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We review our analysis of inclusive lepton-hadron scattering, which is based on the use of the variable $ that
incorporates target- and constituent-mass effects in a color-gauge theory Iquantum chromodynamics (QCD)].
We show that the apparent paradoxes recently encountered by several groups in connection with $ scaling are
not paradoxes at all, but rather are based on misunderstanding of our analysis. Paradoxes arise when the )'-

scaling analysis is applied for all (, but, as we stated in earlier work, QCD predicts that corrections (due to
twist-greater-than-2 operators) are negligible only for W well above the proton mass. We restate our previous

analysis in which we introduced a smooth function F, that g-scales up to explicit logarithmic corrections. F,
has no thresholds (it is nonzero for 0 & g & 1). QCD predicts that F, describes the data in the sense of Bloom-

Gilman local duality. More constructively, we use the parton-model language to interpret the field-theoretic

operator-product expansion in successive "twists" and develop an intuitive physical interpretation of twist. We

reanalyze the "paradoxes" in parton language. We resolve (to our satisfaction) the question of nonperturbative

effects in the analysis of electroproduction.

I. INTRODUCTION

The concept of Bjorken scaling has had con-
siderable success in the analysis of deep-inelastic
electroproduction data. Theoretical attempts to
modify the scaling laws or the scaling variable to
include the kinematic effects of target and con-
stituent masses have met with some skepticism in.

the past. The controversy over mass-dependent
scaling variables has resurfaced after our recent
analysis of inclusive lepton-hadron scattering in
the framework of a color-gauge theory of the
strong interactions" (quantum chromodynamics:
QCD). To clear up the confusion, we wish to pre-
sent the issues and arguments simply, stressing
physical principles and minimizing inessential
technicalities.

In Ref. I (henceforth GP) we showed how the
kinematic effects of target and constituent masses
can be summarized by an appropriate scaling vari-
able g. For ex~pie, $ describes the nature of the
threshold for production of states containing heavy
quarks in inclusive neutrino scattering (i.e. , t

+p- lt + any state containing a heavy quark). In
Ref. 2 (which we will call DGP), the logical struc-
ture of our analysis (only implicit in GP) is dis-
cussed in detail. We incorporate the leading inter-
action corrections in color-gauge theory and ob-
tain an accurate description. of the scaling viola-
tions observed in electroproduction at SLAC, as
well as a quantitative theoretical understanding of
local duality. The question is whether these suc-
cesses are fortuitous and, more generally, whether
color dynamics is a predictive theory at currently
accessible energies.

These issues have been raised recently by sever-
al groups. ' ' We begin with a discussion of the

criticisms of our work. At this point, a reader
who is uncomfortable with the renormalization
group and the operator-product expansion (OPE)
may worry that he is about to be subjected to a
hair- splitting argument over some mathematical
arcanum. This is not so. The points at issue in
the recent controversies are questions of logic,
arising from a misunderstanding of our approach.
Consequently we attempt to present the arguments
clearly and concisely, in a form that should be
easily accessible to any reader who has gone this
far. The criticisms are sharpest in the work of
Gross, Treiman, and Wilczek' (GTW), who ex-
press the general misgivings of all the critics in
the form of paradoxes. They prove a number of
mathematical facts and draw apparently paradox-
ical conclusions. We hope to convince the patient
reader that there are no paradoxes.

For the sake of the impatient and the "do-it-
yourself" reader, we first present the plan of the
paper in some detail. In Sec. II we review the
GTW paradox and our resolution in the moment
language appropriate to the OPE. Essentially, the
paradox arises from the fact that the physical
thresholds occur at fixed values of W', not at
fixed $. A function of $ which describes a struc-
ture function at some Qs cannot describe it ac-
curately at higher Q' because the thresholds are
in the wrong place. ~ More formally, if the $" mo-
ments of a structure function are equal for all n
at two different Q' (up to the logarithmic correct-
ions of asymptotic freedom), GTW prove that the
structure function at the higher Qs is zero in a
region of g where no physical constraint forces it
to vanish. The resolution is that for the large-n
values necessary to derive the paradox, the under-
lying color-gauge theory Pt edicts that the g" mo-
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II. IS THERE A PARADOX?

