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Polarization in m p elastic scattering at 1180, 1250, and 1360 MeV/c~
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We have measured the polarization parameter in m p elastic scattering at laboratory momenta of 1180, 1250,
and 1360 MeV/c in the angular interval 65' g 8, & 115'. The results were used to show that the polarized
target used in these (and other similar) experiments was uniformly polarized. These measurements were also
'used to resolve pre-existing experimental discrepancies in the determination of the polarization parameter, and
to clarify the behavior of scattering amplitudes in this energy range. We show that local measurements of this
type are important in resolving discrete ainbiguities afFecting the energy continuation of the amplitudes. An
important by-product of this experiment .is the development of a fast method of reconstructing particle
trajectories and fitting the elastic events, which could have a significant impact for future high-statistics
experiments.

I. INTRODUCTION II. THE EXPERIMENT

We present here the results of a polarized-tar-
get experiment performed at the Bevatron as an
adjunct to measurements of the polarization pa-
rameter for the reaction m p- ~n which have al-
ready been published. ': The objective of this aux-
iliary experiment was to study polarization iri
elastic scattering, with an experimental setup as
close as possible to one used for the charge-ex-
change reaction, in a way which would allow us
to calibrate the I,BL polarized target. Schemati-
cally this can be done by using the analyzing power
of the & p elastic scattering to. compute the polari-
zation of the target as a function of the- relevant
parameters, which is just the coritraiy'of an or-
dinary measurement of a polarization parameter.
This effort is justified because it provides us with
a check of the various assumptions customarily
made when using polarized targets, like target
homogeneity.

As a by.-product of this experiment, we obtained
some precise values of the polarization parameter
of w P elastic scattering, accumulated at 1180,
1250, and 1360 MeV/c in the central region of the
center-of-mass scattering angle, between 65' and
115 . There is a particular interest in getting
better data in this region, where the polarization
parameter is peaked towards -1. The method of
zeros' allows one to make quantitative use of
such local measurements and to correlate directly
these regions of high polarization with the dis-
crete ambiguities of the amplitude analysis.

Finally, in this paper we would like to put a par-
ticular emphasis on the presentation of our method
of data analysis. This method, which goes far be-
yond the needs of this limited experiment, should
be directly applicable to the next generation of
measurements of differential cross section and
polarization parameter.

The experimental layout is shown in Fig. 1. The
beam and the polarized target were essentially
the same as have been used in the charge-exchange
experiment of Shannon et al." The beam with a
typical momentum bite of +1.5/z was positioned in-
side the target by an upstream steering magnet.
It was electronically defined by a coincidence be-
tween different counters. The beam particles were
measured by two hodoscopes. The one upstream
yielded both x and y coordinates with a —,'-in. reso-
lution, while the downstream one yielded x only,
with 8-in. resolution. The beam cross section jn-
side the target was 2.5x 2.0 cm, arid its angular
divergence was 2.5' full cone angle. Its intensity
was about 'l x 10' ~ per pulse with a contamina-
tion of p, less than 4/q. The polarized proton tar-
get (primarily 1,2 propane-diol), with length
along the beam of V.5 cm and a cross-sectional
area 2.5 x 2.5 cm, yielded an average polarization
of 0.48 with an average fluctuation of +0.02 (rms}.
We also collected data from a "dummy" target
(essentially graphite) at each momentum. The
target polarization was reversed every 2-3 hours.

The scattered-pion trajectory was measured by
two proportional wire chambers, 7t', and w„each
made of two orthogonal planes of wires x and y.
The recoil proton was mea. sured by two similar
wire chambers P, and I','. The wires were spaced
by 2 mm and connected in groups, yielding a reso-
lution ranging according to the plane from 0.6 to
1.4 cm. The efficiencies of 7r, and v, (and similarly
of P, and P,) were monitored by a count of the co-
incidence between the two scintillators R, and R,
(L, and Le). We noticed some variation of the ef-
ficiency with time (due to the detection electronics}
which was corrected for in the subsequent analy-
sis.

The trigger required the detection of one beam



E. BAR RE LET et al.

particle, a "fast output" (indicating a pulse in
some channel} from each wire chamber, and no
particle detected in the veto counters surrounding
the target. A typical Bevatron pulse yielded 40 to
80 triggers, of which —,

' were good events ("good"
means a single coordinate in each wire plane, thus
eliminating the trigger due to spurious fast-output
signals}. One-fifth of these good events turned out
to be elastic events.

III. THE ANALYSIS

A. General

Our experimental layout allows us to do a com-
plete reconstruction of the elastic events and pro-
vides us with four constraints. This can be fig-
ured out easily. When the beam trajectory is
known, each prong of an elastic event depends only
on 3 parameters: the position z of the apex along
the beam, the center-of-mass scattering angle
8, , and the azimuthal angle &f&. These three
parameters are determined uniquely by the coor-
dinates (x„y,) and (x2, y,) of the two impacts of
each secondary particle on the two corresponding
wire chambers. Therefore our four constraints
are: (1) an angle-angle constraint expressing the
equality of the two values of 8, , determined by
the pion track and the proton track, (2) a coplan-
arity constraint relating the two determinations of

P, and (3) two geometrical constraints, express-
ing the fact that the three trajectories have a
common apex (one constraint is lost by the lack of
a y coordinate in the downstream hodoscope). lt

is also possible to reject the events for which the
reconstructed apex lies outside the target. We
call that "the target pseudoconstraint. "

The geometrical constraints, acting indirectly as
a momentum analysis, allow us to separate the
elastic and quasielastic events from the I'est of

'

the background. The angle-angle and coplanarity
constraints differentiate the elastic events and the
guasielastic ones ("quasielastic" scattering means
scattering on a bound proton-inside a carbon or
oxygen nucleus of the target).

