
PHYSICAL REVIE% 0 -VOLUME 15, NUMBER 9

Causality and the proton-neutron mass difference
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The Cottingham formula for the electromagnetic proton-neutron mass difference is simplified by imposing
certain causality conditions. The Born contribution to the mass difference is calculated using the modified
formula and is found to be insignificant. The divergent part and the deep-inelastic contribution are discussed.

I. INTRODUCTION

The problem of the calculation of the proton-neu-
tron electromagnetic mass difference is a classical
problem in particle physics, one that has frustrated
many efforts over the past one or two decades.
These efforts were mostly based on the Cottingham
formula' for the self-energy of a hadron in first-
~rder electromagnetic interaction. Major stum-
bling blocks in these attempts include ultraviolet
divergence, unknown subtraction constants and
fixed-pole parameters in Compton amplitudes,
and the wrong sign of the substantial Born contri-
bution. To remedy these, or some of them, and to
make headway in computation, several authors
made ad Aoc assumptions' that lacked clear physi-
cal justification. However, on the fundamental
level most of these difficulties (which might well
be related) remain unresolved and it is not even
clear that the electromagnetic interaction is alone
responsible for most of the proton-neutron mass
difference. It is therefore gratifying and signi-
ficant in such a situation to observe that some gen-
eral principle could be brought to bear on the prob-
lem. We discuss in this paper some restrictions
that causality imposes on the Cottingham formula
for the proton-neutron mass difference and explore
their consequences.

The relevance of causality considerations to the
problem of electromagnetic mass differences has
previously been noted by other authors. ' Our work
is based on the observation that certain causality
conditions, first noted by Meyer and Suura, "can
be used to considerably simplify the original Cot-
tingham formula. In particular we find that of the
two invariant Compton amplitudes only one sur-
vives in the causality-modified mass-difference
formula. . Fortunately this turns out to be the well-
behaved and experimentally better-known ampli-
tude t,. The modified formula may be employed to
reestimate the Born and the high-energy contri-
butions.

In Sec. II we obtain the causality-modified Cot-
tingham formula by imposing the causality condi-
tions on the original formula. The proof that the

invariant amplitudes t, and t, are causal is given
in the Appendix. In this section we also point out
that the conditions required for the validity of the
causality sum rules that we use are the same as
those of Refs. 4 and 5.

In Sec. III we employ the modified formula to
estimate the Born contribution. The result is that
the Born contribution is of the wrong sign but is
insignificantly small; its magnitude is 590 of the
observed mass difference.

The divergent part of the formula is discussed
in Sec. IV under the assumption of Bjorken scaling
in electroproduction. It is found that, for large q',
only the logarithmic divergence survives. Its
elimination may be effected by imposing, the sum
rule

dp
[F',l(u) —F,"((u)]d(u = o.

The compatibility of this requirement with experi-
ment is discussed. Two other alternatives for the
elimination of the logarithmic divergence, namely
a cutoff and mathematical regularization, are also
considered. A full summary of the results of the
paper is given in Sec. V.

II. COTTINGHAM'S FORMULA AND CAUSALITY

To lowest order in the electromagnetic interac-
tion the proton-neutron mass difference, b, m =-m~

-m„, is given by Cottingham's formula'

i [ (p q)d4dq,

where M =gI'"M„„, M„„being the covariant gauge-
invariant Compton-scattering amplitude

Mq„=ti(v, q )dq (P, q)+t2(v, q )J-„„&(p,q), (2.2)

with

~pu (P ~q) =qpqu q~zppi(1)

Ipp (P q) =v(ppqp+qppv) q PpPp v g~, (2.4)

We are taking p'= 1 and v=pq. Thus Cottingham's
formula reads
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&m = . z . [3q t~(v, q )+(q +2v )to(v, q )]dq.
4mz ~ q'+ z~

(2.5)

It is shown in the Appendix that the amplitudes
t, (v, q') satisfy the causal Jost-Lehmann-Dyson
(JLD)' representation

tron mass difference. These authors also use the
retarded product in the mass-difference formula.
However, they do not note the consequences of the
causality of the invariant amplitudes t, .

