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The general problem of introducing second-class currents into renormalizable field theory is considered. (a) A
suitable definition of first- and second-class currents is given for arbitrary integer isospin. (b) The general

construction of these currents from fermion and boson fields in renormalizable theories is given. Second-class

currents constructed from fermion fields require the existence of two distinct isomultiplets of fermion fields

with all of the same quantum numbers except isospin. (c) It is shown that these second-class currents can

emerge from gauge theories of the weak interactions. (d) However, the requirement that these currents

contribute to P decay places severe restrictions on the field theory of the strong interactions. Only two classes

of theories allow nonzero P-decay matrix elements: those which include strongly coupled scalar or
pseudoscalar fields, and gauge theories for which the weak and strong gauge groups do not commute. In the

latter case the physical hadrons cannot be singlets if the gauge group is not broken. Other topics considered

include second-class neutral currents, the divergences of second-class currents, mechanisms such as isospin

breaking that might mimic the effects of second-class currents, the phenomenology of first- and second-class

currents of arbitrary isospin, the role of time-reversal violation in the weak interactions, and the role of
anomalous phases associated with P, C, and T transformations.

I. INTRODUCTION

Two recent experiments" have suggested the
existence of large second-class current' effects
in P decay. These effects (a) are much la.rger than
would be expected from electromagnetic correc-
tions to first-class currents, and (b) cannot be
due entirely to nuclear physics complications.
Therefore, if the results of Calaprice et al. ' and
Sugimoto et al. ' are verified, it will almost cer-
tainly be necessary to introduce explicit second-
class currents into the weak Lagrangian (alternate
possibilities are discussed below).

The purpose of this article is to explore the issue
of how and whether second-class currents can be
introduced into renormalizable field theory. The
following questions a,re considered: (a.) How are
second class currents constructed? (b) Can these
currents originate in gauge theories of the weak
interactions? (c) What are the conditions that
must be satisfied by the field theory of the strong
interactions in order for these currents to con-
tribute to P decay ~

By renormalizable field theory we mean theories
involving fundamental fields of spin 0, &, and 1 on-
ly. Spin-1 fields must be gauge bosons, and cur-
rents must be of the form that can emerge from
weak-interaction gauge theories.

The results are disquieting. We find that there
are only two classes of field theories which allow
second-cia, ss current effects in P decay: (1) the-
ories involving strongly interacting elementary
scalar or pseudoscalar fields (these could be in
addition to quark and gauge fields), and (2) gauge
theories of the strong interactions under which

the physical hadron states are not singlets and
for which the weak and strong gauge groups do
not commute. (The first restriction could be re-
laxed if the strong gauge symmetry is dynamically
broken. )

Both types of theory are in strong conflict vith
the now popular standard model. ~ In the standard
model the strong interactions are given entirely
by an unbroken gauge theory of quarks and gluons
which commutes with the weak gauge group and
under which the physical hadrons are singlets.
(The addition of spin-0 particles to the strong
gauge theory endangers' asymptotic freedom and
leads' to parity violation to order o..) Therefore,
second-class currents, if really present, will
drastically disrupt our picture of particle physics.

The plan and detailed summary of this paper are
as follows. Section II is mainly devoted to back-
ground material. We define first- and second-
class currents for arbitrary integer isospin. In-
cluded are discussions of the relation of the G-
parity and charge-symmetry definitions of second-
class currents, and the possibility of time-rever-
sal violation in the weak interactions. The phe-
nomenological implications of first- and second-
class currents for arbitrary integer isospin are
reviewed, and second-class neutral currents are
discussed. Most of these results have appeared
previously in the literature, at least implicitly.
A brief review is also given of experimental re-
sults and of phenomenological models.

Section III is devoted to currents constructed
from fermion fields with nonderivative couplings. '
We show that the only possible second-class cur-
rents in this class are generalizations of models
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that have been proposed by Weinberg, ' by Maiani, '
and by Holstein and Treiman. ' The simplest ex-
ample in this class (that of Holstein and Treiman)
involves the second-class charge-raising current

where g' and g' refer to two distinct isodoublets
of fermion fields (e.g. quarks) and I'„=y or y„y'
We show that second-class fermion currents must
always involve two distinct isomultiplets of fer-
mion fields arranged in an antisymmetric fashion
similar to (1.1). The next major point concerns
whether currents such as (1.1) can emerge from
weak-interaction gauge theories. The conclusion,
illustrated by several examples, is that these
currents can easily be generated in gauge theories.

Currents such as (1.1) present obvious phenom-
enological difficulties, such as probably leading
to a doubling of the number of physical hadrons. "
In the last part of Sec. III we show that the situa-
tion is in fact much worse: Currents generalized
from (1.1) do not even contribute to P decay for a
wide class of field theories of the strong inter-
actions (including any generalization of the stan-
dard model). Basically, the issue is that the ma-
trix element of a current such as (1.1}between
states which are members of the same isomulti-
plet will vanish unless g' and g' carry all of the
same quantum numbers except isospin. This in
turn requires that there be mixing between the
fields, which can come about either by strongly
coupled spin-0 fields or by spin-1 gauge fields.
In the latter case the mixing can only occur if the
current is a nonsinglet under the strong gauge
group; hence, the weak and strong gauge groups
would not commute, and the external hadron states
would have to be nonsinglets under the strong gauge
group. This possibility therefore creates enor-
mous difficulties, but it does eliminate the need
for extra quarks and for spin-0 fields. The various
possibilities are all discussed and illustrated in
detail, as are such complications as spontaneous
and dynamical symmetry breaking. The diver-
gences of second-class currents are also dis-
cussed.