The paradox, ignoring interactions

The traditional Bjorken scaling variable is x
=Q'/2P q = Q'/2mv, where m is the target mass.
The invariant mass squared of the hadronic debris
in the final state is W'= m'+ 2mv- Q' (we denote
Q'=-q2&0). The variable g is

2x
1+ (1+4m x'/Q')'~ (la)

1 g '-m'
Q2

. w.'am* ()("-m')* '~'I' ()b)

ments are not even approximately equal.
In the next two sections, we restate our resolu-

tion in two different languages. In Sec. III we make
the logical connection between our analysis (of the
contribution of twist-2 operators to the structure
functions) and the "scaling- limit function" of
earlier works. We determine the Q' dependence
of a smooth function F, ($, Q') which is nonzero in
the entire $ interval 0 to 1. It contains no thres-
hold information, and is the analog in our language
of the scaling-limit curve. F, is a good approxi-
mation to the structure function'at small $; but
as g increases into the resonance region, the
oscillations of the physical function around F,
become more pronounced. Even in the resonance
region F, still describes the structure function in
the sense of local duality. '

In Sec. IV, .an analogous paradox is presented in
the language of the parton model. One uses the
impulse approximation to describe the fundamental
scattering process, and the struck parton is treated
as a free particle. Does consistency require that
the probability distribution of partons also be given
by free field theory~ The answer is no: Binding
effects as represented by a (Pr') OO are negligible
in the photon-parton differential cross section for
large Q', while the initial parton distribution will
be nontrivial as long as (Pr') /m „„„'40. In Sec.
IV we go on to discuss the physics of the OPE
twist analysis in terms of -initial and final state
interactions.

Section V is devoted to answering a variety of
questions that surface as afterthoughts once local
duality is understood. We discuss the possibility
of "nonanalytic" effects, undetectable in perturba-
tion theory, the nonparadox of ( scaling and truly
free fields, the peculiarities of heavy quarks,
i.e. , m qpzpQ & m&,q„, and the difficulties ingoing
to small g.

where we have set the quark masses equal to zero
because they are irrelevant to the logical issues.

We assert that g is the right variable to use in an
analysis that takes into account the m'/Q' cor-
rections to Bjorken scaling. If we ignore thecolor-
gauge interactions, the result is very simple. For
a suitably chosen structure function F($, Q'), then
n ~2 moments are independent of Q'.

f d( ( +(( Q ) =~
0

(2)

(4)

Since F($,Q') vanishes for $ & g (Q'), Eq. (4) im-
plies that F(g, Q,') (which in this simple case is
just the same function of $) must also vanish for
$ &g,„(Q'). But F(g, Q,') is physically constrained
to vanish only for g & g,„(Q,'). Thy paradox is
simply that the moment statements Eq. (2), imply
that F(g, Q,') vanishes for g,„(Q,') &$ &$,„(Q'),
where there is no physical reason for it to vanish.
Logically, one must choose between the following
two conclusions:

The $ variable is useless, and there is no

hope of including m'/Q' corrections in a field-
theoretic treatment of inclusive lepton-hadron
scattering.

2. The color-gauge interactions cannot be ig-
nored.

The second alternative sounds rather reasonable,
and suggests that one should look for a solution to
the paradox in the interaction corrections to Eq.
(2). In QCD, the most important interaction cor-
rections at large Q' arise from the anomalous di-
mensions and nontrivial coefficient functions of the

For reasonable functions F, Eq. (2) implies that

F($, Q') is Q'-independent; it scales in g. Thus if
the structure function has thresholds, they must
be fixed:$ thresholds. But the physical structure
functions have fixed- TV thresholds and a W= m pole.
These physical singularities move in g as Q'changes,
as one can read off Eq. (1b). Exact ( scaling cannot
reproduce the physical thresholds. This is the
essence of the paradox, as stated clearly in'Ref.
4. To underline the logical issues to be discussed
below, we proceed to restate the paradox in the
language of GTW.