In the following section we calculate the Born
contribution hm~ to the mass difference employing
the formula (2.9).

( 2)
1

t l/fg(Q~ S)d QdS
2' 3 S —(q —Q) —Le. '

(2.6)
Vfe write

III. THE BORN CONTRIBUTION

where g, (u, s) are the JLD spectral functions in the
causal representations of the structure functions

V, (v, q') occurring in the decomposition of the com-
mutator of the electromagnetic currents [see Eqs.
(A2), (A9}, and (A11)]. From the representation
(2.6) and condition (A8) of the Appendix one ob-
tains the causality sum rules

fe 4qfaq
m 4v'-q'

This gives

(3.1)

t
co w(o ) v2( 2 v2)1/2f ( 2)

gama=

~ dq dv
y'p q +4&

t, (v, q')dq, =0., i =1, 2.
oo

(2 'i)
leading to

Thus under the conditions allowing the derivation
of these sum rules, Cottingham's formula (2.5) re-
duces to

'i.(,q') d.
2mz . q +ze

(2 8)

After performing the rotation in the integration
contour in Eq, (2.8) and effecting the angular in-
tegration the formula reads

8rv2 "~& )

dp q kp

x t, (iv, —q').

This demonstrates that, under certain conditions,
the use of causality in Cottingham's formula elim-
inates all dependence upon the amplitude t, (v, q'}.
These conditions, given by Eq. (A8) in the Appen-
dix, are the same as those required for the de-
rivation of causality sum rules for the electro-
magnetic structure functions, ' namely

V, (v. , q')dq, = 0,

~ qo ~g (v ~ q )dqo = ca ~

(2.10)

where c, are constant. Further, (2.10) are equiv-
alent' to the causality sum rules of I eutwyler and
Stern' based on canonical light-cone behavior of
the electromagnetic currents. The agreement with
experiment found in Ref. 5 indicates that the under-
lying assumptions on asymptotic behavior are
physically sound.

We also remark that the causal representation
of the~amplitude M was previously employed by
Cottingham and Gibb' in discussing the proton-neu-

am s = ——,
' ' q'f2+q' —[q'(q'+ 4)]'~'j

4 p

xf,(- q')@g'. (3.3)

The form factor f,(q') is related to the electric and

magnetic form factors G~ and G~ by

,
)

e' q'G„'(q'}+ 4G '(q')
(2w)' q'(q +4)

(3.4)

From (3.4) one observes that the integrand in Eg.
(3.3) possesses a pole at q = 4, unless

G,(-4)=G (-4), (3 5)

a condition which is clearly violated by the experi-
mental data. ' Thus the contribution of the neigh-
borhood of the pole at q = 4 to Am ~ requires care-
ful handling, since it is sensitive to small varia-
tions in the slope of the integrand at q = 4.

We attempted a numerical evaluation of hm ~
using the experimental fits of Blatnik and Zovko, '
taking G~=-0. With M~=1, the contributions be-
yond q'=4. 7 for the proton, and q'=0. 75 for
the neutron, were negligible. In the case of the
proton the integrand in (3.3) starts with -2 atq'= 0,
vanishes about q'=0. 6, reaches a local maximum
of 0.04 at q' = 1.2, followed by a broad minimum of
value 1.5 x10 ' at q' = 2.8 preceding the pole at
q' = 4. The neutron integrand is a small positive
hump with a maximum value of 6.5 x10 ' at q' = 0.3.
The numerical integration is carried to q'= 3.9 and
beyond q'= 4.1 leaving the interval 3.9 & q' & 4.1 as
the neighborhood of the pole. The contribution of
this neighborhood depends upon the slope of the
residue of the integrand at q'=4. From the fits it
appears that the residue is approximately a linear
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function over the pole neighborhood with a slope of
-5x10 '.