Section IV deals with currents constructed from
strongly coupled elementary boson fields. Here
the requirement of renormalizability implies that
only currents constructed from one or two spin-0
fields need be considered (currents involving gauge
fields are higher order in the weak coupling). Both
vector and axial-vector second-class currents can
be constructed from products of two spin-0 fields.
As in the fermion case, two distinct isomultiplets
are required. Second-class currents can also be
constructed from the derivative of a single iso-
multiplet of spin-0 fields, but the contribution of

these currents to P decay is small. Again, all
of the currents can emerge from weak-interaction
gauge theories. The matrix elements of these
boson currents present little difficulty beyond the
requirement that the spin-0 fields be strongly
coupled to hadrons. The advantage to boson cur-
rents is that they eliminate the need to introduce
extra quarks.

Section V is mainly devoted to a short discussion
of alternate mechanisms that might mimic the ef-
fects of second-class currents in renormalizable
theories. The principal possibilities are (1) the
effect of isospin-violating corrections to first-
class current matrix elements, (2) a failure of the
conserved vector current (CVC) hypothesis, and

(2) the effects of Higgs scalar fields. It will be ar-
gued that none of these mechanisms provide a com-
fortable alternative to second-class currents.

Throughout this paper we assume that the strong
interactions are exactly invariant under the dis-
crete asymmetries P, C, and T and under isospin.
(The effect of a small isospin-violating compon-
ent of the strong interactions is considered along
with electromagnetic corrections in Sec. V.)

II. GENERAL PROPERTIES OF SECOND-CLASS CURRENTS

A. Definitions

Let J'„represent a vector or axial-vector cur-
rent of isospinI and z component m. (We con-
sider only the case in which I is an integer. }

For currents which have definite transformation
properties under the discrete symmetries P, C,
and T we have

PJ'„„(x)P ' = qp J"(x„),
W ..(x}T ' = q,J'(x,),
cz'..(x)c-' = —q, J'..(x)',

(2.1)

where qp, qr, and 7}c are phase factors, x„=(t,
-x), xr = (-t, x), and our metric is g~= -g«

g22 g33 1. For vector currents q~ = + 1 and
for axial-vector currents qp = -1. According to
the TCP theorem" we can always choose g~gcg~
=+ 1 for any current which couples to a spin-1field.

Under an isospin mirror transformation (a ro-
tation by w around the y axis), J transforms as

RiJ P=(-1) ' J (2 2)

where R -=exp(-ill, ) The distinc. tion between first-
and second-class currents involves the relation be-
tween J' „and J"„,which also carries isospin
I, =-m. We will define the currents J', and J „
(the isospin label I is suppressed for clarity) to
be first or second class, respectively, according
to12
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R'J',R = s (-1)'@*J" (2.3)

R~J'„R= +r)~J t„.
Qf course, the ordinary isovector current

(2.4)

Definition (2.3) agrees with that of Pais" but dif-
fers from that of Beg and Bernstein" by a factor
( 1)i". The reason for incorporating the q~r in
(2.3) will become clear below. For the most in-
teresting case of I = 1, (2.3) becomes"

phase is+1. In terms of J' the Lagrangian be-
comes

2 =ge 8&/2W'J"
mp &

(2.10)

so the time-reversal violation is manifested by
the explicit factor of exp(-i8r/2). The first- or
second-class nature of J', is not changed by an
overall phase transformation because of the pres-
ence of q~r in (2.3).

i.-=g,r.(1+r') 0„ (2.5)

GJ'„,G '=+(-1)'7iPJ', , (2 6)

where the G-parity operator is defined as G = CR'
=R~C. It is easy to verify that (2.3) and (2.6) are
equivalent as long as the TCP theorem holds. In
the special case of I = 1, (2.6) reads

is first class with qr =+ 1 (g~ and g„can represent
either quark or nucleon fields).

An alternative definition of first- and second-
class currents is

B. Implications

The first- or second-class nature of a weak cur-
rent defines the relation' between mirror pairs of
processes such as Z'-Ae'v(v), which for charged
b,S= 0 transitions are governed by the matrix ele-
ments of J~, and J „respectively [of course,
explicit phase factors such as in (2.10) must also
be conjugated]. From the definition (2.3) it is ap-
parent that the relation is

(2.11)
GV G =+V

GA', G '=+A'„,
(2 7)

where

=gW" J'~, (2.8)

where g is real. Then if q~41, the coupling in
(2.8) will violate time-reversal invariance, pro-
vided of course that W' also couples to other cur-
rents Ie.g. the ordinary lepton currents or the had-
ron current in (2.5)] with qr =+ 1. In this case one
can define a new current

J/y —
eight

/2 Jk
mif mal, ~ (2.9)

where exp(i 8r) —= qr, so that the time-reversal
phase of J' is q~=+1. Thus, for example, if q~
= -1 we have J,' = iJ„. In the following sections it
will often prove convenient to perform this type
of phase transformation so that the time-reversal

where V and A represent vector and axial-vector
currents, respectively. Equations (2.7) are Wein-
berg's original definition' of first- and second-
class currents.