Let g,„(Q') be the position in g of the elastic-
scattering pole (x = 1):

g,„(Q') = 2/[I+ (1+4m'/Q')'~'] .

Energy- momentum conservation implies that
F($, Q') vanishes for h&5,„(Q ). Now use Eq. (2)
to relate the st, ructure function at Q' to the struc-
ture function at Q '&Q'
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twist-2 operators. These modify Eq. (2) to give
the moments a logQ' dependence:

="1 - '10
(5)

with A a constant and d„&0 (we ignore the com-
plication of operator mixing which is irrelevant to
this argument). As GTW correctly prove, these
interaction corrections do not defuse the paradox.
Equation (5) still implies that E($, Q,') vanishes
where it should not. The resolution of the paradox
lies deeper.

There is no paradox

In DGP we argue that the logarithmic corrections
of Eq. (5) are not the only ones that are relevant in
practice. Further corrections modify Eq. (5) to
read

But for such large n, the second term on the right-
hand side of Eq. (6) cannot be neglected. Indeed,
since

M02 aQ' Mo'
"Q' m2 Q'

all k in the sum contribute. Since these terms can-
not be ignored for n sensitive to the threshold be-
havior, there is no paradox.

The resolution may be summarized succinctly
by noting that there is a nonuniformity in the limits
n -~ (or f - 1) and Q' -~. The appearance of
powers of nM'/Q' in Eq. (6) signals a breakdown of
the theoretical techniques at small 8', e.g. 1& 8'
& 2 Ge&. Such nonuniformity was first studied in
detail by Gross' in terms of logn/log(Q2/A2) terms
that appear in Eq. (5). Their origin and conse-
quences are essentially the same as the n/Q' terms
in Eq. (6), but over the range 1 ~ Q' —15 GeV' and
8' «1 GeV they are less important.

n a= 1 —— (n large),n+a n

so that the nth moment is sensitive to the behavior
of the structure function for g = („. To obtain the
paradoxical conclusion, the GT% analysis must be
sensitive to g near the threshold region:

( 1

GTW must take n large enough so that $„=$ „(Q');

(Q') =1 ——,-+0
O' Q'

(6)

Field-theory experts will recognize Eq. (6) as a
realization of the classic twist analysis of Gross
and Treiman, ' where the kth term in the sum is the
contribution of operators with twist 2k+ 2. The
ratio B„~(Q')/A(Q') has no power dependence on

n, k, or Q', so we fix the mass parameter M, by

defining this ratio to be of order 1. In DGP we

argue that M0 should be of the order of'a few
hundred MeV. We then use SI.AC data' from both
the scaling region and the resonance region to
determine M, experimentally by isolating the k
=1 contribution to Eq. (6). The DGP result is M,
= (375 + 25) MeV, in agreement with expectations.

It is the second term on the right-hand side of
Eq. (6) that tames the paradox. To see this, let
us estimate the values of n used in deriving the
paradox. For large g, the measured structure
functions behave as (1—g)' with a = 3 to 4. The
function $"(I—g)' has a maximum at

III. IS $ SCALING USEFUL?

f «& )"))e.'*) ~"))),), =. * (10)

The Q' dependence of E, can be calculated pertur-
batively (if we ignore operator mixing; it depends
only on the. constant A' and the value of E, at some
fixed Q' = Q,').