The numerical estimate that we obtain for the
integral in (3.3) is

[F~(cu) —F",((o)]d(o = 0. (4.5)

r~
q'9+q'- 4'(q'+ 4)]"]nfl(- q') -fl(- q')]dq'

M p

= —0.21, (3.6)

This sum rule is therefore a necessary conse-
quence of scaling and the considerations leading to
Ec(. (4.3). Experimental estimates of the integrals
in this sum rule are given in the literature. Gil-
man" quotes

leading to

~gag ~ = 0.0 6 Me V. (3 7)
aJ p

F22((u) d~ = 0.14+ 0.02,

(4 6)

Although this estimate of the Born contribution
to the mass difference still maintains the conven-
tiona' wrong sign, it is significantly different from
the value of about 1 MeV typically obtained for hm~
using the original Cottingham formula. The result
that we obtain implies that the Born term gives an
insignificant contribution to the mass difference.

F"2((g)d(g =0.10+ 0.02.
J p. g

The experimental errors for the omitted region
0» ~ «0.1 are in fact much larger and the estimate
(4.6) does not exclude the sum rule (4.5). Altar-
elli" quotes

IV. THE DIVERGENT PART
p

F22((u)de = 0.17+ 0.01,

f ( 2) M F2(& rq )d~i
2 Vrg 4 1

7Tg ~ g 47 —4)

where p, = e'/(2v)', e = —q /2v, and F2(&u, q')
= &II/2(v, q'). Equation (2.9) then gives

2 i+00 2 w(q )
2 Z/2

2( 2 2) 1/2
71' yp Q' ~ p

(4.1)

~l'd ~ .( ' -q')
g —2g VCO

(4.2)

When the integral over v is performed, one gets

To discuss the asymptotic behavior of the in-
tegrand in Eq. (2.9) with the purpose of detecting
possible divergence, we write an unsubtracted
fixed-q' dispersion relation for t2(v, q'), assuming
the usual Regge behavior for this amplitude. In
this respect it is fortunate that the use of causality
enabled us to reduce the formula (2.5) to (2.8)
eliminating the invariant amplitude t„since in-
clusion of this amplitude would have introduced
possible subtraction constants.

We thus write

F2((u) d(o = 0.11+0.02,

(4.7)

which are in disagreement with (4.5). However, we
observe that the proton data" indicate an error in
the integral which is of order 25/p. We therefore
believe that realistic estimates of the errors would
render these values 0.17+ 0.04 and 0.11+0.03, so
that (4.5) remains an experimental possibility.
Bodek et al."extract values for the difference
F~2(&u) —F2(e) from the deuterium data using an im-
pulse approximation and the assumption R~ = A„
=0.18. Their results give a positive definite value
to the integral in (4.5). The assumptions that go
into their numerical analysis, however, leave con-
siderable room for differences with their calcula-
tions. Broadhurst et al."also quote values close
to those in (4.7), namely 0.16+ 0.02, 0.12+ 0.02,
which just admit the sum rule (4.5).

To estimate the inelastic contribution to the mass
difference, assuming the validity of the sum rule
(4.5), the divergent part of the integrand in (4.3)
may now be subtracted. This gives

[( 2+ 4 2)1/2 ( 2)1/2]2
where

Cner " -1
11 (X, (d)F2((d) d(u, (4.8)

(4.3)

If one now assumes Bjorken scaling for the deep-
inelastic structure functions VW„VS,

~(x, (d) =
QQ 1 -1

(
2 4 2)1/2 ( 2)1/2 4 2 dq y

(4 9)
F2((u, —q') -F2(cu), (4 4)

it is evident that hm is logarithmically divergent
and ~ is the value of q' at which Bjorken scaling
sets in. Integration of (4.9) yields
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,{X'+4(uW —(X+ 2&u') [X(X +4iu')] ' 2}16(o'

that it is rendered finite by analytic continuation.
In the context of the present problem, this pro-
cedure was first proposed by Suzuki. " In our case
it yields