It is worth digressing briefly at this point to con-
sider time-reversal violation in the weak inter-
actions. Suppose the term in the Lagrangian rep-
resenting the coupling of a current J'„ to an inter-
mediate-boson field W„ is

(2.12)

is the isospin mirror of
i o)

The tightest restriction occurs when the states
cy and P are members of the same isomultiplet
with isospin I . In this case we can use the Wig-
ner-Eckart theorem to write

(I~m, Im I I~m&).
(mz fbi J Im, siK;)=

~+

x(siK~II J; II s,K,), (2.13)

where m, s, and K refer to the z components of
isospin, the spin projection, and the momentum
of the state, (I m, Im iI,mz) is a Clebsch Gordan
coefficient, and (s&K&IIJ;lls,.K,.) is the reduced ma, —

trix element. Application of (2.11) through (2.13)
leads to

(s~Kqll J', lls, K,)=+q~r(s, K;IIJ;.IIs.~K~)', . (2.14)

which is true for any I and I Equation (2..14) is
equivalent to a result first written down for gen-
eral isospin by B6g and Bernstein. "

The most interesting applications of (2.14) occur
when z and p carry ordinary spin 2 or spin 0, but
arbitrary isospin. In the spin-& case we can write
for the reduced matrix element

V P

& rgll ll; &g= (rg. fi 'rg. .Z
fi gg" f; r„r'gi ~ ..g

r'gi ~ g'r'gi)"; (2.15)
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where q„=(K, -K~), . Application of (2.14) to
(2.15), combined with the time-reversal trans-
formation (2.1), yields

fi =f2
= 8'i = k+s =fs =g 2

= 0 i (2.16)

C. Experiments and models

According to (2.11) the interference between
first- and second-class currents (e.g. with I = 1
and 7lr = 1) can lead to differences in the ft values
for mirror pairs of decays, such as "B-"Cev

while the remaining form factors have the phase
(q~r)'~'. Hence, the form factors f„f„g„and
g3 are associated only with fir st- class currents,
while f, and g, are associated with second-class
currents. We reiterate that this holds for any I
and I and any value for q~. Of course, small
violations of these results can be attributed to
isospin breaking.

Only vector currents have nonzero matrix ele-
ments between spin-0 states in the same isomulti-
plet. We define the form factors f=, in this cas. e
by

(Kill V;IIK;) =f;(Kq+K, ), +f;(Kq-K;), . (2.17)

The combination of (2.14) and (2.1} implies

(2.18)

An additional restriction results if the external
mesons are self-conjugate (i.e. , the charge con-
jugate of the state is a member of the same iso-
multiplet), as is the case for pion or 7} states.
Then the external states will have definite G parity
and the matrix element will vanish unless the cur-
rent has even G parity. Comparing Eqs. (2.6) and
(2.18) we find that only f, is nonzero when I is
even, while only f; is nonzero for l odd.

It has been emphasized recently"'" that second-
class neutral (m = 0) currents cannot be easily
coupled to the weak interactions. The problem
in this case is that from (2.2) and (2.3)

(2.19)

If J0 is to be coupled to a He rmitian intermediate
boson with a, real coupling constant, as in (2.8),
then Hermiticity requires qr = -1 for a neutral
second-class current. Thus, if W" also couples
to ordinary neutral lepton currents with g~=+ 1,
such as g„y,(1+y')g„, the second-cia, ss current
must be accompanied by T violation. "

It is also interesting to note that for neutral cur-
rents, the form-factor conditions (2.16} and (2.18)
can be obtained directly from the Hermiticity con-
dition (2.19) without utilizing isospin arguments.
That is, (2.16) and (2.18) remain true even in the
presence of electromagnetic corrections.

and "N -"Ce v. Unfortunately, differences can
also be generated"" by meson-exchange currents,
off-mass-shell effects, recoil corrections, etc.
As of now there is no definitive evidence for sec-
ond-class currents from the ft values. "

Detailed measurements of angular correlations
and asymmetries are sensitive" tests of the exis-
tence of time-reversal-invariant second-class
axial-vector currents and are relatively free of
nuclear physics ambiguities. Calaprice et al.
have recently studied the positron asymmetry in
the analog decay "Ne -"Fe'v. Sugimoto et al. '
have made similar measurements for the mirror
pair B C and N C. Both experj. ments j.n-
dicate the presence of a second-class axial-vector
current term comparable in size to the weak-mag-
netism term. Alternatively, the second-class cur-
rent could be dispensed with in each case if the
weak-magnetism form factors are nearly twice
as large as predicted by the conserved-vector-
current (CVC) hypothesis.

On the other hand, experiments by Tribble and
Garvey" and by Wilkinson and Alburger" on the
mass-8 system show no sign of second-cIass ef-
fects. '4

These experiments have been analyzed"" in
terms of nuclear form factors"; hence, the need
for second-class currents is independent of the
validity of the impulse approximation. It is in-
teresting, however, to quote the values found by
Holstein and Treiman' for the induced tensor form
factor g, (0) in the impulse approximation (assum-
ing CVC}: g,(0) =(8+3)g„ for "Ne, where g„
=—g, (0) =1.23; g,(0) =(3.5+1)g„ for the mass-12
system; g, (0) = (0.5 +0.8)g„ for the mass-8 system.
Delorme and Rho" have emphasized that the im-
pulse approximation is not reliable for these types
of effects. Whether corrections to the impulse
approximation can account for the discrepancy be-
tween the values of g, (0) obtained from different
decays has not been settled. "

To complicate matters, Calaprice and Holstein"
have recently reanalyzed the famous Lee, Mo, and
Wu experiment" which tested CVC. Their anal-
ysis suggests that CVC is violated, presumably by
a second-class vector current contribution to weak
magnetism (which would not show up in the impulse
approximation}. We comment on CVC violation in
Sec. V.

