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The moment sum rules for deep-inelastic lepton scattering are expected for asymptotically free field theories to
display a characteristic pattern of logarithmic departures from scaling at large enough Q . In the large-Q
limit these patterns do not depend on hadron or quark masses m. For modest values of Q one expects
corrections at the level of powers of I '/Q'. We discuss the question whether these mass effects are accessible
in perturbation theory, as applied to the twist-2 Wilson coefficients and more generally. Our conclusion is that
some part of the mass effects must arise from a nonperturbative origin. We also discuss the corrections which
arise from. higher orders in perturbation theory for very large Q, where mass effects can perhaps be ignored.
The emphasis here is on a characterization of the Q', x domain where higher-order corrections are likely to be
unimportant.

I. INTRODUCTION

The development of asymptotically free gauge
theories' as an approach to the strong interactions
was prompted, initially, by the experimental ob-
servation of approximate Bjorken scaling for the
structure functions of deep-inelastic lepton scat-
tering. A renormalization-group analysis of in-
teracting field theories revealed that exact scaling
could never be achieved, ' but in the unique class
of non-Abelian gauge theories the departures
from exact scaling can be reliably discussed for
the limit of very large Q'. In this limit one finds
characteristic and mild (logarithmic) deviations
from scaling for the moments of the structure
functions. These effects are governed by the lead-
ing order in perturbation theory and are indepen-
dent of physical hadron masses and of quark-mass
parameters. The question arises whether one can
rely on perturbation methods to deal with correc-
tions to this leading behavior: in particular,
"mass" corrections at the level of powers of m'/
Q', where m represents characteristic hadrons
and/or quark masses. This is clearly important
for the present-day regime of experimentation,
where m'/Q' is not all that tiny.

We shall offer some general remarks on this
issue. In particular, we initially discuss the pos-
sibility that mass corrections may be adequately
allowed for through use of the $-sealing variable
introduced in Refs. 3, 4, and 5. On an extreme
theoretical picture, $ scaling would seem to em-
erge from the notion that one can employ free-
field theory (supplemented, perhaps, by low-order
yerturbative corrections) for the Wilson coeffi-
cients in the short-distance expansion of operator
products. ' The authors of Refs. 3, 4, and 5 have
in fact carefully qualified the applicability of the
free-field approximation, emphasizing its progres-
sive breakdown with increasing order of spin.

The theoretical connection of $ scaling and free-
field behavior is therefore subtle and approximate.
We shall see this in another way here: The un-
qualified free-field approximation leads generally
to paradoxes that cannot be resolved unless the
structure functions vanish identically in a certain
physical region —surely an unrealistic requirement.
In the subsequent discussion we raise the specter
that mass corrections may in fact not fully be ac-
cessible at all in perturbation theory —that some
part of these corrections may arise from nonper-
turbative effects. In addition, for very large Q',
we estimate the importance of higher-order per-
turbative corrections in order to assess how rap-
idly the structure function approaches its asymp-
totic behavior in Q' for different regions of the x
variable.

Let us begin immediately by recalling how one
analyzes the structure functions for deep-inelastic
scattering on the basis of the short-distance prop-
erties of products of currents. We simplify mat-
ters by restricting ourselves to the case-of scalar
currents j(x). This will suffice to bring out all
of the qualitative issues that are of concern here.
The structure function I' is the absorptive part of
the amplitude A for forward Compton scattering
of the current on a hadron target (a nucleon p,
say). The Compton amplitude is given by

A=i dxe"'" p T jxjo p,
where q is the four-momentum carried by the cur-
rent. With M the target-nucleon mass (p'=M'),
we adopt the usual variables v=p q/M, Q'=-q'&0.
Following Wilson, ' one expands the product of
currents as a sum of loca1 operators O~„"~ „
of definite spin n:

T(j (x)j(0))= gC~" (x')y" ~ ~ ~ g" O~"~ (2)
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There may be several different operators in the
expansion with the same spin n; we incorporate
the additional index needed to distinguish these in
the one index n. Organization of the expansion by
angular momentum is convenient because the Wil-
son coefficients C" in this basis obey simple re-
normalization-group equations. From the Fourier
transforms, let us define the moment functions.

n

M" (Q') =(Q')", dxe" "C (x').