The smooth function F, is related to the physical
structure function E((,Q') by Eq. (6). The re-
lation is qualitatively different in the scaling re-
gion, the resonance region, and the threshold re-
gion, which we now discuss in turn. To guide the
eye, we refer to Fig. 1, reproduced from DGP.
In this figure, the smooth dashed curve is the con-
tribution to vW, from E,(g, Q'=2 GeV'), and the

We hope the reader is convinced that the g-scaling
analysis does not lead to paradoxes, but he may
still wonder whether it is any real improvement
over x scaling. Are the higher-bvist contributions
to Eq. (6) large enough to render the whole ap-
proach useless~ The answer is no. Because Mo'
is much smaller than m' (by almost an order of
magnitude), there are interesting regions where
the differences between $ and x is important and
where g scaling is still useful. To show this in

detail, we review briefly how DGP makes contact
with experimental data.

We define a function F,(g, Q'), which is smooth
and nonzero in the entire region 0& ) &1, and
whose moments are the A„(Q') of Eq. (5) and Eq.
(6):
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SCALING
REGION

RESONANCE THRESHOLD
REG ION REG ION

I ~~L

I

fects may add constructively tomake Emuchlarger
than E„but then E must fall back below E, at
neighboring g because the higher twist contribution
to the relevant moments is not large.

In the threshold region g~(,„(Q'), the theory
is compatible with the vanishing of the physical
cross section because all terms in Eq. (6) con-
tribute.

It may be helpful to compare our smooth func-
tion E, to the "scaling-limit curve" of Bloom and
Gilman, ' for they are very similar logical con-
structs. Bloom and Gilman assumed that vW, (x,Q')
has a well-defined smooth limit E(x) as Q' goes
to ~. They then found that for moderate Q', the
structure function in the scaling region behaved
approximately as

.1 .2 .4 .5 .6 7 t .8;9 1.0
4p vW2(x, Q2) = E(x'), (12)

PIG. 1. An illustration of local duality from DGP. The
dotted curve is the contribution of bvist-2 operators to
vW'2 at Q =2 GeV . The solid curve is an experimental
fit to vW2 including the resonance region (assuming that
R =0.18). The data points are SLAC data in which vS'2.

and S"& are separated.

bumpy curve is a fit to the experjmenta] vW, ($, Q'
=2 GeV'), containing the observed resonances.

Consider the region g «g „(Q') = 1 —m'/Q'. Mo-
ments are sensitive to this region for n such that
$„=1—a/n «1 m'/Q, or n «aQ'/m'. For such
n, the second term on the right-hand side Eq. (6)
is negligible, so in this region we expect E((, Q )
= E,($, Q'). This is the .scaling region at large
W', where the structure function is smooth. The
effect of the f variable in this region is not at all
negligible. In fact, at SLAC energies, a signifi-
cant fraction of the scaling violation (in x for x
& 0.25) arises from the $-scaling effects; the rest
comes from logarithmic interaction corrections.
To get a more quantitative picture of the signifi-
cance of $, compare g to x and x, (see Fig. 2). x,
is a phenomenological, improved scaling variable
which summarizes the scaling' violations observed
at SLAC. For protons

x
1+x(1.4 GeV')/Q' '

$ lies between x and x,. So scaling violations,
which are effectively absent when the SI,AC data
are expressed in x„are much weaker in $ than in
X.

The intermediate region, g& (,„(Q'), is the
resonance region. It corresponds to n & aQ'/m'.
For such n, the higher-twist contributions are
small but not negligible. They cause the physical
F to oscillate around E„which is our translation
of local duality. At some (, the higher-twist ef-

0.8

0.6

0.4

0.2

0
0 0.2 0.4 0.6X~ 0.8

FIG. 2. A comparison of various scaling variables,
evaluated at Q = 3 GeV~. x is a phenomenological vari-
able chosen to summarize the scaling violations observed
at SLAG; -see Eq. (11).

where x' is the celebrated Bloom-Gilman vari-
able, x'=Q'/(2P q+m'). For large x', in the
resonance region, they noticed that the structure
function oscillated about the smooth curve E(x').