The experimental situation is therefore very
confused, and further experiments are urgently
necessary. A number of phenomenological mod-
els" of second-class currents have been pro-
posed. Most are generalizations of Lipkin's me-
son-exchange current" A, = co„m. The most de-
tailed model for particle reactions is that of Chen
et al." Another possibility involves fermion
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fields with derivative couplings, " such as

&, = s"(4,c.,y'0„) . (2.20)

and

O~ -=P (Im ~i,m, j,m, )c,(-1) ~P I'„g'
Kubodera, Delorme, and Rho" have proposed a
detailed model for incorporating nuclear physics
effects which utilizes both mechanisms. Renor-
malizable models are described in the next sec-
tion.

III. RENORMALIZABLE CURRENTS CONSTRUCTED
FROM FERMION FIELDS

A. Construction of currents

If one arranges the strongly interacting spin-&
fields of a theory into an n-component column vec-
tor g, then a renormalizable spin-1 current must
be of the form

Z, = Q, (T, +y'T, )t}, (3.1)

where T, and T, are n x n matrices in the space
of internal indices of the fermion fields. The as-
sumption that the strong interactions are invariant
under isospin guarantees that the fermion fields
can be grouped into irreducible representations.
We choose the phases of an isomultiplet of (a.d-
joint) fields so that P transforms as a spherical
tensor operator with isospin I, and z component
m. Hence, the conjugate fields

tj'(m} = c,(-1) g' (3.2)

also transform as a tensor operator with I,=+ m,
where e& is 1 or i when g, is an integer or half-
integer, respectively, and

(3.3)

We now consider renormalizable currents con-
structed from elementary spin-& fields. Currents
constructed from spin-0 and spin-1 fie'ds will be
discussed in the next section. Section IIIA deals
with how first- and second-class currents are con-
structed from the strongly interacting fields of the
theory. Section III B is concerned with whether
these currents can emerge from gauge theories of
the weak interactions, and Sec. IIIC treats the con-
straints placed on the field theory of the strong
interactions by the requirement that the matrix
elements of the second-class currents be non-
vanishing. The divergences of second-class cur-
rents are discussed in Sec. IIID.

mama

(3.5)

POmfj. P —~Pa~Pb~P I'

CO C = -q*,r) q 0

TOm T ' = gz agrqOm

(3.7)

where g „g~„and q~, are the intrinsic phases
of the fields, qP~ = g« ——+1 for I „=y~ or y„y„
respectively, and where the appropriate trans-
formations of the space-time coordinates are im-
plied. Similar equations hold for 0, except that

~Pa~Pa is replaced by qPapP» etc.
Define the angle 0~ by

icy =~r ~r~ (3.8}

so that the currents exp(ier/2)O~ and

exp( —ier(2)O' „both possess the time-reversal
phase qr =1 [Eq. (2.1)]. Finally, we define the
new currents J' „ to be

J+I —et6 pl20I ~ e-i8z /20I
mg mg mg (3.9)

It is easily verified that J' are first and second
class, respectively, according to the definition
(2.3). Both j' and J transform under time re-
versal according to (2.1) with qr =+ 1; the form
factors associated with their matrix elements are
therefore real. (As discussed in the preceding
section, time-reversal violation can be introduced
into the weak interactions by multiplying J' by an
overall complex factor. This does not alter the
first- or second-class nature of the current. ) In
most cases, the time-reversal phases satisfy
q*,q, = + 1. Then,

(3.10)

where I', =y, or y,y, . In the case that g' and g~

represent the same isomultiplet (a = b) then O~,
=0 „. Under Hermitian conjugation, 0 and 0 are
taken into each other:

O".„=( 1) O'., (3.6)

and similarly for O~. Hence, first- and second-
class currents will be linear combinations of 0 and

0. Before making the construction, let us note
the P, C, and T transformation properties of 0
and 0,

It is now straightforward to construct currents
of definite integral isospin g from two isomulti-
plets P and g' (which may or may not be distinct).
The two possibilities are

for q~,q» ——+1, while

for 'g~ x)~~ = -i.
(3.11}

0—:Q (Im ~I,m, I m, )c,(il} ~y' F p', (3.4)
mam j}

For those theories in which qP*,q» is real the
currents J"„have definite P and C (and therefore
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G parity) transformation properties. From (3.7)
one can verify that J"„satisfy the alternate G-par-
ity definition of first- and second-class currents
given in (2.6).

In the special case that the two isomultiplets of
fields are the same (a= 5) we have q~~,q» = 1 and
O', =O', . Hence, from (3.10) we see that J =0
in this case. Therefore, two distinct isomulti-
plets of fields are required to construct a second-
class current of any isospin.