The mathematical problem of extracting from F
information on the moment functions has been
solved by Nachtmann, ' who shows that

J
1

dx ("y'(x Q ) =a M&" (Q )
0

(4)

II. THE FREE-FIELD APPROXIMATION FOR MASS .

CORRECTIONS

Let us suppose that the effective couplirig con-
stant g(Q') is already small for modest values of

where the a„are Q'-independent constants deter-
mined by the reduced matrix elements (P ~(

0'"'(~P) .
Here x = Q'/2Mv is the usual Bjorken variable and

2x (5b
1+(1+4M'x'/Q')"' '

The renormalization-group equation for M "(Q')
is governed by an effective Q'-dependent coupling
constant g(Q'). In asymptotically free field theor-
ies g -0 as Q'-~, so for large enough Q' one ean
hope to re1y on aperturbative treatment of the Wilson
coefficients. To leading order as Q'-~ one finds

Qx dx
M ",~ log —,

Q -+ ao

j

where p. is a scale mass and where the exponents
d„—related to the anomalous dimensions of the
operators 0"—are fully calculable given the group
structure and quark content of the underlying non-
Abelian gauge theory. Notice that the Nachtman
v'ariable $ becomes identical to the Bjorken vari-
able x in the limit Q'-~.

The expression in Eq. (6) represents the leading
term of an expansion in g' —effectively an expan-
sion in inverse powers of log(Q'/y, '). For large
Q' the departures from exact Bjorken scaling are
seen to be logarithmic. For more modest values of Q'
the question arises whether one ca,n say anything
about corrections at the level of inverse powers
of Q', where physical hadron and perhaps quark-
mass parameters come into play, i.e. , corrections
at the level of powers of m'/Q'. We discuss this
issue in Secs. II and III. In Sec. IV we return to
very large Q' and consider the corrections arising
from the. nonleading orders in perturbation theory.

Q', comparable to, or only somewhat larger than,
typical hadron masses. For this situation it has
been suggested that one can reasonably igriore
all but the leading twist-2 operators, reverting,
moreover, to low orders of perturbation theory
for the corresponding Wilson coefficients. ' ' In
the extreme version of this sheme one simply
uses free-field theory for the Wilson coefficients.
For Q'-~ this ignores the logarithmic effects of
Eq. (6); but it has been argued' that the procedure
nevertheless correctly brings out —relevant for
modest Q' —the powers of m'/Q'. We shall initial-
ly consider this free-field approximation, and
under this heading we first deal with the case
where the quarks are massless.

The Wilson coefficients, hence the moment func-.
tions M'")(Q'), are universal quantities, indepen-
dent of the hadron target. In the present approxi-
mation, therefore, they can be computed by study-
ing the scattering of the current off a free, mass-
less quark. But here, clearly, the quark target
structure function is just 5(1-x), hence M'"~(Q')
= 1, independent of Q'. For the physical hadron
target, therefore, this approximation leads to
the result

where

F= — F

(Qx) = 2/[I + (1+4M2/Q2)&~2 ] (10)

Since $mxxdepends on Q' and since it vanishes as
Q'-0, it is clear that Eq. (8} cannot hold all the
way down to Q' = 0 unless the structure function
vanishes ideritically everywhere. More reasonably,
however, suppose that Eq. (8) is to be believed
only for Q'& Q,', where Q,' is some reference
value. Let F($, Q,'}be the modified structure func-
tion at Q,'. For Q'= Q,

' we can invert Eq. (8) to
find the a„, then, inverting, find E for all Q'& Q,'.

, For Q'& Q,
' it is clear that we will find

&'max(QO )

1

dx g"F(x, Q') = a„, independent of Q'.
0

Notice that mass parameters (in this case, only
the target mass M) enter explicitly here solely
through the Nachtmann variable g. We want to see
whether Eq. (7) makes sense for non-negligible
values of M'/Q'.

Let us regard E as a function of g and Q' and
rewrite Eq. (7) in the form

&max

(8)
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Thus, in the interval 0-$,„(Q,2} F scales in g, i.e.,
is independent of Q' for fixed $.' But F must van-
ish identically in the physically accessible inter-
val from g QQ, 2) to g,gQ2). Although the math-
ematics as such would permit this behavior, we
must regard the outcome as physically (and experi-
mentally) unreasonable. For example, if we were
to believe the model down to Q,'=M', then for
Q'» M' (where g = x) we would find that F must
vanish identically for 0.62&x&1. Of course, if
we take Q02»M2 the problem effectively evapor-
ates, but then we also are not learning anything
about mass-correction effects.