2 1/I'2 2

——ln 1+ +2—+1 .
4

(4.10)
using

[(
2 4 2)1/2 ( 2)1/2]2 (4.14)

However, we note that any constant term in I1(Z, &)
does not contribute to the mass difference since
the sum rule (4.5) holds. This enables us to write
the effective function in (4.8) as

2{X + 4iu'X —(X+ 2tu ) [X(A.+ 4tu')]'/'}
16(d

——,
' In[(x'+ 4a) 'x)'/'+ 2(u'+ y],

(4.11)

which, in particular, removes the divergence at
X =0. If we now take X =0, the inelastic contribu-
tion to the mass difference becomes

reg x"dx = 0, Vn.
Q

(4.15)

(4.16)

It is evident from Eqs. (4.12), (4.13), and (4.16),
that these alternatives lead to quite different re-
sults, on which we give further remarks in our
next section.

V. SUMMARY AND DISCUSSION

Condition (4.5) is then unnecessary and (4.3) gives

p,+m III'
4 p

F,((u) Intu d(u. (4.12)
We have shown that use of the causality of the

electromagnetic commutator reduces the Cotting
ham formula for the proton-neutron mass differ-

nm„„=—lnA t F2((u)d(u,
dp

(4.13)

where the cutoff A is undetermined.
(ii) The integral over q' in (4.3) may be regu-

larized in the sense of generalized functions" so

Since F~2(0) =F,(0), F2(&u) vanishes at tu=0, and this
integral is convergent.

In using Eq. (4.12) one must be careful since it is
closely linked to the sum rule (4.5). In particular,
any parameterization for F2(+) that does not satis-
fy (4.5) should not be inserted into (4.12).

Although we have argued that the present data
does not exclude the sum rule (4.5), we have found
it difficult to parameterize the existing data so that
this sum rule is exactly satisfied. We are not
therefore able to give a numerical estimate for
Arn . „ from (4.12) using the available experimental
results. It appears that the validity of the sum
rule (4.5) requires that F~2(tu) -F2(&o), which is"
apparently positive for + & 0.2 becomes sharply
negative for ws 0.2 before it increases to zero at
& =0. If such behavior is not observed, the sum
rule (4.5) must be discarded.

When the sum rule (4.5) is definitely precluded
by experiment, two alternatives suggest them-
selves:

(i) A cutoff in the integral over q', imposed by
other interactions, which removes the logarithmic
divergence and the necessity for the sum rule.
Then (4.3) yields

ence to the form given in (2.8). In this form b,m

is independent of the invariant amplitude t, . This
feature is welcome, since it is this amplitude
whi. ch requires a subtraction in its dispersive rep-
resentation and on which experimental information
is scant. In fact, several authors'" have made
ad hoc assumptions neglecting it in order to arrive
at definite conclusions. These conclusions do not
necessarily agree with ours, since the part of M
that, by causality, drops out of our calculation is
3t, +t, and not just t,.

Using our formula (2.8), we estimated the contri-
bution of the Born term to the mass difference. We
found this contribution to be insignificant: about
5% in magnitude, but of the wrong sign, a conclu-
sion markedly different from the conventional cal-
culation in which causality is neglected. The idea
is that causal amplitudes satisfy sum rules like
(2.7) in which the Born contributions are exactly
balanced by the non-Born contributions. This fea-
ture indicates that the expectation of a satisfactory
result from the Born term by itself is rather un-
founded.

It is known that when Bjorken scaling is used in
the original mass-difference formula one has, in
general, both a quadratic and a logarithmic di-
vergence. On the other hand, in the causality-
modified formula (2.8) only the logarithmic diver-
gence survives, so that one has eliminated the
quadratic divergence without introducing extra-
neous assumptions.