Several examples are now in order. The sim-
plest case is I =I,=I, =O, with g~,q»=+1. Then

(,I (
g=

(o„f g„'cos8+ g
~ sin8)

' (3.17)

= -(;I',g '„cos8 —& sin 8((~I',g „'+ Tt, ~Z',( '„)

Finally, take g" and -P„'sin8+ |t}'„cos0to be sin-
glets under the weak SU(2) (one can restrict all of
these considerations to the left-handed projections
of the fields). The weak charge raising current
associated with 0 is then

(3.12) --, sin8(( ~I',('„—/~I' g '„), (3.18)

The simplest isovector charge-raising current
(J= m = 1) is constructed from two isodoublets (I,
=I, = —,). Then

(3.13)

which is a sum of first- and second-class isovec-
tor currents. The neutral weak current is

- 1j„=~(o,I'„v~ —o„I',o„)

z;„= f(q;r.g'„+q,'r.y„) (3.15)

This example was first given by Maiani, ' except
he omitted the factor i so that J would violate CP
(and T) invariance. " A final example, due to
Weinberg, ' involves I,= 1, I~

= O. We denote the
isovector fields by g& and the isoscalar field by

Then, for q~, q»=+1, the currents are

(3.16)

where P~ and |t}„'are the m, = + & components of the
isodoublet. If thea and b fields have the same time
reversal phase,

(3.14)

which is essentially the example given recently by
Holstein and Treiman. ' Qn the other hand, for
g~,g» = -1 we have

=
~& [$;F,t};—( „'I',g '„cos'8 —(„'I',g „'sin'8

—sin8 cos8(g „'I,g „"+g „'I',( '„) j, (3.19)

(fo')

(Y„) (-g '„sin8+ g „'cos8)
(3.20)

and o both transform as doublets. The weak
charged current is now

which is a linear combination of first-class I = 0
andI=1 currents. The absence of second-class
currents illustrates the remarks in the last sec-
tion that time-reversal-invariant neutral second-
class currents cannot couple to the same gauge
field as first-class currents.

(b) In the second example, we let

B. Origin in weak gauge theories

It is straightforward to devise weak-interaction
gauge theory models which generate both first- and
second-class currents. A few examples, based on
the SU(2) x U(1) group, " should illustrate the pro-
cedure.

The idea is to utilize the fact that the weak in-
teractions violate isospin, so that the representa-
tion content of the fields under the weak SU(2) group
and the strong isospin group need not be the same.

Let us first consider four examples of time-re-
versal-invariant weak-interaction models.

(a.} Let g
' and g

~ represent two isodoublets of
fields with g~,q»=+ 1. Let o, a doublet of field
operators under the weak SU(2} group, be related
to P' and g' by

= -P~I',( '„+ g,'I',g „') cos 8

-(/~I' g~ —/~I'P'„} sin8; (3.21)

1
jo,= ~ (0 F,p ' —0 p'„0 '„)

1
+ ~&(q', r„q', —pr.q„'), (3.22)

which is a first-class isovector current.
(c) Suppose $&„/&0, and Ttj}&- constitute an iso-

triplet and let 5~ be an isosinglet. Suppose that
under the weak interactions

the second term is second class. The neutral cur-
rent is
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(') (
p=I p, = $&ocos8+ g~ sin8 (3.23)

(o„p (ip „'cose+ itlt „' sine) (3.28)

transforms as a triplet, while -)&0 sin8+ g~ cos8
transforms as a weak singlet. The charged weak
current is then

1
~& (p r+0+ porp )-

1
= ~ ((j,,r„q,.+ q, rO,y, -) cose

1
+ ~(q, .rp, + q,r.y, -) sine. (3.24)

The first term is a first-class isovector and the
second term is a second-class isovector [Eq.
(3.16)].

(d) One can also adopt more intricate schemes,
such as incorporating |t)& and tt)~ into weak doublets.
That is, let

is a weak doublet, while P~ andi/„'sin8+ P'„cos8
are weak singlets (note the factors of i). In this
case the weak charged current is

j.„=-g~r,g'„cose+i (g;r,g'„+&~re)t„')

(3.29)

sine cose(T(~r„g '„—fr„'rp ~), (3.30)

The first term is first class and even under time
reversal. For q~,q»=+ 1, the second and third
terms are first and second class, respectively,
and violate T invariance. For q~,q»= -1, they are
second and first class, respectively, and are
time-reversal-invariant.

The a-b interference term in the neutral current
1s

(3.25)

(3.26)

transform as weak doublets. The weak current
generated is

which is a linear combination of I = 0 and I = 1. For
q~,g»=+ 1 it is second class and T violating while
for q~p»-—-1 it is first class and invariant under
T [cf. Eq. (2.25)].

It should be clear from these examples that by
choosing representations judiciously, one generate
both first- and second-class currents, of any iso-
spin, and currents that are either invariant or not
invariant under time reversal.

C. Matrix elements of currents

(3.27)

The first term is a linear combination of I =1 and
I =2 first-class currents, the second term is a
second-class isovector, and the third term is a
first-class isovector.

We have thus far assumed that the fields have the
same intrinsic time-reversal phase. One can re-
consider the examples in the case in which q~,g»

1. In example (a), the second and third terms
in the charged current (3.18) would now be second
and first class, respectively, and these terms
would violate time-reversal invariance in the weak
interactions because they lack a factor of i [see
(3.15)]. The last term in the current (3.19) would
be a time-reversal-violating second-class neutral
current, which is in accord with the remarks in the
preceding section.