We turn next to the situation where the current
involves massive quark fields. The meaning of
quark mass parameters is, of course, somewhat
problematic. Here the meaning is defined by the
free-field procedures under discussion. Consider
a current formed bilinearly from fields q„q&,
with mass parameters m„m&. At the quark level
the current scatters off q, to produce qz. Adopting
again the free-field approximation for the twist-2
Wilson coefficients, one finds

M(tl)(Q2) [p(Q2)]n (12)

p(Q') = 2Q'(Q2+m~2 —m)'

Q2

+ Ze

(16)

~ = x{1+m, 2/Q2), (17)

g,„=l, and

Corresponding to this is an upper limit $,„(Q') on
the variable defined in Eq. (15). In general g,„
will depend on Q' and we will then find as before
that the structure function F must vanish identical-
ly for some Q'-dependent portion of the physically
accessible range of x (or $). The only exception to
this pathology occurs when m, =M, m&=M~. Then

= 1, independent of Q'. This is not surprising
since, kinematically at least, this corresponds to
the situation where the target is the quark q, and
the produced state is the quark q&. Under these
circumstances, free field theory should indeed be
self-consistent. .

For practical applications to charm production
in neutrino reactions one may reasonably set
m, = 0 and, at least roughly, set mal =Mr (perhaps
this is to be regarded operationally as a definition
of m&). The pathology still remains, however,
unless one also sets M =m, = 0. When all of this
is done, we are in the exceptional case where
there is no obvious pathology. Here

+ [(Q2+~ 2 ~ 2)2+ 4~ 2Q2]1/2} 1
Q2

F=Q, , F, (18)

Using this in Eq. (4) we find

1

dx8"E =a„,
0

(14)

where

m'-m' - m'-m' ' 4m' "'
f f1+ 2 + 1+, +

1+ (1+4M'x'/Q')'i

(15)

Here we have generalized the definition of the
symbol t' to allow for nonvanishing quark masses:
Equations (15) reduces to Eq. (5}when m, =~= 0.

In Eq. (14) we have formally placed the upper
limit of the integral at x=1. This limit corres-
ponds to elastic scattering off th.e nucleon target.
However, in contemplating heavy-quark effects we
have in 'view processes involving charm-changing
currents, where qI is a massive charmed quark,
and q, is a light, essentially massless quark. For
scattering off an uncharmed (nucleon) target, the
physical threshold for charm production lies below
@=1. Let Mr be the threshold mass —the lightest
charm-carrying state that can be reached by action
of the current on a nucleon target (clearly Mr &M).
Then the upper limit on the x variable is given by

where J' = F(g) is independent of Q' for fixed g and
need not vanish in any finite portion of the physical
range. It is still worrisome, however, already at
this kinematical level, that one cannot incorporate
finite-target-mass effects,' and that self-consis-
tency for the special case considered above re-
quires the fine tuning involved in setting mz =M
For the recently discovered cha, rmed hadrons, with
masses in the 2-GeV region, M~ is not very much
larger than the nucleon-target mass. It may be
that the free-field approximation becomes more
reasonable for hadron families composed of still
heavier quarks. The possible existence of such
families is hinted at by certain anomalies in high-
energy antineutrino reactions. "

Up to this point, we have been discussing the
difficulties that arise when one combines the kine-
matics of finite-mass corrections with the short-
distance approximation based on free-field theory
for the, Wilson coefficients. As we will next see,
these difficulties are not removed when one in-
cludes the lowest-order perturbative corrections
to the twist-2 Wilson coefficients. We. illustrate
this for the case of massless quarks. The lowest-
order corrections are obtained by adopting Eq. (6)
for the moment functions M'"'(Q'). With this choice,
Eq. (4) becomes
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J cmado ) - Q2
dg $"F((,Q') = a„ ln —, (19)

The asymptotic behavior, as Q'- ~, is now prop-
erly incorporated, but we want to see whether Eq.
(19) is sensible for modest values of Q', down to
some reference value Q,' which is comparable to
M' (but let us suppose that Q,' & p. '). For Q' = Q,