Our E,(g, Q') is the analog of E(x') It is n.ot
simply a function of -an improved scaling variable
because color-gauge:theories predict an explicit,
pattern of logarithmic scaling violation. But like
E(x'(x, Q')), our F,(g, Q') is a function of two vari-
ables which is determined by its value at any
fixed Q'= Qo' (ignoring operator mixing).

To determine the low moments of E, {g,Q') or,
equivalently, its form at low $, an experimentalin-
put at moderate Q,' is enough. To determine high
moments of E,($, Q'), or, equivalently, its form at
large $, an experimental input at higher Q, is
necessary.

In other words, the smooth function cannot be de-
termined completely by the bumpy vW, for any
finite Q . In particular, it is wrong to say that
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either approach is incorrect simply because vW,
vanishes for x' or g close to 1. Rather, the logic
proceeds in the opposite direction. Given the
smooth function, we know vW, approximately. The
approximation is useful only in an average sense
in the resonance region, and it improves, becoming
locally better, as x decreases into the scaling re-
gion. The best we can do in either approach is to
construct a smooth function which gives the best
fit to vW, in this approximate pense.

The distinction between the resonance region and
the scaling region is rather arbitrary. For finite
Q', the structure function is not completely smooth
for any x. There are always nearby thresholds
causing oscillations of vW2 about E,. What happens
in the scaling region is that these oscillations are
so small and closely spaced that they are smeared
out by finite experimental resolutions.

It is true that perturbation. theory cannot yield
detailed information about the bumps in t;he struc--
ture functions. But we can use perturbation theory,
appropriately renormalization- group- improved,
to study the Q' dependence of the smooth function
E,(g, Q'). Here the variable g is useful because
it correctly includes the target- and constituent-
mass effects. The I,'/Q' effects of higher-twist
operators are smaller by an order of magnitude in
the scaling region. Other effects, such as fourth-

.order corrections to twist-2, are even less im-
portan. t at SLAC energies.

IV. IN PARTON LANGUAGE

More yaradoxes?

Apparently paradoxical conclusions may also be
reached in a parton-model description of our
analysis. Scaling in the $ variable can be obtained
in a parton approach that keeps terms of order
m'/Q'. This is done with the usual assumptions
(the impulse approximation, on-shell quarks with
zero mass), but a new prescription is necessary
to modify the statement that p„(quark) =xp„(tar-
get), which is inconsistent if m~e0. The cor-
rect field-theoretic result is obtained with the
prescription p' (quark) = g p'(target), where p'
= (polyp, ) are "light-cone variables. " This leads
to g scaling, with $ =-q'/p, q, in agreement with
Eq. (1), provided that effects of order ( p r') /Q' are
neglected, Here p~ is the transverse parton mo-
mentum in the collinear photon-target frame. We
expect the quantity (pr') to be related to the mean
square radius of the target, (P r') = 2'?'(r~') '
= (400 MeV)' for a proton.

paradoxes arise as follows: Exact ( scaling is
obtained in the approximation (Pr')/Q'= 0, If (P r')
=—0, the quarks cannot be confined in the trans-
verse direction. Consequently, they are not con-

Fi
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FIG. 3. The limiting distribution I'& of three free
quarks in a sphere of radius R =1 F, (pz, ) =(400 Mev),
based on a bag-inodel calculation by Jaffe, shows the
broadening due to confinement in contrast to the free
quark 6(( —3).