The information concerning each individual event
is sufficient to allow us to envisage the use of a
geometrical- and kinematical-fitting program like
THRESH-GRIND to obtain good accuracy. However,
we have accumulated in this limited experiment
10' events, and one might wish to measure hun-
dreds of times more. Thereforewe found it more
economical to write a specific program, fully ac-
curate but making good use of the characteristics
of our experimental layout and of the elastic kine-
matics. We managed to reconstruct an elastic
event with less than 150 operations (additions,
multiplications, and a few divisions), using an
intexPolation pozynomial each time we had to eval-
uate a function. The practical program, although
not optimized, yields around 10~ events per CDC-
6600 second and is able to reconstruct the tra-
jectory-defining angles with a precision of 10 '
degrees, which corresponded in our calculation to
the use of cubic interpolation polynomials and
matched the statistical errors. This. is shown in
Fig. 2, where the difference between the pion
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FIG. 1. Plan view of experimental arrangement showing the polarized target and the detectors. x&, x2, P&, and P2
are multiwire proportional chambers; all other detectors are scintillation counters.
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scattering angle in the laboratory frame, as mea-
sured from the pion track 8,(v) itself, and that
predicted from measurement of the recoil-proton
track 8,(p) is plotted as a function of the scatter-
ing angle 8,. The quoted error is obtained by di-
viding the =1' angular resolution for one event by
the square root of the number of events (~10'). ,

In the present case, the fact that 8,(v) =8,(p) is
so well verified means that we have been. able to
fix the respective position of our detectors to .

+0.15 mm. This example shows that an important
by-product of accuracy is the ability to trace the
systematic errors associated with such experi-
ments.

8. A practical algorithm
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FIG. 2. The difference between the pion scattering
angle in the laboratory frame, measured from the pion
track only 8, (g), and that predicted from measurement
of the recoil-proton track 8~ (p), is plotted as a function
of the scattering angle 8~.

Prior to any programming, we had to write
down explicitly -all the algebra and statistics
leading from the raw data to the polarization pa-
rameter, in the' canonical algebraic form already
mentioned (relying on interpolation polynomials).
This involved the development of the special com-
puting techniques described in the following sec-
tion. VVhat came out is a chain sequence: of pro-
grams based on computing efficiency:

(1) First one computes a given set of trajectories
through the magnet and the detectors, deduces
from them the constraints entering into the geo-
metrical-fit and kinematical-fit formulas, and
uses them to construct tables of coefficients to be
used by the next program.

(2) The second program reads the magnetic tapes
containing the coordinates (wire numbers, hodo-
scope channels) for each event, performs the geo-
metrical and kinematical fits, prepares the vital
statistics such as monitor counts, average polari-
zation, etc. , and stores the event, in the different
histograms which are used later in the determina-
tion of the polarization parameter. Usually no
more than 40 operations are necessary to decide
that an event is inelastic and to dispose of it,

whereas, to treat an elastic event, one needs 150
operations, few compared to the input-related .

operations.
(3) The third step, relying on hand calculations

and small programs, consists in summing up the
data from different runs, computing corrections,
choosing the binning, and computing the polariza-
tion parameter and its error.

A few data tapes have been processed several
times by the second program in order to improve
by iteration the determination of the parameters
defining the geometry of the experimental appara-
tus, which are fed into the first program. The
bulk of the data tapes have been, processed only
once, yielding definitive results.

C. Special computing techniques

These techniques, detailed in Ref. 4, give ari '

elegant solution to the two arduous parts of the cal-
culation of an elastic event.

1. The reconstruction of an outgoing Particle in
a magnetic field decreasing continuously uith the
distance from the center of the target. To solve
the general problem requires three nonalgebraic
equations where the three track-definin1g param-
eters e, 8, and P are the unknowns. But we in-'

troduced three simplified formulas which yie'ld
our unknowns with a precision of about 1%:

e =23(x„8, ),
3(y3 yl'1 cg~ 0 ) P

where Ay A.g and A3 are sirqple rational expres-
sions and (x„y,) and (x„y3) are the intercepts
with the two wire chambers. We also computed
the first-order corrections to these formulas in
order to reach the 10 '-degree precision shown
in Fig. 2. A higher precision is easy to obtain
mathematically but has no physical meaning with
our apparatus. There is a simple geometrical
representation of (1), which has much predictive
power. If we consider (Fig. 3) the different elastic
events corresponding to the same scarring angle

V

l

eom tar get

FIG. 3. The reconstruction of elastic events uses the
fact that all the trajectories corresponding to the same
scattering angle 8, almost intersect at the same point I,
whose locus is the "magic curve. "
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8„ the different pion (or proton) trajectories, pro-
jected on the x0z plane of symmetry, intersect
almost at the same point f(8,). When we vary 8,
(i.e., 8, ) and the momentum of the scattered
particles accordingly, I(8,) generates a curve that
we call the magic curve. " Conversely, knowing
the straight line determined by (x„x,) and a linear
approximation of the magic curve, one can find
their intersection I and compute with an empirical
polynomial the corresponding value of 8, (or 8, ).
Some refinements of this picture, shown in Ref. 4,
allow us to visualize the first-order corrections
to (I).