'
the modulus of the left-hand side of Eq. (19) is
bounded by C(Q, ')g",„(Q,'), where C is a positive,
n-independent constant. Therefore

2 dn

la„l&e(]n ', ~",gq, '). (20)

Let us now consider Eg. (19) for Q'& Q,', letting
the index n become very large and recalling that

d„~ P inn, (21)

where P is some positive constant. Since ln Q'/p, '
& In Q, '/p, '&0, one finds that

&mai(Q &

d«"F(r, Q')
I

C&"....(Q.') . (»)
0

We now claim that this implies that E((, Q') must
vanish identically in the physical interval $,$QO')
&

&
& &,„(Q'). To see this, suppose that P vanishes

in the interval g, ~ ( ~ $,„(Q') and that there is
some finite interval 6( just below g, for which I
has a definite, algebraic sign. For large enough
n this interval dominates in the integral of Eq. (22),
so that

~max(Q~)

J d5 h"F(5 Q') „„&45(ho —&&)" (23)
0

where D is some positive constant. Since we can
take n, g as small as we please, Egs. (22) and (23)
are consistent only if g~

~
g (Q,').

There is an obvious generalization of the above
analysis. Return to Eq. (4) and recall that on the
right-hand side there is an implied sum over the
contributions of all operators of given spin n, so
that the right-hand side reads Q, a'„' M""(Q').
For n -~ presumably one term dominates for any
given Q', and we suppose in fact that this one term
dominates for some finite range of Q', say Q,

'
& Q'& Q, '. For this interval of Q' we ean therefore
focus on the dominant term; with this understood,
we drop the index i again. Let M'"~(Q') be some
theoretical approximation to the moment function
and take Q, '& Q'& Q, '. If the approximation for
M~"~(Q') is such that

4 (Qo') " M'"'(Q')
0

&. (Q') M'"'(Q. ')

then it will again follow for this approximation that
E must vanish identically over a finite, physical
interval of g, an indication that the approximation

does not correctly accommodate finite-target-
mass effects. As we have seen, this is just the:
situation that occurs in the free-field and lowest-
order perturbative approximation to the twist-2
Wilson coefficients. In fact, we conjecture that
this happens to all finite orders.

It should be clear from the preceding discussion
that, kinematically, at least, the low-order ap-
proximations rgust especially fail for large values
of spin n. The difficulties would. be less severe if
the approximations were adopted for a limited
range of small spin values, but then the whole
scheme would become less predictive and useful.
To assess this more modest approach we might
illustratively consider a simple scaling form for
J'(&),

F(5) =& (1 —&)'

computing the moment functions in order to see,
for various spin values, whether these functions
are essentially independent of Q', as would be
predicted by the free field approximation (recall
that („,„depends on Q'). The success is very limi-
ted if Q' is to be permitted to range down to values
comparable to M'. For example, with 8 =2 we
find for n = 3.5 that the moment function grows by
a factor of Z as Q' range from M' to ~.

The paradox that we have met here for the
strictly-free-field approximation underlines the
importance of higher-twist operators, as is
recognized and discussed in Ref. 5. We comment
further on this issue in the following section.

III. PERTURBATIVE AND NONPERTURBATIVE MASS

CORRECTIONS

It is the common belief for asymptotically free
field theories that the short-distance behavior of
operator products can be calculated reliably by
perturbative methods, with the aid of the renor-
malization group. This is most likely correct for
the leading logarithmic terms at large Q', but we
shall argue that it is probab1. y not correct at the
level of mass corrections (powers of m'/Q'), In-
deed, we expect, in general, that the Wilson co-.

efficients contain nonperturbative terms with a
vanishing asymptotic expansion in the coupling
constant. Such terms, we believe, viill be most
important in theories where the origin of hadron
masses is dynamical. In particular, if the quark
mass parameters are taken to be zero, so that
hadronic masses arise from dynamical breaking
of chiral symmetry-, these nonperturbative mass
corrections might well represent the dominant
mass-dependent effects in the moment sum rules.
We will illustrate this by means of a simple asym-
ptotically. free theory which exhibits dynamical
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breaking of chiral symmetry, the N-component
two-dimensional (7()g)' model. " Since the real
world is believed to possess an approximate chiral
symmetry, we must conclude that estimates based
on the renormalization group and perturbation
theory are unlikely to account. for the dominant
mass-correction effects in the analysis of short-
distance behavior.

