentum J=0
possible off-mass-shel1 effects. Since the one-
pion-exchange graph with pseudoscalar inter-
action couples the positive- and negative-energy
states strongly, it is expected that these effects
are important. , In particular, it was shown in I
that the BSE introduces considerably more at-
traction in these partial waves as compared to the
Blankenbecler-Sugar equation. The latter equa-
tion, one of the possible relativistic I ippmann-
Schwinger-type equations, has been used in an
actual detailed analysis of the nucleon-nucleon
interaction within a one-boson-exchange model. '

In the present paper we extend the above BSE
calculations to higher partial waves with I = 1.
Changing some parameters of the kernel as intro-

duced in I, the I =1 partial waves can be repro
duced fairly well. However, a fundamental deficiency
of this "potential" manifests itself in a drop of the
phase shifts at higher energies. The lack of agree-,
ment appears to be even stronger for the I =0
channels.

The purpose of the present paper is twofoM:
First the numerical solutions of the BSE for
J&0 are given for the one-boson-exchange model
and, assuming that this is a field-theoretical ap-
proach of some relevance to the actual physical
problem, we secondly study the operator Pads ap-
proximation (OPA) in this framework. It has been
observed by various authors' that the OPA seems
to be the most natural generalization of the Schro-
dinger equation to field theory. For NN scattering
it has been applied by Gammel et a/. ,

4 taking into
account pion exchange only and studying the pole
structure of the $p wave as a function of the
coupling constant. Our work yields further evi-
dence that below the one-pion-production threshold
the one-loop ([1/1] ) OPA with a few off-shell
states i.s a very reasonable approximation to the
solution of the BSE.

In Sec. II the BSE for J&0 is described. Inpar-
ticular we present a general description of the
kernel for one-boson exchange and give some tech-
nical points which deviate from I. In Sec. III we
briefly discuss the OPA and Sec. IV contains
numerical results and their discussion.

II. THE BETHE-SALPETER EQUATION FOR J&0

The BSE is formally the same as (2.9}of I:

4 (P, P» ~) =G(P, P., ~;P, o, ~)-2, «de. G(P~P., a; &, %„P)&(ac., P, r)4(e, e„r),2m'
l

(2.1)
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with P = (E'-'m~)'~', except that for J&0 eight chan-
nels couple and the indices therefore take the
values a, P, y = 1, 2, . . . , 8 (for the meaning of
these labels, see Ref. 5). For L =J, the indices
1, . . . , 4 refer to states even in the relative en-
ergy and 5, .. . , 8 refer to states odd in relative
energy. Similarly, for the coupled triplet states
with L =J+1, the indices 1, . .. , 6 refer to even
states and 7, 8 r-efer to odd states. In the latter
case there is a mixing between the '(L =j—1)z and
'(L =J+1)~ states, thus o. =1, 2 in (2.1) are physi-
cal states and therefore ~ takes the values ~=1, 2

as well. From the physical (symmetric) 2x2
K matrix the nuclear bar phase shifts are then
calculated. ' In the present work we have perform-

ed the iteration and summation of the perturbation
series with Pads approximants for each of the
three independent matrix elements
separ ately.

The kernel G(P, P„n; q, q„P) of the BSE contains
in the present work the same exchanged particles
as in I. Its general structure, as. given by Kubis'
for pseudoscalar and scalar exchanges, can be
generalized to the case of vector and tensor ex-
changes, which have also matrix elements odd in
the relative energy. This structure specifies
various equalities between matrix elements, which
we have attributed to CI' in I. The labeling of the
matrices is as in Ref. 5. Their general structure
is for singlet L=J

[5] [61 [7] [81

(3, 5)

(4, 5)-(4, 1)

(1, 5)

(1, 5) (5, 3) (5, 4) (5, 6) (5, 5) (5, 7) (5, 8)

(7, 5)

[5] -(1,5)

Es] -(1,5)

[7]

[s]

-(7, 1)

-(8 1) (8, 5)

(1, 5)

(1,2) (1, 1) -(1,3) —(1, 4) -(1,5) —(1, 5) -(1,7) -(1,8)

-(3, 1)

and for coupled triplet L=J+1

1 2 [7] [8]

(1, 3) (1, 4) (1, 1) (1, 2) -(1,5) (1,6) -(1,7) (1,8)