Physics of higher twists

In the OPE analysis, the twist expansion gives a
description of g moments of structure functions in
powers of M, '/Q' [see Eq. (6)] with twist-2n cor-
responding to the (M, '/Q')'" ' term. The leading
(twist-2) contribution corresponds to the parton-
model impulse approximation. The Iog(Q'/Aa)
interaction corrections to twist-2 correspond to
vertex corrections and gluon bremsstrahlung in

fined in any direction, i.e. , they are free. But if
the proton is simply a system of three free quarks
(at rest in the proton rest frame), then vW,
o"-5(x- —,). Hence it is internally inconsistent to
assume that vW, is anything but a (5 function once
we have assumed that (Pr') =0. To resolve this
paradox we must ask: What are the con.sequences
of a small (Pr') - (400 MeV)'? While (P r') /Q' may
be tiny at some large Q', the fact of confinement
as evidenced by P~~~O may drastically alter the
appearance of vW„no matter how large Qa may
be. As a qualitative but specifi'c example con.sider
the following "bag" calculation. Jaffe has com-
puted what vWnwould look like for a proton made
of three noninteracting massless quarks confined
to a sphere or radius R= 1 F." The 6- function
~W, typical of free quarks is broadened by con-
finement. In Jaffe's approximation, vW, is Q'-
independent and has a shaye quite like the observed
structure function (see Fig. 2). In the same model
the momentum per quark is 2.02/fl -400 MeV.
Thus there will be a range in Q' for which (Pr')/
Q' scaling violation effects are small compared to
m~„„„'/Q'. However, the effects of nonvanishing
(P r') on the quark distribution functions are not
sma, ll.
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4V 0k Fcc+Q( dzdPrf, .(z Pr )5(z —f,44)
t

dPr'f ($.44, Pr'), (13a)

where

P 2 P 4

&.~4-& 1+ ~ +0 4 ~ (13b)

o F y0)j)
Expand in powers of Pr'/Q' to find

p'
&~ dPr'f (5,Pr')+ dP,' '. 5, f($,P,')

,g ((),')) (14)

(b)
--F)j)

Compute the g moments of the structure function
F:

f«)"&, (), ))*)

1 p'
(n+1) d$ $" dPr' r, f(),Pr2)

0

(
u,*)') (15)

FIG. 4. Diagrams illustrating the meaning of twist in
electroproduction with the corresponding operator
written above each picture. The solid lines are quark
lines coming from a proton. The external wavy lines
are photons and the internal wavy lines are colored
gluons. (a) shows typical twist-2 effects, corresponding
to a parton-model picture with no communication be-
tween struck quarks and spectator quarks. (b) shows
twist-4 effects. (c) shows a high-twist effect.

where to obtain the second term we have integrated
by parts and discarded surface terms. If

f, d((" fdP, '
Q. f((,P,')

f.'d( 5" fdP, 2f(&,P,')

independent of n, Eq. (15) becomes

(P;)d$ g"E(g, Q') =A„1—(n+ I) r + ~ ~ ~

the photon- struck-quark interaction [see Fig.
4(a)]. In what follows we develop an intuitive
understanding of the phenomena related to twist
greater than 2 (see Fig. 4). Particular attention
is given to twist-4, which we were able to study
phenomenologically in DGP.

There .are wave-function (or initial-state) ef-
fects and final state effects contained in the terms
of twist-4. and higher. To get a feel for the initial-
state effects, consider the following parton dis-
cussion. The quarks will in general have a p~
c 0 and be off-shell by some amount proportion. al
to (P '). rLet their distribution be described by a
function f, (z, pr'), where z is the momentum frac-
tion carried by the quark in. the + light-cone di-
rection (as in the leading Pr=0 analysis). Repeat
the parton- model impulse approximation calcula-
tion to get the structure function as an incoherent
sum over the constituent partons. Integrate over
s and P~ to obtain

(17)

The effect of a nonzero (P ') irs of the twist-4
form, but note that it even has the n dependence
obtained by DGP from QCD.

Keeping successively higher powers of P~' in the
derivation leading to Eq. (17) will introduce powers
of 1/Q' times higher moments of the Pr distribu-
tion. . These moments of the P~ distribution as a
function of $ are contained in the matrix elements
of successively higher twists (just as twist-2
operators give the g distribution times P r ).