There are two obvious sources of mass correc-
tions. First, the Wilson coefficients of the domin-
ant twist-2 operators will in general depend on
t e mass para, meters of t e theory. Thus if 0~"~

is a twist-2 operator of spin n, the Fourier trans-
form of its Wilson coefficient, M'"'(Q', g, m, p, ),
will depend on the mass parameters (m) of the
theory, as well as the coupling constants (g). It
is of course possible to render the Wilson coef-
ficients independent of masses by regarding the
operators m'0"', m'0", . . . as independent. How-
ever, this is of no value. It is simpler not to
make this breakup and to treat the mass depen-
dence of the Wilson coefficients by means of the
renormalization group. The moment functions
(Fourier transforms of the Wilson coefficients)
satisfy the equation

)(). +P(g—) +r„(—g)~ -yo(~) M "(Q,g, m, p) =0,8 8 . 8 ( )
Bp, Bg Bm

(24)

where y . is the anomalous dimension of the mass
operator in a mass-independent renormalization
scheme; yo~&) is the anomalous dimension of 0".
(which we take to be multiplicatively renormaiiz-
able). Let f= In(Q'/Qo')'~'—, Then the solution is
M~"~(Q', g, m, p, ) =Z "~(t)M~"~(Q,',g(t), e 'm(t), p, ),

(25)

whereg (f) is the effective coupling constant,

m(t) =m exp dt'y„(g(t')),

t
2")(t)= exp(- dt'y t) (g(t'))~ .

0

In an asymptotically free theory g'(f) -I/b, t as
I-~. Thus, if M~" (Qo', g(t), e 'rn(i), p, ) has an
asymptotic expansion in powers of g'(t), one can
compute the Wilson coefficients order by order in
g'(t), and the mass effects will show'up in the Q'-
dependent parameter e 'm(t).

However, if the quark mass parameters are set
equal to zero then no mass terms can show up in

perturbation theory for the Wilson coefficients.
Since we believe that the mass parameters of the
up and down (Iuarks are small (approximate SU,
chiral symmetry) it seems indeed reasonable to
neglect mass dependence of the twist-2 Wilson co-
efficients for targets composed mainly of up and
down (Iuarks (as Witten has shown, "the contribu-
tion of "heavy"-quark operators is suppressed
for such targets).

A second source of mass corrections arises from
operators of twist greater than 2 in the operator-
product expansion (e.g. , fry„g(y„g, etc) T.hese
contribute powers of M'/Q' in the moment sum
rules, where M is the target mass parameter
that enters from the hadronic matrix elements of
the higher-twist operators. The size of these cor-
rections cannot be calculated bg perturbative
methods, since the ratio of hadronic matrix ele-
ments for (say) the twist-4 relative to the twist-2
operators involves questions of the unknown wave
functions for hadronic bound states. However,
one might argue as in Ref. 4, since the Wilson co-
efficients of the higher-twist operators are invari-
ably proportional to powers of g', that it might be
reasonable to neglect these operators if g' is
small, even if M'/Q' is not negligible.

According to this view, it would seem reason-
able to neglect al/ mass corrections to the moment
functions M~"~, provided that g'(f) is small and the
quark masses can be disregarded. In this case,
mass enters the analysis only through the appear-
ance of the target mass M in the Nachtmann vari-
able $. However, as we have already seen these
ideas lead to mathematical paradoxes —which sug-
gest that something is amiss with the above rea-
soning. If the quark mass parameters can indeed
be neglected (as for electroproduction) it would
seem that the mass corrections must arise from
higher-twist operators, even if g~(t) is small. It
is in fact likely for large values of the spin n that
the higher-twist contributions are much larger
than one would naively estimate merely from the
size of the effective coupling constant; i.e. , for
given g'(t) one expects the contributions to grow
with n. Notice that the high-spin moments govern
the form of the structure function in the threshold-
resonance region (x close to unity).