(2, 3) (2, 4) (2, 1) (2, 2) -(2, 5) (2, 6) -(2, 7) (2, 8)

-(5, 1) -(5, 2) 0 0

[7]

Es] „
(6, 1) (6, 2)

-(7, 1) -(7, 2)

(8, 1) (8, 2)

where the explicitly labeled elements can be ex-
pressed by unlabeled ones in the indicated man-
ner. The off-diagonal matrices (odd in the rela-
tive energy) connect bracketed (unbracketed) rows
and unbracketed (bracketed) columns. The triplet
L =J are obtained from the singlet L =J ones by a
transposition (with the 4x4 submatrices as en-
tities) as described in Ref. 5. However, there is
an extra isospin factor -3 in the isospin-0 channel

for isospin-1 exchange. The analytic expressions
of the kernel matrices for the various exchanges
have been determined by means of HEDUcz. "'

The basic elements (not explicitly labeled
above) are given in the following general form:
They are expressed in terms of some momentum-
dependent factors, Clebsch- Gordan coefficients,
and coefficients C(i); i =1, 2, 3, . . . . Only these
coefficients C(i) depend on the specific type of
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exchanged particle. They are normalized such
that for scalar, pseudoscalar, and "photon" ex-
change they simply are Legendre functions of the
second kind (Q~) or combinations thereof.

As in I the elements listed stand for

2E(p)E(q) G(p, P., ~; q, q., fI}.

Taking into account the symmetry property

G(q, q., P;P, p., o') =C(p, p., ~'q, q., P)

renders it sufficient to give only the elements with

x, = E(p)E(q)C(1), x, =pqC(2) + C(3),

x, = E(p)E(q)C(11), x, =pqC(12) +C(13),

x, = E(P)E(q)C (21), x, = PqC(22) +C(23),

x, =E(p)E(q)C(31), x, = pqC(32) +C(33).

The general form of the basic elements is then
given by (k, =p, —q, )

(2.2)

g &p.
For singlet L =t we introduce the following ab-

br eviations:

(1,1)=x, +x„

(1, 2) = x, —x„
(1, 3) =~2[c,[PC(4)+qC(5)1+c.+PE(q}C(6)],

(1, 4) = h(1, 3),

(1, 5) =C(7)k„

(1, 7) =M2[c~E(q)[pc (8) + qC (9)] +c~„pc(10)jk„

(1, 8) = (5 (1, 7),

(3, 3) = 2(c~'x, +c~c~„[E(p)+E(q)]C(14)+c~„'x,],
(3, 4) = 2(c~'Egq)C (6) + c~c~„(x,—x~}+c~„'E(p)C (15) + [c~'E(p) —c~„'E(q)] C (16)],

(3, 5 ) =v 2 [c~qC (17)+c~„E(p)[qC(18) +pC (19)]}k„

(3, 7) = 2(c~'E(q)C(20) +cz c~, , [ C(24) +C(25)]+c~„'E(P)C(26)jk„

(3, 8) = 2[c~'C(24) —c~ c~„[E(q)C(20) —E(P)C(26)] —c~„'C(25)jk„

(4, 4) = h(3, 3),

(4, 5) = h(3, 5),

(4, 7) = —g(3, 8),

(4, 8}= $(3, 7),

(5, 5}=x,+x„

(5, 6) = —.x, +x„

(5, 7) =~2[c E(q)[PC(27) +qC(28)1+c „[PC(29)+qC(30)] }',

(5, 8) = b (5, 7),

(7, 7) = 2qc~'x, +c~c~„[E(P)+E(q)]C(34)+c~„'xJ,
(7, 8) = 2{c~'E(p)C(35) +c~c~„(x,—x,)+c~„'E(q)c(36)+[c~'E(p)q' —c~„'E(q)p ]C(37)j,

(8, 8) = 8(7, 7).