2. Thebest-fitproceduxe Used . in general pro-
grams like GRIND or S@Upgr, this procedure has
been revised to simplify the algebra, and also to
be applicable to our experiment where error dis-
tributions are not Gaussian. Our main simplifica-
tion consists in introducing new variables which
allow us to subdivide our system of eleven equa-
tions with four constraints (described above in
Sec. III A) into four independent subsystems. For
example, if we choose as our new variables 8,(n')
and 8,(P), defined in Fig. 2, we get a subsystem
of two equations, according to (I): 8,(v)
=A,(x, , x, ), 8,(p) =A, (x~, , x& ). For each wire-
chamber coordinate x taking discrete values, the
point M [8,(n'), 8,(p)] will have discrete positions
in the plane of Fig. 4. The acceptance of the four
x detectors defining the point M is a sort of trun-
cated pyramid centered on M, which is the pro-
duct of the trapezoidal distributions of each coor-
dinate. Any elastic event should yieLd, instead of

'

the "measured" point M, a "true" point T lying on
the first bisector (angle-, angle constraint) and

e~.(vr), m ~)

—8 (p, ,p)

FIG. 4. On this angle-angle plot (variable as in Fig.
2) the point M representing the two measurements of
the scattering angle and their trapezoidal error distri-
butions yield a 3-dimensional truncated pyramid whose
base is a rectangle centered on M. The fitted point F
is on the first bisector (migle-angle constraint).

within the rectangle limiting the "accepted" points.
The fitted point I, defined as the expected value
of T, is situated almost on the diagonal MS of the
rectangle. Knowing the componerits &, and —. &, of
MS given by interpolation polynomials in the var-
iable H„we have computed it. The fitted value
0,"of 0, is defined by any coordinate of I", and the
mezimum fitted error ~8, is the maximum compo-
nent of FS. W'e have also computed the variable
X .. .~, =MFjMS, which is histogrammed in
Fig. 5 and agrees nicely with a solid curve pre-
dicted by using only the known shape of the pyra-
mid of Fig. 4. A nice feature of this X distribu-
tion, compared to a Gaussian one, is its edge at.X =+1, which allows us to verify that there is no
unknown contribution to our experimental errors
and to define a "pure background" by the condition

~y [&I. For each of our four constraints there is
a X variable with a distribution similar to that of
Fig. 5.

IV. THE POLARIZATION PARAMETER

A. The calibration of the experiment

The polarized target

The first objective of our experiment was to
study the effects of the inhomogeneity and the fluc-
tuations of the polarization of protons inside the
target. The answer was that such effects were
accurately measured by our method arid that they
did not significantly bias our results. The method,
detailed in Ref. 4, consists of computing the aver-
age asymmetry yielded by elastic m p scattering
integrated over a large range of center-of-mass
scattering angle around 90'. This quantity
(=—0.75) is fixed by the property of strong inter-
actions. Its apparent variations will reflect the
variations of the target polarization. Firstly we
have drawn a 3-dimensional map of the polariza-
tion inside the target, with a 1-cm resolution.
It turned out to be uniform within the statistical
error which varied from 2%%uo at the center of the
target, where the beam flux was maximum, to
7%%uo at the periphery. It is also possible to discard
global effects, such as a difference between the
center of the target and its periphery, within a
smaller error (=I%%up). If we suppose that the target
inhomogeneity was the worst compatible with our
data, the polarization parameter would be affected
only on the edges of our angular range and by less
than 3%%uo. Secondly we have watched the variations
of polarization with time. They are monitored by
an NMR probe' which is certainly reliable on a
short time scale, owing to the proven uniformity
of the target. Our analysis described in Ref. 4
has convinced us that the NMR monitor has not
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drifted by more than 1% throughout the experi-
ment, while the absolute calibration of the target,
involving the measurement of the thermal-equil-
ibrium polarization signal, exhibited a 2.5% ir-
reproducibility.

2. The detectors

ANGLE-ANGLE

Xt

COPLANAR ITY

The fluctuations in the detection efficiency were
on the order of 10/0, in some cases as high as 50%.
This unwelcome effect has turned into an advantage
because it forced us to develop a method which
is not sensitive to these fluctuations. It consists
of selecting the background events which are pre-
dominantly (90%) quasielastic and are believed to
yield no appreciable asymmetry. Therefore, for
each of our 200 detectors, we expect to find the
same ratio n'/n of the total background counts for
the runs with an upward target polarization to the
downward ones. After detection and elimination
of a few abnormal runs, we have shown that the
fluctuation of the ratio n'/n around its average
g is purely statistical, except for two ailU1g wires
which gave a 15-standard-deviation false asym-

metry and were treated separately. This result
proves that by alternating upward and downward

target polarization we have been able to average
out the false asymmetries.

B. The calculation of the polarization parametel

1. Formulas

One can find in the literature different formulas
relating the polarization parameter to the scat-
tering data. ' The conclusion of our careful search,
detailed in Ref. 4, favors the simplest of all form-
ulas. Using the expression

n'=M'(I +I,T') with n'=(¹) (2)

we have computed, by multiple integration, the
expected value n' of the number of events N' to
be counted in a given angular bin during a certain
period labeled i, during which the number of par-
ticles in the beam was M' and the target polariza-
tion T'. The asymmetry A defined as A =I,/I, is
roughly equal to the polarization parameter P.
A detailed study of the multiple integration leading
to (2) yields all the corrections to apply to A in
order to get I'. They are discussed later in Sec.
IVB3.