We shall now argue that there is another source
of mass corrections even for the massless-quark
model, namely, the existence of essential singu-
larities in the Wilson coefficients. Such effects
are suggested by the very mechanism of dynamical
symmetry breaking itself. In a theory with mass-
less quarks, where hadron masses aries from
symmetry breaking, all physical parameters
P(g, p, ) depend only ong and p. . They satisfy the
renormalization-group equation
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8 8
V s„+P(S)~ &(g, v)=o, (26)

which reflects the fact that a change in the arbi-
trary renormalization parameter p. corresponds
to a related change in the definition of g. This
implies that a-physical mass m~ is given by'-:

' dx
m~(g, p, ) = p, exp —

-(
)

In an asymptotically free theory

m = p, e 'o'".
~p

(27)

(26)

This has an essential singularity .at g = 0, hence
zero asymptotic expansion in powers of g. If such
essential singularities occur in physical mass
parameters they could also occur in Wilson coef-
ficients. Thus, if the twist-2 Wilson coefficients
contain terms such as

~ dk
exp -2p

then M~"'(Q', g, p, ) will have terms such as

exp -2p = c.onst (29)

Such terms would of course never be seen in a
yerturbative expansion in powers of g.

In order to illustrate how such nonperturbative
terms can actually arise for the Wilson coeffi-
cients, we examine a simple asymptotically free
theory in which masses are generated dynamical-.
ly —the two-dimensional, N component (gg)' model.
The Lagrangian is

E . .

~ . N

Z=g (,.(ig)(, +—g y, q, . (3o)
=1 N f=l

The theory is soluble for N -~, ~ fixed. As is
well known, ehiral symmetry (g-Z, g), which is
supposed to prevent the guarks from acquiring
mass, is broken dynamically, gg develops, a vacu-
um expectation value, and to lowest order inN '
one ends up with a massive fermion, with mass

m =pe "0'~, (31)

where ~0 is a constant. Furthermore, to this
leading order the fermion is noninteracting (the
four-Fermi coupling is of order N '). The deep-
inelastic structure function for scattering of a
current off the fermion is therefore trivial. With
appropriate normalization, E = 5(1 —x). Thus

1

dx ]"F=g",„,
0

so

4 2 1/2 . -n;
+~)(Q2 y ~) 2n 1+ 1+ i e ~o~&'

Q2

This expression contains precisely the essential
singularity of the type discussed above.

It is to be noted for this simple example that
the naive sum rule based on the Bjorken scaling
variable x is analytic in ~. Namely,

I
dxx"E = 1 (33)

is not only independent of Q', it is analytic in &

and in fact equal to unity for all n. Since the tar--
get has nonvanishing mass m~, one is not with this
sum rule projecting out the contributioms from
operators of definite spin; evidently here the or-
ganization by spin [Eg. (32)] only eomplicates the
situation. The simplicity represented by Eq. (33)
is, however, peculiar to the leading N ' approxi-
mation. Continuum states begin to contribute in
higher order and then both the Bjorken and Nacht-
mann moment functions will be nonanalytic.

The trivial example discussed above illustrates
what we may expect in any theory where physical
masses have a predominantly dynamical (non-
analytic) origin. Even if the guarks have non-
vanishing masses, it is likely that hadron masses
will have nonanalytic components. So too the Wil-
son coefficients can be expected to have nonanaly-
tic components, and these will contribute (perhaps
dominantly) to mass corrections in the moment
functions. We conclude that these mass correc-.
tions cannot be calculated by perturbation methods.

IV. HIGHER-ORDER PERTURBATIVE CORRECTIONS

To any finite order in perturbation theory the
twist-2 Wilson coefficients contain only the mass
parameters associated with massive quarks.
Even in the case of massless quarks, however,
mass dependence arises in the Wilson coefficients
of higher twist. In addition, we have argued that
the Wilson coefficients of all twists, including
twist-2, are likely to display nonperturbative mass
effects. In this section we discuss adifferent mat-
ter. Suppose for some reason that one can ignore
these nonperturbative effects and ignore also the
higher-twist contributions —all of this for modest
Q' comparable, say, to typical hadron masses.
So here we are restricting ourselves to aperturbative
treatment of the twist-2 Wilson coefficients, and for
simplicity we take the ease of massless quarks.
There is still the question: For given Q'how many
orders in yerturbative theory are needed to capture
the dominant contribution to the moment sum rules'P
For large enough Q' only the lowest-order term
need be retained [this yields Eq. (6)], but the
higher-order terms become increasingly important
as Q' decreases. How rapidly this sets in can
be expected to depend on the spin index n. As we
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«] y'(~)d~
(36)