Higher twists (&2) also include final-state in-
teractions (with high twist the initial-final dis-
tinction breaks down). The most significant final-
state effect is due to the exchange of gluons be-
tween the struck and spectator quarks. This is an
attractive interaction because the final state has
the color quan. turn numbers of the target. We
know this attraction has a particularly striking,
nonscaling effect for small 8", i.e. , 1& 8"&2
GeV (at high W the colors are presumably shielded
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by pair production). An attractive final-state in-
teraction increases the cross section; so moments
of the structure functions will have the form

A 1+n—+ ~ ~ ~
p.

n q2 (18)

where the + sign is dictated by the attraction, and
the form n p,'/Q' is determined by the phenomenon
being fixed in W [see Eq. (1b)]; p is some small
mass, corresponding to 1& W& 2 GeV.

The OPE analysis suggests

A. 1 "'. : ~ ~ ~ (19)

A Priori, we expect the parton parameters (pr'),
p,
' and the QCD parameters B„,M, '/A„ to all be of

order A', where A sets the coupling strength and
was determined to be 500+200 MeV in DGP from
the. logarithmic scaling violations in electropro-
duction [see Eq. (5)]. Indeed, we found that
B„,M, '/A„= (350-400 MeV)', independent of n over
the range 0 &n &30. The observed+ sign in Eqs.
(6) and (19) suggests that final-state interactions
are in fact more important than the initial P~0
in determining 1/Q' 'effects.

V. SOME REMAINING ISSUES

Nonperturbative effects

Virtually all important pointer violations of scaling
cannot be determined by a straightforward expan-
sion in the coupling constant. They are necessarily
nonanalytic in the strong- interaction quark-gluon
effective coupling constant, vanishing to all orders
in the coupling. Since the DGP analysis uses per-
turbation theory, is it not necessarily incomplete
and, hence, inadequate~ This is the "specter of
nonperturbative effects" raised by GTW.

The answer (briefly, to be expanded below) is
that we use a framework which is completely gen-
eral and incorporates nonanalytic effects. We use
perturbation theory where it should be reliable,
but make allowance for these other necessary ef-
fects. A variety of nonperturbative estimates,
based on simple phenomenology and dimensional
analysis, are employed in. putting the theory into
useful form. These estimates are then checked
for consistency with experiment and are finally
replaced by numerical determinations from the
data. Until someone can compute vR", from first
principles, the analysis of inclusive lepton. -hadron
scattering will necessarily be a combination of -

'

theory and phenomenology.
A related, subtler question is whether there

might not be unanticipated nonanalytic effects in
places where we have not allowed for them. For
example, the OPE coefficient functions, for which
we do use a power-series expansion in the effec-
tive coupling, may contain nonscaling terms which
vanish to all orders. Of course they may, but, to
the sensitivity probed in DGP, 'they do not. Using
electroproduction data, we show that there are no
unaccounted for effects of order 1 GeV'/Q' for
1 &Q' &16 GeV', the observed effects of order
-0.1 GeV'/Q' are well accounted for by our' esti-
mates, but the data are not good enough to rule
out something else of that size or smaller. '

The necessity of "nonperturbative" effects
arises as follows. In the limit of vanishing bare
quark masses, QCD is formally scale invariant.
This invariance is only formal because the inter-
actions induce a scale, A. The relation between
A and the dimensionless coupling constant is non-
analytic, e.g. , for a mass M such that o.,(M) (the
chromodynamic fine- structure constant renor-
malized at M) is small, A=M exp[-2n/9o. ,(M)],
which is in fact M-independent. All physical mass
parameters are proportional to A.

The $ variable incorporates kinematic effects of
all orders in Q'/v'. These translate naturally into

m„„.,'/Q' effects. But since the exact &-scaling
analysis is just kinematics, one must use the
physical value of m„„„(and not zero, as it is to
all orders in normal perturbation theory). The
OPE provides us with other parameters of dimen-
sion mass-squared which do not'vanish in the real
world. In particular, B„,MO'/A„[from Eq. .(6)]
are the ratios of the target matrix elements of
twist-4 operators and the corresponding twist-2
operators. We estimate them to be O(A') a priori.
Assuming that they are indeed O(A'), we measure
them to be (350-400 MeV)'. Note that it is rea-
sonabI. e that mppotoz" be much larger than I,' be-
cause the a Priori estimate of m„„„is 3A, where
3 is the number of quark colors.