The study of Eq. (2) has convinced us to use the
"simpljfied" estimators F0 and Y, of I, and I» ob-
tained by replacing, successively, the index i in

(2) by + and —,as if there had been no fluctuation
of the target polarization around its "up" and
"down" mean values T' and T . The. simplified
estimators are not biased and are essentially as
efficient as the X' estimators. They are

T'N /M T-N-'/M- —'
0 T+

APEX

X
and

¹/M' —N /M
1 T+

(3)

FIG. 5. Distributions (histograms) in the normalized
deviations from constraints. Each X is the deviation
from perfect satisfaction of a constraint equation divided
by the maximum deviation attributable to the finite
channel sizes in the proportional wire chambers. The
agreement between the solid curves, calculated purely
on proportional chamber resolution, and the experi-
mental histograms indicates that chamber resolution is
a greater contributor than multiple scattering to the
deviations from constraints.

The errors on these quantities are Gaussian and
easy to compute, yielding the 0' of the asymmetry
distribution which simplifies, because we have
T'=-T =T:

M'+M (1+AT)(l -A' T')':= ~M- 4I0T'

with

T =T(M -M-)/(M +M-).

The simplicity of this formula resides in the
fact that it is sufficient to make a separate count
for the "up" runs and the "down" ones of the events
(N') and of the beam particles (M'), to compute
the mean target polarizations (T'), and then merge
these numbers in formulas (3) and (4). Moreover
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the asymmetry and its error depend on the ratio
q' =M'/M . This ratio has to be corrected if the
efficiency of every detector has varied during the
experiment. Instead of doing this delicate cor-
rection (of the order of 2%), we point out that the
parameter g, determined at the end of Sec. IV A 2,
was automatically corrected because the number of
background events is proportional, not to beam
flux only, but to its product with the detector ef-
ficiency. Further analysis has shown that the
error affecting it is purely statistical and small
(0.2/0), due to the substantial number of background
events. This method could even be used to cor-
rect the false asymmetries generated by a varia-
tion of detector efficiencies.

2. Background evaluation

It is important to understand quantitatively the
nature of the background in order to evaluate the
proportion of background events inside our sample
of elastic events, and also because the background
is used as a monitor. We had three independent

ways of studying the background.
First we can empirically subtract the elastic

events from the total and observe the remainder.
Practically, when interested in a given variable,
we have drawn the two histograms of this variable
corresponding to the two orientations of the target
polarization. Then, for each couple of correspond-
ing bins containing, respectively, N and N events,
we applied the two formulas (3). This generates
two new histograms: the "added" one, with Y,
events per bin, which simulates a target chemical-
ly identical but unpolarized, and the "subtracted"
one, with Y, events per bin, simulating a pure
hydrogen target. The comparison has shown us
that, for the X variables corresponding to the
angle-angle and coplanarity constraints, the dis-
tribution of the background is almost flat below
the elastic peak. For the 2 geometrical constraints
it is almost as peaked as the elastic peak. There-
fore, to obtain a good separation of hydrogen ev-
ents, we have formed the new variable X' =

(X,„,„.,„,„)'+(y„~h„;,„)'. To this unconventional
"X'" we have assigned the same sign as X„g).„g&.,
yielding an elastic peak symmetric around 0. On

Fig. 6(b) the "subtracted" y' distribution exhibits
the absence of hydrogen events for ~y' ~&2. This
proves that there is no radiative or multiple-
scattering tail to consider (at the level of 4 x 10-'),
and that the background below the hydrogen peak
is not polarized.

Secondly we have repeated for the carbon "dum-
my"-target data the same analysis as for the rior-
mal ta,rget. Outside the elastic peak the carbon
data reproduces well our background as we ex-

pected it (by this we mean that carbon and oxygen.
nuclei behave similarly and that there is no sig-
nificant hydrogen inelastic reaction in our back-
ground). We could even detect a small hydrogen
peak in the carbon data corresponding to a 0.05%
contamination of our dummy target.

Thirdly we can reproduce surprisingly well all
the characteristics of our background by a very
simple model of quasielastic scattering; we have
supposed that the bound protons have a Fermi mo-
mentum uniformly distributed in a sphere, of 200
MeV/c radius. The effective number of bound pro-
tons is the real one divided by a screening factor
of 2.6 (very close to A'!'). The predictions of this
model are simple to establiS, since kinematics
tells us that the X coplanarity variable expresses
a mapping of the transverse y component of the
Fermi momentum, while the X angle-angle vari-
able maps a component of the Fermi momentum
in the scattering plane. For example, the 200-
MeV/c cutoff of the Fermi momentum yields a
clear cutoff of the background for ~x„~h„„;&&,~&4.
Practically the model reproduces within 10'%%u~ the
X' distribution of Fig. 6(a) up to ~y'

~

=25.
Vfe conclude from these 3 convergent analyses

that our background is quasielastic scattering and
that it is quantitatively predictable. However, we
have been able to succeed in this analysis only
because our precise reconstruction of the apex
distribution, coupled with the subsequent use of
the target pseudoconstraint, has allowed us to el-
iminate another type of background, twice more
abundant, resulting from a forward quasielastic
scattering with a m detected by the proton tele-
scope and proton in the pion telescope.