We now make the power-series expansions

r'(g) = g r&'z",

2P(Z)=-Z'g &&g", (37)
f =0

M'(q, ',g) = P M', (Q,')g".
i=0

The expansion coefficients are in principle calcul-
able by standard perturbation methods, and, in
fact, y~, b„b„M„and M~ are already known. "
Inserting these expansions into Eqs. (35) and (36),
one finds for M~(Q', g) the expansion

M'(Q', g) =egg'(f)/g'(0)]" g M,'(Q, 'g)"(t)

xexp g E 'z'[g*(t)] ),E=&
(38)

shall see, the higher-order corrections increase
in importance as the spin increases. This implies
that the higher-order effects are especially signifi-
cant in the threshold-resonance region, where
the Bjorken variable x is close to unity.

For simplicity in the following discussion we
drop the target mass and also all quark masses.
However, we revert from the sca1ar currents of
the previous sections to the physical case of vec-
tor (axial-vector) currents, and we consider in
particular the structure function E,(x, Q'). Finally,
for simplicity we suppose that there is only one
twist-2 operator for each spin in the Wilson ex-
pansion (as would be the case for the nonsinglet
structure function). The Nachtmann formula now
reads

~~ ~

1
drx~ '&,(x, Q') = a~M'~'(Q', g), (34)

0

where J is the spin index (because of the vector
character of the currents the earlier index n is
replaced by J' —2 in the integral).

As indicated in Eq. (25), which we rewrite here,
the solution of the renormalization-group equation
for the Wilson function M ~(Q', g, ]],) is given by

M«](q', g) =Z'(g(t))M'(Q, ',g(f)) (35)
(recall that quark masses have been set equal to
zero and that i = —,ln(Q'/Q, '). For large f, g'(t)
becomes small, g'- (b, t) ' as t -~, so for large
Q' we contemplate an asymptotic expansion of M ~

in powers of g' (ignoring here the likely possiblity
of essential singularitie's). We want to assess the
importance of the nonleading terms in this expan-
sion. The earlier expression for Z~(t) can be
cast into the form

where

g (0) y z(~) 2y
z"

N~ = exp 4x
P(x) b,x

is a t -independent constant, where

(40)

and where the Z~~ can be determined from the re-
cursion relation

gg, &-1
g z &z+z &i ~rc g ~z g]

'
&O

(41)

For each spin J the perturbation sum should
converge increasingly rapidly as Q' increases
(g'-0 as Q'- ~); so for large enough Q', the
lowest-order term will dominate. However, there
is no reason to expect that the convergence is uni-,
form in J. Indeed, the rate of convergence is high-
ly spin dependent both for J -~ and J 0. This is
already suggested by the lowest-order expression
for the anomalous dimension. For the nonsinglet
operators under discussion here one has

(42)

whereas for large J
yy 4Gbpln J . (44)

(For the singlet structure function there is a simi-
lar logarithmic divergence as J- ~ and a pole at J= 1.)

The strong J dependence encountered already in
lowest order suggests that convergence of the per-
turbation series is likely to be highly nonuniform
in J. In turn, this has important implications for
any attempt to reconstruct the structure function
from the moments, for all the moments enter into
the reconstruction. The behavior of the structure
function near threshold, x =1, is governed chiefly
by the large-J moments, whereas for the "Regge"
region x= 0 it is the moment behavior near the
pole at J= 0 that governs. We shall particularly
focus on the threshold region (large J').

For given Q' and x (x close to unity) one can
roughly estimate the dominant spin, J(Q', x), that
contributes to the structure function, as recon-
structed by inverting the moment sum rules (in-
verse Mellin transformation). In lowest pertur-
bative order, using the large-J approximation of
Eq. (44), we find

where G is a pure number determined by the
gauge group and quark content of the underlying
theory. Analytically continuing the above expres-
sion for y, , we find that it develops a pole at J= 0:

J 2G
yl g~p J 0
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Z(Q', x) = 4G lng'(t)/ln x

For large Q' and x close to unity this becomes

ln ln(Q'/Q, ')
1 —x

(45)

(46)

This is the result in lowest order. We now turn
to the higher-order corrections. For all orders
it is easy to show" that when J is large

y,'= y, (in@)"-',
Mi =%i(In')" .