(2.3)

The representation of the basic elements has
been simplified by taking into account that various
elements are obtained from others by just ex-
changing the Clebsch-Gordan coeff icient

1/2 g+ j 1/2

cg = and c&+1— (2.4)

In equation (2.3} the symbol h.(x, &) has been
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y, =E(P)E(q)C(1), y, =PqC(2) +C(3),

y, =E(p)E(q)C(4), y, = pqC(5) +C(6),

y, = z(p)c(7), y, = -z(q)c(8),

y, =z(P)C(9), y, =-z(q)C(10),
2 i, . 5 2Z ~

—Cg g ) + Cg Cg+ ~ ~5 —$6) + Cg+ ~ P2q

2 I, 2
Z2 —Cg g4 —CgCg+1 ~7 -$8) + Cg+

1

2 /, , 2zs ~J 3'5 ~s~s+yv'z ~2)+s+z 36~

2 2z4-c~ 3's+~z~z+gv'3-X4&+&z+& X7&

z, —gz, , z, = gz„

z, —gz„z, —hz4

and the general form is

(2.5)

(1, 1)=z, +z„
(1, 2)=z, +z„

(1, 3) =z, —z„
(1, 4) =z, —z„
(1, 5) =W2(c~ [PC (11)+ qC (12)]+c~„z(P)qC (13)],

(1, 6) =v 2 (CJE(p)qc(14)+c~„[pc(15)+qC(16)]),

(1, 7) = v 2 {cz [pC (17)+ qC (18)j
+ c~„z(p)qc(19)jE(q)k„

(1, 8) =M2[c E(P)qC (20)

+c „[PC(21)+qc(22)])E(q)k, ,

introduced to represent the expression obtained
from the (a, A.) matrix element by simply replacing
e& by —c~+, ands~+, by c~ in this matrix element.

Similarly we define for coupled triplet L =J+1

s 0
0 s

s„0
0 See s„0

0 S

0
0 s„ (2.8)

p, q, E(p), E(q), and k, are the three-momentum,
off-shell energy, and relative energy as defined
in I. The C's are given in Tables I and II for the
various exchanged particles.

Besides the Legendre functions of second kind
and index J' [ Q~(z), z as in I], we have introduced
the following combinations (in slight deviation
from Ref. 5):

2 2ZZ= g+ 1 'QJ+1 +CZ QJ
2 2
QJ+1 CZ+ 1 QZ-1$

2 2
ZQ~ =C~+1 Zg+1+Cg Zg

2ZBg = cg Zg+ ~
+ cg+ g Zg

S,=c,c„1(Qz+,—Q~, ),

ZS J =CJcg+1(Zg+1 Zg 1) .
It should be noted that we have here used the
phase convention of Jacob and Wick as described
in Ref. 5, Appendix B. This means that the
singlet-triplet elements have opposite -sign com-
pared to the ones in I.

After the Wick-rotation the real K's [see (4.7)-
(4.10) of I] are obtained in the same manner as
before. One only has to observe that in those
formulas (see I) the latin indices stand for even
and "4" stands for odd states.

The two-nucleon propagator S is given by

(2, 1)=-z, -z„
(2, 2) =z, + z„
(2, 3) = -z, +z„
(2, 4) =z, —z„
(2, 5) = h (1, 5),

(2, 6)= $(1, 6),

(2, 7) = &(I, 7),

(2, 8) = 8(l, 8),

(5, 5) = 2[PqC(23) +C (24)],

(5, 7) = 2C(25)z(q)k„

(6, 6) = 2[pqC(26) +C (27)],

(6, 8) = 2C(28)E(q)k, ,

(7, 7) = 2E(P)z(q)c(29),

(8, 8) = 2E(p)E(q)c(30).

(2.6)

0
so

0
soo

for L =g and

s 0
0 s„

s 0
0 S

S„O S„O
0 soo 0 so,
S„ 0 S„ 0

(2.9)

for the coupled-triplet states L =J a 1.
A final point of iiiterest is the introduction of a

new subtraction function. Instead of f(q, q, ) given
by (3.8) of I we now use g(q, q, ) =qf (q, q, ). In (3.10)
of If(q, q, ) has to be replaced by g(q, q,), which
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TABLE I. Coefficients C(i) for singlet I =J and the various exchanged particles. These are specified by P: pseudo
scalar, $: scalar, V~. -p~ y~ ("photon exchange"), V2. k' "O', M: mixed coupling. E&,E2, . . . are the same as
in I.