Finally, let us consider a final example in which
the strong isodoublets are arranged into weak mul-
tiplets as follows:

We have seen that it is relatively easy to con-
struct second-class currents and that these can
emerge from gauge theories of the weak interac-
tions. As we shall now see, however, the P-decay
matrix elements of these currents are zero for a
wide class of field theories of the strong interac-
tions.

Consider the matrix element M'„of the first- or
second-class currents J'„between states a and P
which are members of the same isomultiplet:

M = Q I
t ~ I

a'). (3.31)

For example, M'„might represent the matrix ele-
ment of an isovector current between neutron and
proton states, between "Ne and "F, or between
other nuclear states in the impulse approximation.
However, most of the considerations are easily
generalized to other transitions that do not involve
the creation of new quantum numbers, such as the
hadronic matrix elements relevant to p decay (be-
yond the impulse approximation), to Z'- Ae'v(T),
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or to vN- p, +N+pions. Also, the arguments are
independent of whether the physical states are
bound states or "elementary particle" states. Iso-
spin indices will generally be suppressed.

The basic issue is that since the states a and p
in (3.31) are members of the same isomultiplet,
they must have all of the same quantum numbers
(except f,). Therefore, I"„will be nonzero only
in those theories for which J'„carries no conserved
quantum numbers other than isospin. However,
second-class currents must be constructed from
the bilinear combinations $'I'„tt) ~ and g~1 „g', where
a and b are different. 3~ Therefore, M'„will vanish
unless the fields tt)

' and (' carry all of the same
quantum numbers except isospin (they can, of
course, have different mass).

The interaction term in a renormalizable field
theory of the strong interactions involving the
fields g', f', and mesons will be of the form

g .g (yaFi@iy a+ q bFi~iq b

(a)

+ Ti'F'if 'i) b+ )~bF'i''g') +2 (3 32)

where the index i runs over all the spin-0 and spin-
1 boson fields of the theory, the matrices 1'„
j=1,. . . , 4 carryDirac, isospin, and Lorentz in-
dices, and 2 includes the couplings among the
mesons. A necessary condition for the fields p' and
tt)' to carry the same quantum numbers is that there
be mixing between them; that is, it is necessary
that some of the off-diagonal couplings I', and I'~,
as well as some of the diagonal couplings, 1,and
i'„be nonzero. If, on the other hand, there were
no off-diagonal couplings, then there would be con-
served quantum numbers N, and N, associated with
the a and b fields and M„would vanish.

For example, suppose there is only one scalar
field P in the theory. Then (3.32) becomes

For g3 0 0 there are nonzero diagrams contributing
to the matrix elements of g'P„g~ and /~I" tt)' be-
tween the elementary particle states associated
with the a field, such as those shown in Fig. 1(a).
Similarly, suppose ~ is a bound state of three
quarks (for example, two a quarks and one fi

quark). Then the matrix element (o
~

i( 'F,(t
'

~
o.)

will be nonzero if @3~0. A simple diagram is shown
in Fig. 1(b). Similar statements apply to TibF„i)1'.

On the other hand, if there were no mixing (g,
= 0) then the only nonzero matrix elements of
g'1 „P' would be those for which the initial state has
one more b quark and one fewer a quark than the
final state. Hence M„= 0 since states in the same
isomultiplet must have the same quark content

FIG. l. (a) Diagrams contributing to (a gbF„i) ~a) and

Q ) p F~ i)'~a) . (b) A diagram contributing to (n(7r'r, i)bIn),
where n is a bound state of three quarks. (c) A more
complicated contribution to (a gb F„gb~a).

(except for the quark-isospin indices).
Only strong-interaction theories possessing this

kind of mixing can have M„WO. Of course, the
form of the mixing can be more complicated than
in (3.32) and (3.33). Figure 1(c), for example, il-
lustrates a scheme in which the coupling between
(t
' and (t ' proceeds through a third isomultiplet g'.
Before proceeding, we mention that the mixing ef-

fects implied by I.agrangians such as (3.32) and

(3.33) are real. The mixing can only be rotated
away in the special case that the fermion mass ma-
trix commutes with the matrices that character-
ize the Vukawa couplings. Furthermore, there is
no reason to require that the mixing be a small
perturbation. In fact, the mixing must be large in
order to obtain a large value for M „.

Let us now catalog the various known renormal-
izable theories to determine those for which this
mixing is possible. We shall attempt to be sys-
tematic and not restrict ourselves to theories
which are realistic or currently popular.

(a) Pukka theories. There is no difficulty in
obtaining M „w 0 in theories involving fundamental
scalar or pseudoscalar fields. The Lagrangian in
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,(3.33) and Fig. 1 is a simple example (pseudoscalar
fields work just as well). Of course, such theo-
ries involve other serious problems, such as not
being asymptotically free. ' Also, if P' and g are
quark fields, such a theory would probably lead to
a doubling of the number of hadrons. (The two
types of hadrons would have the same quantum
numbers but different masses. )

An old-fashioned (nonquark) example in this
class, which at least avoids doubling the number
of hadrons, is a theory involving an octet of baryon
fields which couple to an octet of pseudoscalar-
meson fields. Then the matrix element

(3.34)

of the Weinberg current (3.16) between proton and
neutron states is nonzero. The lowest-order dia-
grams are shown in Fig. 2(a). It is amusing that
the two diagrams in Fig. 2(a) cancel in the SU(3)
limit, as can be verified by explicit computation.
In fact, one can show by SU(3) arguments that the
sum of all diagrams involving the exchange of
mesons across the weak vertex, as in Fig. 2(b),
also vanishes in the SU(3) limit. However, dia-
grams such as shown in Fig. 2(c) do not cancel be-

FIG. 2. (a) The lowest-order diagrams contributing to
(3.34). (b) The class of diagrams which cancel in the
SU(3) limit. (c) The type of diagram which survives in
the SU{3) limit.

cause of the momentum dependence of the strong
vertex function.