The results

Table I presents the polarization parameters
that we have obtained at 3 energies and 16 angles
by the following procedure: First we have histo-
grammed the cos8,. variable, within 0.05 inter-
vals, independently for both orientations of the
target. The "signal cut, " defined by ~X'~&0.5,
selected 85'%%ug of the elastic events with a 5/0 conta-
mination (up from 2'%%uo at the peak). Second we have
applied Egs. (3}and (4} to each angular bin in order
to compute the asymmetry A and its error o„.
Third we have computed the corrections transfor-
ming this rough asymmetry 4 + o„ into the real
polarization parameter P~&I'. The biggest cor-
rection is the background subtraction. The back-
ground is totally absent from the numerator Y, of
the asymmetry A [see Fig. 6(b)], while it exists
for the denominator Y, and varies slowly with X'

[Fig. 6(a)]. The evaluation of this background is
suggested by the results of Sec. IVB2: The extra-
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polation of the X2 distribution of the background
below the elastic peak is guided by what our Fer-
mi-momentum model told us, plus the fact that
the background is pure for ~X ~' &2. Practically,
we took a linear extrapolation of the background
from -4&X &-2 and from 2&x &4, except for
the two edges of our- angular domain where the
limited acceptance of our detectors acts as a cut
in the X' variable (one advantage of our definition
of X' is that, when positive X"s are cut, w'e use
only negative ones, and conversely). The effect
of nonlinearity, in the background distribution was
smaller than the statistic. a,l error and neither af-.
fected the polarization parameter. Vfe have rem-
arked that the proportion of background does-not
depend appreciably on the scattering angle, and
therefore w|. have computed a single correction
factor for bach energy. This fact is simply under-
stood in terms of our model: The scattering angle
and the differential cross section are almost the
same for the free protons and the bound protons
inside the signal cut, which corresponds to a fixed
region of the Fermi-momentum space. Next we
have taken into consideration the fact that the ap-

parent target polarization is the real one multiplied
by cosp, where $ is th'e angle betweenthe magnetic
field and the normal to the scattering plane. There-
fore we have divided the asymmetry by the mean
value of this cosp for all events falling in each an-
gular bin, determined easily to be (cosg) = 1--',g&').
This correction varies regularly with the scatter-
ing angle from 0 5%%uo to 1.1' The other correc-
tions that we have considered were neglected, being
smaller than 0.5%%uc. The "binning" error, smaller
than 0.2%%d, fell into this category, but in our opin-
ion this type of error shouM not be included at
this stage of the analysis. Let us recaB that this
correction is of the form

(5)

Therefore it can always be computed, when one
knows the rms width & of each angular bin, by
fitting the differential cross section and polariza-
tion data in order to evaluate their second deriva-
tives appearing in the formula. But if we consider
how different the local curvatures obtained from .

the same data by different fitting methods are, we
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FIG. 6. The X variable combines the angle-angle and the coplanarity constraints to achieve the best separation of
elastic events. Instead of the two X2 distributions corresponding to the two orientations of the target polarization (see
Sec. Dt'B 2), we show the "added" distribution in (a) simulating an unpolarized target and the subtracted" one in (b)
simulating a pure hydrogen target. The cut ) Xt) &2 means pure background, while the signal cut ) X2)&0.5 yields 85%
of the elastic events with 5% background contamination.
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feel that the correction would not be reproducible.
The errors quoted in Table I are purely statistical.
The normalization error, characteristic of the po-
larized target and its readout system, has been
estimated to +6%. Our calibration of the target has
suggested to us that the relative normalization er-
ror between two different energies is not greater
than 1%. (In Sec. V we shall try to learn more
about the normalization error by using the results
of our amplitude analysis. ) The cumulative effect
of the other systematic errors has been estimated
to be less than 1%, except for the points at cos8,
= +0.375, where it is less than 3%. The angular
resolution &(cos8, ), defined as in (5), was +0.014
before the binning and became +0.02 after the bin-
ning. The biases affecting the measurement of
cos8, , as observed in Fig. 2, were around 3
~ 10 ', but they become of the order of 0.003 when
one takes into consideration the uncertainty of the
relative positions of the wire chambers and the
beam.

V. AMBIGUITIES OF m' p AMPLITUDE ANALYSES
BETWEEN:,1.0 AND 1.4 GeVic

A. Conflicting data

A simple look at the compilation' of r-N data en-
ables us to compare the new polarization data of
Table I to older ones. A discrepancy appears be-
tween a first category of experiments (CERN-Hol-
land, ' Hansroul, ' and ours), where the average po-
larization around cos8, =0 is not far from -1.,
and a second category (Cox"), where the absolute
value of the polarization is noticeably smaller.
Another more subtle effect concerns the shape of
the polarization curve. Our data exhibit a broad
minimum (or even iwo distinct minima) supposedly
associated, as in the CERN-Holland' data, with a
sharp rise at cos80.m. =0,4 whije in some other
data the minimum is narrower and rounder. The
first of these two effects is very likely due to the
difficulty of the absolute calibration of a polarized
target, and the second to the different angular re-
solutions of the experiments,