S 2

-QJ QJ —4QJ

ZJ —ZJ

QJ QJ 2QJ

ZJ -ZJ

-E6Q J+ 2pqZ Ji

—[E&+2E(q) ]ZJ+2pqQ J
[E, -2p2]Q,

—EizJ

2Z J

—QJ —QJ 2QJ E,QJ

6 -SJ SJ E&SJ

3(E6QJ 2pqZ J)

(2 —Ee)Z J+ 2pqZQ J
—(E5+ 2k02)Q J
-(2q +Ee)ZJ+2pqZQJ

-C(3)

EP ~ —2PqZSg

4pqS J
—4ZJ

2ZJ
—(p+q )QJ

(1 —q2)Z J
-(1—p')Q J

pqS J

1.0

RJ —R

=2Q J
2E(q)'S,

E)RJ—2pqQ J

4QJ

4$J

-E6R J+ 2pqZR J

SJ

14 -SJ $J

QJ QJ 2QJ

13 ZJ -ZJ E2Z J—2p(pZ J—qQ J)E(q)

(E~+ 2[1-E(P)E(q)]jSz

C(3)

(2p q —Ee)ZJ+ 2pqZQ J
C(6)

(1 —q~)Q J
PqE(q)'Qz (P'+ q')Zz—

-[1—E(p)E(q}]S,

16

19

20

SJ: ~$J E2SJ

2E(p)'$ J
-2R J

2QJ

-2p(pZ J—qQ J)

C(6)

-4P $J

4p(pZJ- qQ J)

SJ
E(p)E(q)S,

SJ

21 QJ QJ -2QJ

22 -RJ -RJ —2RJ

23 —QJ QJ

25

SJ

—EGQ J+ 2pqR J
(2+Ee)RJ
(2p'q'+ E,)Q,
2[E(P)'-E(q)']S,

2q(pQ, qR, )

EPJ

E,Q, 2Pq(Z, —I,)

E6RJ+ 2pq(ZR J—2Q J)

E~QJ—2pqZ J
C(17)

C(7)

-2R J
(p'+ q')Q J
SJ

E(p)E(q)$,

-RJ

29

00

-RJ —RJ —2R J —E(RJ
QJ -QJ

—ZJ —ZJ —2ZJ E5ZJ 2pqQ J
32 —QJ

34 SJ SJ 2$J C(14)

SJ 2SJ —E2$J=-C(15)

36 -SJ -SJ -2SJ -EiSJ
37

QJ . (2+E5)QJ
33 RJ RJ —2R J -(2p q +Ee)RJ2 2

C(22)

—C(23)

—(3E)—2ko )ZJ+ 2pq(ZQ J+ 2Q J)

C(23) + 2 ( ZR J—2Q J)

E,RJ

(E&+2[E(p) E(q)] )Sz 2PqZSz-
4p SJ+C(27)

-4q $J—C(27)

—(1 —q2)R J
(1 —p')Q J

-2Q J
(p +q )RJ

[1—E(p)E(q)]$J

-$J
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yields

1
subt = (2.10)

these approximants may be useful to solve the
BSE. Assuming a mesh fine enough for the
numerical integration we can formally write (2.1)

This subtraction is better suited for lower en-
ergies (below 10 MeV) because of its finiteness at
the elastic threshold $ =0) and gives more stabili-
ty to the Pads approximations in this energy range.

HI. OPFRATOR PADE APPROXIMATIONS

Referring to the literature on OPA s in general3
we present here a more heuristic argument that

Q =G+GDG+GDGDG+ (3.1)

where each term in (3.1) is assumed to be a
matrix in the product space of the spin variables
and discretized external off-shell momenta. . The
D's represent the propagator 8 together with the
weight factors arising from the discretization of
the integrations over the intermediate momenta.

TABLE II. Coefficients C(i) for coupled triplet L =J +1 and the various exchanged particles. See caption. of Table I.

$J

SJ

—SJ
—QJ

RJ

$J

SJ
—QJ

-RJ

—2QJ

-2R J
—4QJ

—2ZJ

-2$J
+$

4Q

2

—E6 ZJ+ 2pqQJ

(2+E,)QJ
(2p q +E&)RJ
E,RJ+2pqQJ

C(2)

(2p q +E,)z,
EiSJ

—EPJ
E($J
E2$J

-EiQ J
E(ZJ

—E($J

EfQ J
EfR J
2QJ

4T

E6 ZJ—2pqZQ J
ESQJ+ 2pqZ J—2(2pqR J + ZR J)

E6RJ
-E,RJ+ 2pq(2Q J—ZR J)

3(E6QJ 2pqZ J) 2(2Q J + ZQ J)
(3E,—mp')z J

—E6$J+ 2pqZ$ J
c(7)