What can we say of possible "nonperturbative"
effects besides m„„„and M, . Our method of
measuring Mo and its numerical result ensures"
that there are no large unaccounted for effects.
Recall that to measure Mo in DGP we subtracted
the twist-2, smooth function F,(g, Q') from the
actual cross section and looked at moments. where
the difference was small but statistically signifi-
cant. For n/Q'=2 GeV 'and 1 &Q'&15 GeV', the
moments drop by two decades, but the fractional
difference is stable around 30%%uo. We interpret this
as confirmation of the form of Eq. (6) with
B„PS,'/A„= (350-400 MeV)', at least for k = 1. :
Any remaining scaling violations must be suffi-
ciently weak over this Q' range so as to be. unde-
tectable given the present experimental errors. .



2502 DE RU JULA, GEORGI, AND POLITZER

] + (] y 4 p2/Q2)& ~2

] + (] + 4x2 ~2/Q2)1/2 '

For x=1, )=1; so 5(x —1) ~5($ —1), and vW,
~ 5($ —1) which evidently g-scales.

(20)

Heavy quarks

Barbieri et al. ~ point out that threshold 8 func-
tions, of obvious physical origin, are not always
manifest in the OPE analysis, particularly in the
case of heavy struck quarks. The resolution to
this apparent inadequacy is the fact that only the
product of coefficient function times target matrix
element has physical significance. The missing 8
functions reside in Mellin transforms of certain
matrix elements. These are discussed briefly in
GP. But it is easy to draw a qualitative picture in
parton language.

The probability for finding a light parton. in a
given configuration depends only weakly on logQ'
for Q' &1 GeV'. However, the probability of
"finding" a heavy parton (i.e. , on-shell) in the
proton depends critically on Q' and v until one is
well above the relevant thresholds. In the field-
theoretic framework, this can be seen in the
strong n and Q' dependence of anomalous dimen-

$ scalml for free fields

Free-field theories (such as the Gross-Neveu
model" in the limit N- ~) scale in x. In particu-
lar, vW, ~5(x —1), where x=Q'/2pv and p, is the
mass of the free field. We wish to point out here
that they also scale in f, even though gwx; so
there is no inconsistency or even awkwardness
regarding g and free fields.

To see that this is the case, remember that for
free fields, the constituent and target mass are
one and the same. Recall the formula from GP
for $ including the constituent mass,

sions of heavy-quark operators. '
Heavy-quark thresholds will be accompanied by

a repeat version of local duality, where resonant
final states will dominate the cross section for
W,„„,b„„~W& W,„„,„„„+O(1GeV), but will aver-
age (in the manner of Bloom and Gilman) to a
smooth function that scales in the appropriate
variable $.'

$-+p

The limit (-0 is no different from the limit
x-0 because j =x(1 —x'm'/Q'+ . ) (for mass-
less quarks). There are two difficulties which
stand in the way of a study of the region of small

Hence we restricted our attention to g
~ 3 in

DGP. But it may be worth remembering what these
difficulties are because any progress in under-
standing them would allow an extension of the
field- theoretic analysis of lepton-hadron scatter-
ing.

Somewhere at small g resides a non-negligible
gluon distribution. Even though lepton currents
do not couple to gluons directly, gluons can effect
scaling violations through transitions to quark
pairs.

The limit $-0 is governed by negative n in the
language of moments. Specific calculations are
done for integer n ~ 0. The approximate analytic
continuation to negative n is contingent on the na-
ture of singularities in the complex n or angular
momentum plane. Perturbation theory does not
give a realistic picture of these singularities.
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