(b) Gauge O~eories. Suppose the strong inter-
actions are given by a gauge theory with gauge
group 6,. Also, let the weak-interaction gauge
group be 6 . Three distinctions must nom be
ma. de: Is G, broken (spontaneously, or dynam-
ically}'? Do G, and G commute'? Does G, com-
mute with the strong isospin group I ~ %e con-
sider first the popular view that 6, commutes
with both G and I.

[G„G ]= [G„I]I=0. In this case the overall
gauge theory G is a direct product of G, and G .
The weak current is therefore a singlet under G„
and a second-class weak current involves terms
such as

J' t ~
/CZAR

fbi + ~ ~
P

where isospin indices are still suppressed and the
omitted terms are those for which a and b are in-
terchanged. The index i is the strong gauge in-
dex. The strong gauge couplings do not mix the
a and b fields. Hence, AI, =O for this class of
theories.

One could, however, obtain M „+0 in hybrid the-
ories in which the gauge couplings are supple-
mented by Yukawa couplings. The simplest ex-
ample would be that in which the new spin-0 field
is a singlet under G,. In this case one would add
extra terms to the Lagrangian similar to those
in Eq. (3.33) except that terms such as Pg~ rep-
resent a contraction of the gauge indices. The
problem with such hybrid theories is that they
would probably not be asymptotica. lly free' and
would lead to parity violation' to order n. One
might hope that these problems and the problem
of doubling the number of hadrons might be les-
sened by making the Yukawa couplings very weak
or by making one of the quarks very massive.
This does not work, however. Explicit calcula-
tions at the one-loop level of Fig. 1(a) indicate
that the Yukawa couplings would have to be of order
unity and the quarks reasonably light in order to
account for the observed second-class effects."

Finally, neither spontaneous" (with Higgs bo-
sons) nor dynamical" (without Higgs bosons) sym-
metry breaking appreciably alters the situation
for this class of theories. Spontaneous symmetry
breaking will not induce mixing between g' and P'
unless the Higgs bosons themselves possess strong
off-diagonal Yukawa couplings (which reproduces
the hybrid theory above}. Dynamical symmetry
breaking could not lead to mixing unless the solu-
tions to the theory possess off-diagonal couplings
that were not present in the original Lagrangian.
This possibility is fascinating but far outside the
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realm of conventional thinking.
2. [G„G„]a0 but [G„I]=0. In this case, in

which the weak current is a nonsinglet under G„
one eliminates the need for extra quarks and for
spin-0 fields: The a and b labels can be strong
gauge group indices and the gauge fields provide
the mixing. However, enormous theoretical and
phenomenological difficulties are introduced. The
theoretical problem is that the noncommuting na-
ture of G, and G spoils renormalizability. That
is, the coupling of the weak and strong gauge fields
W„' and B' to fermions is

Z, =g„+PT' If'q+g, QqT Jf P,'(3 36)

where the fermion fields are arranged in a column
vector g, and the -weak and strong representation
matrices T' and T~ do not commute. Hence, the
weak-coupling terms are not invariant under G„
and vice versa, and renormalizability is spoiled.
It might be possible to save renormalizability if
both G, and G are subgroups of a larger gauge
group G, but it is not clear whether G could be
spontaneously broken down to an effective G, and
G theory.

Let us brush aside this difficulty and consider
the more immediate phenomenological problems.
First, suppose G, is not spontaneously or dynam-
ically broken. Suppressing isospin indices, a sec-
ond-class current will be of the form

J = g'I P~ —~/I' g' (3.37)

where a and 5 are unequal G, indices. " (One could
also let J, be a nonsinglet under G, with g' and g'
in different 6, multiplets, but this only compounds
the difficulties. ) Then, in order that M, e 0, we
require that (a) the external hadron states be non
singlets under G„and (b) J, not carry conserved
quantum numbers. For example, if G, is the SU(3)
color group" the physical hadrons would have to
be color nonsinglets. Since G, has been assumed
to be unbroken, this would imply the existence of
(unobserved) classes of degenerate new hadrons
carrying color quantum numbers.

Furthermore, J„could not carry conserved
quantum numbers. For example, if the quarks
were in a color triplet with g' and p(' being red
and white quarks, respectively, then J in (3.37)
would be a color-changing current and M „would
vanish. Of course, J„would have nonzero matrix
elements between degenerate hadron states with
different colors, but these states would not be in
the same isomultiplet. The distinction in (2.16) be-
tween first- and second-class form factors would
be lost and the matrix element would not interfere
with the ordinary (color-conserving) P-decay am-
plitude. The only way for J to conserve color

would be to put the quarks into higher-dimensional
representations. For example, one could arrange
the quarks in a color octet, with the Z,' and A,
members carrying color isospin 1 and 0, re-
spectively, and z component 0. Then

J- —
q

~~cI' y~c q&cZ' q~~c (3.38)

would be a color nonsinglet but would not carry
conserved color quantum numbers.