Elimination of the logarithmic divergence may be
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effected by imposing the sum rule (4.5). This sum
rule is not excluded by the existing experimental
data, although it is difficult to reach a definite con-
clusion. However, we note that its validity re-
quires that F~2(&o) —F",(ur), which is presumably pos-
itive over most of its range, "becomes sharply
negative in the small-w region.

If one assumes the validity of the sum rule (4.5),
the contribution urn„„of the deep-inelastic re-
gion to the mass difference may be estimated as in
(4.12). As noted above, (4.5) demands that F~2(ru}
—F,"(&u) vanishes for at least one value of &u. If this
occurs at just one point, & =wp say, it is easy to
see that (4.12) gives a negative contribution. For
condition (4.5) and the existing data would then im-
ply that

APPENDIX: CAUSALITY OF THE AMPLITUDES

We define the physical Compton amplitude M,
as the covariant gauge-invariant part of the re-
tarded product 8„,:

&„,=i e""8(x,)(P I[X„(x),J', (0)]IP)d'x.

This part may be explicitly exhibited using

(A1)

e""(P
I p'„(x),z„(0)]IP) d'x
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J P
F,((u) In(u d(u

= V, (v, q')L(„'„~(p,q)+ V, (v, q )L&,i(P, q)

(A2)

4 p

CO
r 1

COF, (&u) ln —d&u+ F,(e) ln —d&u) 0.
(uP

P
(Op

(5.1)
One obtains"

ei &xp

(A3)

The magnitude of this contribution can only be es-
timated when one has a reasonable parameteriza-
tion of the data that exactly satisfies (4.5).

A physically motivated cutoff in the integral over

q in (4.3} is an alternative if (4.5) is rejected by
experiment. The deep-inelastic contribution, given
by (4.13), is then clearly positive. Other, largely
ad hoc assumptions"" have previously produced a
similar result with a negative sign. Our consider-
ations, however, clearly lead to the positive value
in (4.13). A positive result for the deep-inelastic
contribution has also been obtained by Leutwyler
and Gasser" who say that a possible tadpole con-
tribution may reverse the sign. To us' it appears
that a large positive contribution like (4.13) is un-

desirable, and we tend to regard this alternative
an unlikely possibility.

If (4.5) is experimentally invalidated, another
alternative is regularization of the divergent inte-
gral by analytic continuation. " In contrast to the
cutoff prescription, regularization invariably in-
troduces a reversal of sign. " For the case under
consideration this leads to an inelastic contribu-
tion, (4.16), with the correct sign. Its magnitude,
however, which is insignificantly small as given
by (4.16), depends on the energy at which Bjorken
scaling sets in. We have taken A. = 0, thus obtain-
ing (4.16). But A, may be adjusted to a value, albeit
unreasonably high, such that hm«reproduces
the observed mass difference. This arbitrariness
and the lack of a natural parameter for analytic
continuation render regularization an unattractive
alternative.

R„,= t, (v, q') d„", (P, q)

+ t, (v, q')L„'„'(P,q)+S,(g„~„,-g„„)
+ S.IP.(P„z:+P.a„.} P„P,-P. g-„.],

where(,)
1 V,.(q,', q)

q,'-q, —z~

(A4)

V, (v, q')dq, =0, (A7)

valid under the assumption

lim sg,. (u, s) =0,

where g,. (u, s) are the Jl D spectral functions of
V;(v, q )

(A8)

r

&( (v, q') = e (q, —uo)6 [(q —u)' —s] (i, (u, s)d'u ds.
(A9)

Causality also implies that S, , defined by (A6), are
constant. Thus

M, =t, (v, q')L~', &(P, q)+t, (v, q )L „(P q), (A10)

and Eqs. (A5) and (A9) yield

t, (v, q')= — * ', . d'uds,
1 ",. (u, s)

2w „8-(q —u)' —iE

so that t, (v, q') are causal. .

(A11)

q, V, (v, q )dqo. (A6)

In obtaining (A4) use was made of the causality con-
ditions'
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