-(E6 —4q )SJ-2pqZSJ

-(E6 4p')S J 2pqZS,

(3E,+4q')Q, + 2q'ZQ,

(E,+ 8p'+ 2q')Z,

-(E& —2q )SJ —2pqZSJ

E6SJ—2pqZS J
Ef.,QJ+ 2pqZ J

—(E6+4p )RJ+2pqZRJ

-2QJ

(p2+ q2)R J

-6QJ
3(p2+q )Z

-q SJ2

-p SJ-2

3q SJ

3p SJ
-3(1—q )QJ

3(& —p')ZJ
—3SJ

—SJ
-(i —q')Q,

(i. —p )RJ

20

22

25

30

-RJ
—QJ

—2ZJ

4Q

-2Q J

2$J

2$J

—2R

{2+E5)ZJ

-(2p q +E6)QJ

-2p(pQ J -qZ J)
(2+E,)RJ
t."(24)

-2p (p Q J—qR J)

E5QJ—2pqZ J
E5QJ—2pqR J

C(6}

3 (EBQJ —2pqZ J) —2p q {2QJ + ZQ J)
-4p(pQ J —qz J)

(E, 4)R, 2pqzR,

E6QJ+ 2pqZJ

(E5+ 2kp )QJ—2pqZJ

—E6QJ+ 2p qZ J

QJ

-6ZJ
3(p +q )QJ

~2R J
(p'+q')QJ .
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Equation (3.1) can be formally summed to

=G[G-GDG] 'G, (3.2)

which is precisely the [1/1] OPA. ' From this we
see that if we take for the. external momenta the
same mesh points as in the integrations, this
would actually solve the BSE. However, we may
as well start with just a few mesh points in the
external momenta. By enlarging the dimensions
of the matrices one must in principle obtain con-
vergence towards the solution of the BSE. Ul-
timately, also the choice of the external points is
arbitrary and need not coincide with the mesh
points of the integrations.

Clearly, all of these considerations do in fact
make sense only if convergence is obtained quickly,
otherwise. the dimension of the matrices is getting
so large that there is no advantage as compared to
the matrix-inversion method for solving the BSE,
which is even slower than the Pads method used
in I. However, in NN scattering the method in-
deed turns out to work reasonably well for the
energies under consideration.

Finally a technical comment is in order. For the
calculation of the OPA, the Born and box graphs
are needed. The BSE may formally be written

Q =+K+—
~ KSP, . (3.3)

1

where the K's are the same as in I. Following
Gammel and Menzel, ' an additional minus sign has
been introduced in the Born term for the odd-
states columns in order to obtain a symmetric
tangent matrix. It is clear that the physical ma-
trix elements are not changed by this modification.

higher energies we do assume, however, that the
underlying mechanism is closely enough related
to physics to allow a relevant study of the OPA
which has now to be compared with the solution of
the BSE.

The simplest approximation which can be con-
sidered is the one with only the on-shell momen-
tum in the external states. As can be seen from
Figs. 1-5, this approximation is already very
reasonable for the ', P, and 'D, waves. For the
other ones it gives by far not enough repulsion at
higher energies (-100-200 MeV).

However, introducing off-shell momenta in the
external states improves the situation drastically.
For convenience we have taken as off-shell mo-
menta the mesh points of the BSE as described in

I, Sect. 5 (q and iq~, not the points in the single
integral which one might choose as well~). In the
present work we have chosen for one 'S,
C~ = C~, =2 and = 1 for the higher waves (see I).

I
I

60- 'I'

50-

40-

N
4
tn

Ql

30-

1V. RESULTS

With the BSE we have calculated the following
I =1 phase shifts: SO P0 P P2 ~2 ~2

'D2. These were calculated at first with the same:
parameters as given in table 1 of I. The results
are represented in Figs. 1-5 (full lines). Although

the energy. dependence is qualitatively reasonable,
we see from these figures that the phase shifts
drop too fast at higher energies. Also the Py,
SP„arid 'D, channe1s are too repulsive for this
set of parameters. Trials to obtain a better fit
to the phase shifts essentially indicated that in
any case a lower cutoff mass was needed. The
dashed lines in Figs. 1-5 correspond to the fol-
lowing parameter set: A' =0.9, g, '/4v =7.8, with
all other yarameters as in Table 1 of I. The new
phase shifts are better than the former ones, but
still indicate the same deficiency at higher ener-
gies. +prying the ao arid p coupling constants did
not cure this behavior.