B. The determination of the zeros

The purpose of the rest of this article is to use
these local features of the data to study the dis-
crete ambiguities of the amplitude analysis accord-
ing to the method of zeros' The principles of this
method are illustrated by Fig. 7. For each scat-
tering angle 8, , the two classical parameters
do/d&v and P are transformed into the two "trans-
verse cross sections" &' =(do/d&u)(1+P) and Z
= (do/dv)(l —P), which are equal to the square
modulus of the two transversity amplitudes E'

cos8, i360 MeV/c i250 MeV/c i i80 MeV/c

—0.375
-0.325
-0.275
—0.225
-O. i75
-O. i 25
-0.075
—0.025

0.025
0.075
O. i25
O. i75
0.225
0.275
0.325
0.375

-0.260 +0.045
-0.436 +0.033
-0.603 +0.027
-0,685 +0.026
—0.769 +0.025
-0.849 +0.025
—0.863 + 0.025
-0.852 +0.026
-0.825 +0.028
-0.8i0 +0.028
-0,8i6+0.030
-0.753 +0.032
-0.73i +0.035
-0.677 +0.040
-0.706 +0.050
—0.685 +0.07i

-0.09i +0.058
-0.324 +0.043
-0.5i8 +0.038
-0.53i +0.037
—0.696 +0.035
-0.76i +0.035
-0.862 +0.034
-0.9i7 +0.035
-0.880 +0.035
-0.882 +0.036
—0.943 +0.036
-0.893 +0.039
-0.955 a 0.04i
-0.828 + 0.047
-0.825 +0.053
-0.669 +0.072

-0.046 +0.064
-0.257 +0.052
-0.436 +0.045
—0.599 +0.04i
-0.744+ 0.04i
-0.744 +0.040
—0.823 +0.040
—0.859 +0.045
-0.908 +0.048
—..0,92 i +0.045
-0.894 +0.042
-0.89 i +0.044
—.0.902 +0.047
—0.822 +0.052
—0.726 +0.058
—0.664 +0.074

and E .
In the vicinity of a complex zero of a transver-

sity amplitude, one can write

E ' =A(cos8 —a —ib),

Z'= )P i'= )W )'[(cos8 —a)'+ b'j.
(6a)

(6b)

Therefore the existence of a zero explains the
parabolic shape of ~* near cos8 =a, as seen in
Fig. 7 for Z near cos8 =0.4. On the same figure
one can see the four other zeros of the I" ' and I'
amplitudes, although the shapes of the Z and Z

curves are complicated by the mutual influence
of these zeros. The second zero of Z yields a
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FIG. 7. Example of m"-p elastic-cross-section and
polarization data taken from Albrow et al. (Ref. 8). The
solid lines indicate the transversity cross section Z»

=do/d(d x (1+P).

TABLE I. Polarization parameter P(cos8~ I ) in n' p
7t. p scattering. The error is statistical only; the over-

all normalization error is +6%; the rms width of the
cose~ m bins is 0.02.
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secondary minimum near cos8 =-0.15. A third
and a fourth zero are seen in Z' near cos8 =.+0.35
and -0.05, and a fifth one produces the backward
dip" at. cos8 =-1. We.have determined these five
zeros by fitting directly different data of the ~N

compilation, ' for beam momenta varying between
0.8 and 2.0 GeV/c, with a program'3 designed
specially for that purpose. This program proce-
eds in two steps.

Firstly, we express do/d&o and P dc/d&u as a sum
of orthogonal functions. Rather than using Legen-
dre functions, which are orthogonal when uniformly
weighted in the interval -1 to 1, we use functions
that are constructed to be orthogonal with the
weight factor determined from the points at which
there are data and the errors on those data. The
program theri uses this orthogonality property to
evaluate the coefficients of the polynomials in our
sum (the method of moments).

Secondly, the program expresses the transverse
cross section Z'(e) in terms of the variable e@.
Since powers of e + are implicitly involved it is
expedient to multiply Z'. by e'~', where N is the
upper limit of the polynomial-expansion sum, be-
fore seeking its polynomial expansion. The roots
(zeros) of this polynomial are then computed. Z

is also represented because Z (8) =Z'(- 8).
Among the roots yielded by this method, we have

seen a clear distinction between the "stable" ones, '
which constitute an approximation of our zeros,
and the "unstable" ones, . distant from the physical
region, which are artifacts. The only dubious case
was associated with the appearance of a sixth
zero with a large imaginary part above 1.5 GeV/
c. The errors affecting this method are computed
according to the prescriptions ef Ref. 13. This
means that we shall be concerned by. the non-Gaus-
sian character of the statistical distribution of the
nearby zeros pointed out by Urban, but not by the
mathematical error resulting from the truncation
of the expansion of Z'(8), which affects only the
distant zeros. Conventionally the position of each
zero in the e'8 plane is transformed into the com-
plex cos8 plane and then into the complex Man-
delstam variable t. By repeating the analysis in-
dependently at different energies, i.e., different
values of the Mandelstam variable s, we obtain a
collection of points representing the zeros in the
3-dimensional space (s, Ref, Imt). It is easy to
connect these points in order to produce the tra-
jectories followed by the zeros when the energy is
varied (see Fig. 8). The zeros of Z' (dots) and
those of Z (circles) must be treated separately,
except for the values of cos8 around +1 where
they become confused. They have been determined
mainly from CERN-Holland data' and ours because
of the experimental discrepancies mentioned