In turn, this implies for large J that

J
g j yi+1 yi+1 (jng)2i+1

bo bo

From Eq. (38) we then find

jIf'(Q', g) =~'jjf:(Q.')[g'(t)/g'(0)]"'

(48)

~ g'(t)ln'J& 1.
bo

In this region the correction term 4 is still unim-

&& exp ~ g'(t)In' [1+6(g,J)]. (49)
bo

The quantity 6 involves a sum over all orders in
perturbation theory; the important point is that
it is of order g'(t)ln'8 when the latter quantity is
small.

We can now distinguish three different regions
in the space of J and Q' (in all cases, recall that
we are supposing that ln J is large compared to
unity):

(a) The first domain to be considered is defined
by

Inu «[5,/y, g'(t)]"' .
In this region g'(t)ln'J « I, so the correction
term 6 in Eq. (49) can be ignored; also, the ex-
ponential factor in this equation can be replaced
by unity. Thus, all higher-order effects are small
and the moments are dominated by the lowest-
order contributions. For the structure function,
according to Eq. (45), we are in the domain

1-x»4G Inf[g'(t)] ')exp[-b, /y, g'(t)]"'.
(50)

Notice that for large Q' this does not include the
threshold-resonance region 1 —x= m'/Q' (where
m is a typical hadron mass). This is so because
the right-hand side of Eq. (50) falls only like a
power of lnQ'/Q, ' as Q' becomes large.

(b) The second domain is defined by

g'(t) ln' J' «1,
but

, C.,(R)C,(G)
24 (51)

where a=g'/4m', C,(G) is the quadratic Casimir
invariant for the gauge group, and C,(R) is the
same invariant for the f~rmion representation.
The numerical value of y, turns out to be unusual-
ly small, reduced by about an order of magnitude
relative to naive expectation. This is because of
a complete cancellation of the Abelian terms,
proportional to [C,(R)]', such cancellation is not
expected to, occur in the coefficient of (InJ)'
in y, or for the coefficient of (InJ)' ' in

y~. In any case, because y, is small one cannot
use Z~J alone to determine when higher-order cor-
rections become important. That is, the expon-
ential term in Eq. (49) does not begin to depart
appreciably from unity before one has to begin
taking into account the (min'8)» corrections con-
tained in term s(g, J) of Eq. (49). This brings in
all the higher orders of perturbation theory. In
lieu of a detailed calculation, which would be pro-
hibitive, and assuming no further suppression (or

portant, but the exponential factor in Eq. (49) can
no longer be approximated by unity. This factor
contains the parameter y„which can be deter-
mined from a two-loop calculation. It is easy to
see that the domain being considered here again
does not extend to the threshold-resonance region
when Q' is large.

(c) The third domain is defined by

g'(t)ln'Z& 1.
Now the correction factor 6 in Eq. (49) becomes
significant and all orders of perturbation theory
have to be taken into account. This is of course
prohibitive.

Our conclusion is that in attempting to recon-
struct the structure function from the moments,
for Q' large and x close to unity, one can rely on
lowest-order perturbation theory for the moments
only if the Q'-x domain corresponds to the inequal-
ity of Eq. (50). In this domain x is precluded
from coming too close to unity (similar limitations
apply for x too close to zero). For fiXed large
Q', as x moves closer to unity one has to begin
allowing for higher-order contributions. In region
(b) the problem is still tractable one —needs only
the second-order parameter y, . Finally, for x
still closer to unity one enters region (c), and
now all orders have to be taken into account. The
transition point dividing regions (a) and (b) de-
pends on the size of g'(t) and on the magnitude of
y2 ~

The nonsinglet two-loop anomalous dimension
y, can be evaluated without great difficulty. " The
result is
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enhancement) effects, we might just guess that A

is of order An(t)ln'J, with A =1. In this case,
even for Q' such that a(t) = 0.1, we find that the
higher-order effects introduce corrections of
about 25%%uo or more for J ~ 5, therefore for x& 0.75.
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