Though these results indicate a deficiency at

20-

10-

50 100 150

EL~b [ MeV]

I i&

200

FIG. 1. Besults for the ~SO phase shift. The solid
line is the former resuLt of Bef. 1. %ith A = 0.9, g, /4&
=7.8 and the other parameters as in Table 1 of Bef. 1
we obtain the dashed line. The results obtained by means
of the OPA's are also indicated. The external off-shell
states are labeled by their number as Gaussian integra-
tion point iri the (Q, &q4) plane as described in the text.
& corresponds to only the on.-shell momentum as exter-
nal state; & has (10, 5) as additional external point, ~
has (8, 3) and (12, 7); 0 has (8, 3), (1P, 5), and (12, 7).
The experimental points are taken from M. H. Mac Gre-
gor, B. A. Amdt, and B. M. Wright, Phys. Hev. 182,
1714 (1969).
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10

0 I

50 100 150

E, , [MeY]

lP

200
I

, 250

FIG. 2. Results for the Po phase shift as in Fig. 1.

10
0

50 100

EL b [MeY]

150 200 250

3 p )
-10

N

e -20

-30

-40

FIG. 3. Results for the P& phase shift. The solid line is calculated with the parameters of Ref. 1, the dashed line
with the new ones as in Fig. 1. For the OPA's we have used, in addition to the on-shell momentum (&), three low ex-
ternal momenta (2, 3), (7, 4), and (8, 5) indicated by ~ . At 200 MeV we show the slow convergence with the large exter-
nal momenta as used for J=O. Also at 200 MeV we have added to the above low-external-momentum states the large
one (10, 6) indicated by + .
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2546 J. F LEISCHER AND J. A. T JON

Thus each point is given by its number as Gaus-
sian integration point. The choice of the BSE
points is suggested also because they have been
adjusted already to cover the off-shell domain,
where the most important contributions come
from. The total number of points in the BSE was
16 in the q integration (where the first 8 cover the
range 0 &q &2p) and 12 in the q4 integral.

Introducing in addition to the on-shell momentum
three off-shell momenta with 0 & q = 2P improves
the waves with J~1 considerably: The 'I'2 and 'D,
are practically exact while the 'P, would need some
more states to obtain complete agreement. The
example of the Pj indicates that the choice of the
low momenta is crucial for the high waves. For
200 MeV the result of introducing a number of
points with high momenta (q& 2P) is given for the
'&j in Fig. 3. It shows that convergence toward
the right answer is not achieved though the same
number of points is used.

In contrast to that, the low momenta are not so
important for J= 0. With three additional momenta

q &2P the I'o is described within 0.3 degrees (Fig.
2). This is an important improvement compared to
the approximation with only the on-shell momentum
ln the external' state s Similarly for the S p The
introduction of additional three high off-shell mo-
menta reproduces almost the right energy de-
pendence.

Concerning the stabQity of the OPA's, in general
we observe that best stability is obtained for high
partial waves and large energies. Experimenting
with additional off-shell momenta (4 and 6) and

taking different ones for fixed numbers as well,
shows that for E„,~ 50 MeV the OPA's for the 'S,

are stable within- &'. It should be observed that
in general the stability will also depend on the
particular model under consideration.

In conclusion one may say that the OPA works
surprisingly well and will be useful in several re-
spects. Clearly, it will simplify the fitting of
the BSE kernel to the experimental phase shifts
because it is not so time consuming with only a
few external off-shell momerita. As a result we
may hope that the BSE can form a practical basis
for a fully relativisti. c treatment of the nuclear-
force problem. In particular, since three-par-
ticle unitarity can readily be incorporated in this
set of equations. ' They can be used in principle
to describe two-nucleon scattering above the one-
pion-production threshold.

Beyond that the OPA approach may provide a
firm basis for perturbative calculations in strong
interactions. Taking into account within this
framework all one-loop graphs of a Lagrangian
describing NN interaction, e.g. , one may hope to
get a good approximation to the complete pertur-
bation series. Attempts taking into account only
the on-shell momentum have already been per-
formed. ""In these calculations it has always
been a severe deficiency that the inversion of the
'S, and 'P, could not be obtained properly. Our
results show that the introduction of further off-
shell states is certainly very helpful in that re-
spect.
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