earlier. However, because of the, lack of data be-
tween s = 3.5 and s =4.1 GeV', we have used data
from other experiments in their "amalgamated"
form, obtained as described. in Ref. 14. The ad-
vantage of this amalgamation method, besides the
fact that it used the world's data, is that it yields
a smooth energy dependence (it fits implicitly
segments of the zero trajectories). We have
treated separately the backward region (cose
&-0.9), for which we had good differential cross
sections" but no polarization data. Around 1 GeV/
c there is a backward dip which can be parameter-
ized locally in the following form: do/dv A(cos8
—z,), with z, =-1—e. Providing e is small, it
can be shown that fitting the value of z, localizes
the corresponding zero z of the transverse cross
section in the cos8 plane through the relation

fr+I /=e

Equation (7) tells us that the backward zero E is
at a given smaL distance & from the backward
edge of the physical region or, equivalently, that
the projection of F on the (s, Ref) plane of Fig.
8(a) is situated on a segment centered on this
edge (see the triangles). This shows that the F
trajectory is entering the physical region around
s =3.0 Ge7, almost tangentially to its edge.

C. Study of the trajectories of zeros

1. The real parts

Figure 8(a) suggests a very simple empirical
pattern for the projection of the zero trajectories
on the real Mandelstam plane (Res, Ret): They
never cross each other and therefore their energy
continuation is unambiguous. However, there is a
slight contradiction between our zeros and those
which have been reconstructed" from the recent
Saclay phase shifts": Contrary to ours, the two
central zero trajectories B' and D' [see dotted
lines on Fig. 8(a)] cross each other for s =3.1
GeV/c'. This corresponds to 1180 MeV/c, the
first momentum for which we have measured the
polarization parameter. Our data, like CERN-
Holland's, are not compatible with a trajectory
crossing at this energy. Qualitatively, two zeros
with the same abscissa in the complex cos8 plane
yield a single minimum of the Z' curve instead of
two distinct ones (see Fig. 7) and therefore a sin-
gle narrow peak of the polarization parameter in-
stead of the broad peak of Table I. In order to
solve by continuity the ambiguities of the ampli-
tude analysis at all energies, it is important to
know whether these two zero trajectories cross
each other or not. Ari error would affect the de-
termination of the amplitude not only locally near
s = 3.1 GeV', but also for all higher energies.
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This means that a locaL measurement of do/d&u and
P (for momenta around 1200 MeV/c and angles
defined by -0.4& cosa, &+0.5), coupled with the
fact that zeros are local parameters, may yield
important information concerning the amplitude
globally.
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2. The imaginary parts

The imaginary parts of our zeros have an un-
known sign [see Etl. (6b)]; therefore we have plot-
ted only their absolute value in Fig. 8(b) (top).
These are the well-known discrete ambiguities of
the amplitude analysis that we shall not try to
solve absolutely, but only relative to our lowest
energy so 2 5 GeV'. We shall fix a positive sign
fear the imaginary part at s =s, . If there is a
"critical point" C, defined by Imt =0, the trajec-
tory crosses the physical region (see n in Fig. 9);
otherwise Imt stays positive as in the case of P.
When the'initial assignment of the sign of Imt is
wrong, the true trajectories n' or P'are the sym-
metric counterparts of n or P with respect to the

real axis. It is crucial to determine the "critical
points" along each trajectory. This can be done by
using two criteria. Firstly, for each critical
point there must be a minimum in the ~lmt ~-ver-.
sus-s curve for which Imt =0. Secondly, this min-
imum must be a branch point where the slope
changes its sign abruptly, instead of being a para-
bolic minimum where the slope becomes null
gently. In the m p elastic scattering we have seen
two possible critical points in the region between
s =2.5 and s = 3.5 Ge&', one on the A trajectory,
one on the B trajectory, and non+ on the others.
But our two criteria are not easy to apply due to
the following experimental errors:

(1) The imaginary parts of zeros are very sen-
sitive to the systematic errors mentioned in Sec.
VA; the data of Ref. 10, characterized by a lower
absolute value of the polarization than CERN-
Holland's' and ours, yield much larger imaginary
parts of zeros. But even a realistic +8/p uncer-
tainty in the target polarization transforms into a
+30/q uncertainty in the imaginary part of the 8
trajectory at 1250 MeV/c.

(2) The simultaneous presence of two nearby
"critical" zeros around s =3 GeV' and cos8 =0.4
yields a very low differential cross section and a
rapidly varying polarization, as seen in Fig. V.
Therefore. these data are locally very sensitive to
the background subtraction and to the binning er-
rors, in a way which cannot be evaluated in ab-
sA"octo.

(3) The statistical errors affecting the determin-
ation of zeros are not Gaussian, an effect pre-
dicted in Ref. 13 and seen in Fig. 10, which shows
the distribution of the "A" zero obtained at 1055
MeV/c (s =2.9 GeV'), when we give to the data
some random fluctuations around their measured
values compatible with the experimental errors.
In practice we have computed such plots at dif-
ferent energies, and the error bars drawn in Figs.
8(a), 8(b) represent a 66/o confidence interval
(containing two-thirds of the projected points).

FIG. 8. The zeros of the x p transversity amplitudes
E' and E, respectively, represented by dots $ and cir-
cles g, are projected on the two planes (s, Bet) and
(s, ( Imt (), where s and t are the conventional Mandel-

' stam variables. They have been determined from CEHN-
.Holland data alone first, then merged with our new data
(squares Q), the error bars are computed by a method
which works even in the non-Gaussian case. They are
dashed when the local data are not reliable. A special
analysis locates the backward zero (triangles $). The
six trajectories, A to I', generated by these zeros are
indicated in the region where CERN-Holland data are
lacking by a plain curve obtained from the other experi-
ments via the "amalgamation" realized by the Carnegie-
LBL group (Ref. 14).
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FIG. 9. Two cases, presented schematically, in which
the projections of a zero trajectory on the (s, [Imt ()
plane have a minimum near zero, as A and B do in Pig.
8. In the ease o. (or cy') there is a true critical point.
The slope criterion can be used to distinguish between
e and P, or between the corresponding cases o.' and P'.
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D. The absolute calibr'ation of the polarizations

The critical points introduced previously. provide
us with an absolute calibration of the polarization
parameter, because, at any points where the zero
trajectories. . .cross the physical region, the trans-
verse crqss section Z' (or Z ) is null, implying
that the polarization parameter reaches an abso-
lute minimum (or maximum) equal to -1 (or + 1).

The same calibration points have been intro-
duced differently in Ref. 1V as points where the
ratio g' of the spin-flip amplitude g to the spin-
nonf lip amplitude f is equal to ai. The "inherent
flaw" of. the approach, as.noted by the authors, is
relying on a previous determination of f and g
from the experimental data. Our study of critical

y ~

imaginary
1

Lobe

Real Lobes

4Q

~«gaafgbdi w

COS Q
45

FIG. 10. The distribution of points observed here
represents the statistical dispersion of the "A" zero
within the complex cos8 plane at 1055 MeV/c. If the
usu'al linearization method was valid, this distribution
would be the 2-dimensional Gaussian characterized by
the 1-standard-deviation ellipse shown here (dashed
line). On the contrary, the actual distribution is made
of a pair of imaginary conjugated lobes (the lower one
is not shown) corresponding to a pair of complex-con-
jugate zeros of the tra xsverse cross section Z (0), and
the real lobes generated by a pair of real zeros of Z".
In this second case the estimated position of the zero of
the amplitude is taken to be the average of the two real
zeros of Z, which is distributed on the real axis be-
tween the two real lobes.

But we are not entitled to apply a X' fit to such non-
Gaussian points.

In spite of all these experimental uncertainties,
we consider that the minimum observed for both
A and 8 trajectories around s =3 GeV' in tlie lmt j-
versus-:s plot of Fig. 8(b) satisffes our first cri:—
terion of a critical point. Our second criterion
cannot-be fully applied because of insufficient'data,
although we do see-an indication of a slope rever-
sal for-the A. trajectory at s =2.9 GeV .

points tells us that this attitude is particularly
dangerous because this is exactly the place where
two different sets of amplitudes are perfectly am-
biguous. This danger is hidden in an energy-de-
pendent phase-. shift analysis, while an energy-in-
dependent analysis has to choose clearly between
the n-type and the P-type solution of Fig 9.. We
have found previously an objective criterion which
is not much affected by the uncertainty affecting
the calibration of the polarization: An abrupt re-
versal of slope observed in the Imt -versus-s
plot is sufficient to establish the existence of a
critical point. A large slope, as in the case of
trajectory A compared to B, is favorable for de- .

tecting the effect.
A target, calibrated at a critical point, can. be

operated at various energies with a negligible
drift of the calibration constant as seen in Sec.
IVA i. In the case of the m p elastic scattering,
the assumption of the existence of a critical point
on the A. trajectory around 1050 MeV/c should al-
low us to improve considerably the precision of
the experimental data shown in Fig. 7, because it
makes possible an absolute calibration of the tar-
get polarization. We would need ten polarization
points, instead of two, for cos8 between 0.3 and
0.5 in order to see the successive minimum and
maximum of P (cosa), each of them with a pre-
cision of, let us say, +0.03 if we want an estima-
tion of the calibration constant to +3%. This
means, of course, using a much larger number of
incoming pions than in previous experiments.

VI. CONCLUSION

We have measured the polarization parameter
of elastic m P scattering in a region where two
major previous experiments had yielded discrepant
data. This fact was attributed to the errors af-
fecting the calibration of the target. Our results
support the higher absolute values of the polariza-
tion parameter. As the sources of systematic er-
rors are the same for all experiments, we have
envisaged an absolute calibration of the target
based on the existence of critical points around
1050 MeV/c, where the polarization parameter
equals 1. W'e have shown that this is feasible,
although it requires a sophistication of the present
experimental methods.

The importance of improving the quality of the
polarization data has appeared to us when studying
the discrete ambiguities affecting the energy con-
tinuation of the amplitudes. It is not yet possible
to solve definitely the ambiguities associated with
the existence of critical points near 1050 MeV/c.
The ambiguity associated with a possible trajectory
crossing at 1180 MeV/c seems to be solved. Our
solution is opposite to the one retained in a recent



E. BARREI ET et ul.

phase-shift analysis. " From a more technical
point of view, we have met the initial objective of
the experiment concerning the determination of the
distribution of polarization within the target (uni-
form to +7%%uc) and the reliability of the polarization
NMR monitor.

An important by-product of this analysis is the
fast method for reconstructing particle trajectories
and fitting the elastic events, which opens the way
to future high-statistics experiments with a very
low computing cost per event.
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