Now consider the case in which G, is spontan-
eously or dynamically broken. Because of the
symmetry breaking, the matrix element of J„ in
(3.38} can be nonzero even when the external states
start out as G, singlets. Hence, the problem of
introducing new classes of physical hadrons is
avoided. It is still necessary, however, that J„
not carry conserved quantum numbers.

To illustrate this for the SU(3) color theory, let
M'„represent the matrix element of the color-
carrying current (3.37) in the case that P' and g'
are the red and white members of a color triplet.
Also, let M"„be the matrix element of the color-
neutral current in (3.38). If the symmetry break-
ing is dynamical, " the gauge bosons will acquire
mass and the invariance of the couplings will be
broken. Hence M~ will be nonzero. In order to
have M'„nonzero, however, it would also be nec-
essary for the dynamical breaking to induce new

effective couplings which do not conserve the color
quantum numbers. For spontaneous symmetry
breaking" (i.e. , involving Higgs bosons) the Higgs
vacuum expectation values can violate quantum-
number conservation. To have M' 0 0, however,
one must make sure that the vacuum symmetry
breaking cannot be rotated into a color-neutral
direction. This could be implemented by intro-
ducing two or more octets of Higgs bosons with
vacuum expectation values in different directions
in color space. '

[G„I]+0. The last class of theories is that
in which [G„I]c0. In order that both I and G, be
unbroken I must then be a subset of G„and I is
therefore a, local symmetry. (If G, is broken, I
must be maintained as at least a global symmetry. )
One could, if desired, identify the p-meson fields
as the gauge bosons associated with I.

In this case the isospin-carrying weak currents
are nonsinglets under G„so [G, G,]40. (The as-
sociated difficulties were discussed previously. }
Qf course, most physical hadrons are also non-
singlets.

It is still necessary that J„be constructed from
two distinct isomultiplets g' and g' that carry all
the same quantum numbers other than isospin.

If G, is larger than I, then g' and $' could be in
the same multiplet with respect to the larger G,
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group, and the gauge bosons can provide the nec-
essary mixing. For example, if G, were a local
version of SU(3) in which the p, P, a.nd K~ mesons
are gauge bosons, then the Weinberg current in
(3.34) would have M, c 0. The discussion follow-
ing (3.34) applies just as well to this case except
that the mesons in Fig. 2 are now vector mesons.

If P' and g' are in different G, multiplets (for
example, if G, = I and g' and g" are both isodoub-
lets), then the gauge fields do not mix P' and g'.
Hence 3I = 0 unless additional Yukawa couplings
are introduced explicitly to mix g' and P'.

This completes the catalog of renormalizable
theories. We summarize the discussion by stating
that all of the theories which allow nonzero ma-
trix elements for second-class currents either
have enormous difficulties of their own or are in
violent disagreement with current theoretical
ideas.

D. The divergence of second-class currents

The question of whether 8"J, vanishes is of rel-
evance to nuclear transitions. " The divergence of
the current in (3.9) will in general not be zero.
The fermion mass terms in the Lagrangian yield
nonzero divergences proportional to m, —n~, for
vector currents and I,+ I, for axial-vector cur-
rents. In addition, the Yukawa or gauge couplings
required to mix the fields also contribute to the
divergences of these currents.

For example, consider the case of the second-
class isoscalar current

(3.39)

and the strong Lagrangian given in (3.33). If I'
=y„we have

a'4, = i(m, —m, }(Pg'+Pg')

(3.40)

In the axial-vector case I =y„y' the divergence
ls

In both cases we see that the same terms needed
to give mixing effects (the mixing can be rotated
away if the masses are equal or zero) lead to non-
zero divergences. This result, which is true in
general, has a simple interpretation: If the di-
vergence of the current is zero, the current is
associated with a symmetry of the strong inter-
actions. The current then carries conserved quan-
tum numbers, and its matrix element between
states in the same isomultiplet is zero.

IV. CURRENTS CONSTRUCTED FROM
STRONGLY COUPLED BOSON FIELDS

It was shown in Sec. III that the only strong-in-
teraction theories which allow nonzero P-decay
matrix elements for second-class currents con-
structed from fermion fields are (a) those involv-
ing strongly coupled spin-0 fields, and (b) gauge
theories for which the weak and strong gauge
groups do not commute. The theoretical and phe-
nomenological difficulties of the second type of
theory are severe. Quark versions of the first
type of theory suffer not only from the presence
of the spin-0 fields but also from the necessity of
introducing new isomultiplets of quarks (and pre-
sumably of new physical hadrons). Fortunately,
one can at least eliminate the need for extra quarks
in this class of theories by constructing the sec-
ond-class currents from the spin-0 fields.

Within the context of weak-interaction gauge
theories one encounters several types of currents
constructed from boson fields. (By a current we
mean any combination of fields that couples to a
gauge boson. ) The three- and four-point couplings
between the weak gauge bosons lead to currents
constructed from two or three gauge fields. When

spin-0 fields are present in the weak Lagrangian,
their gauge-invariant kinetic energy terms lead
to currents constructed from one or two spin-0
fields and from one or two spin-0 fields in
combination with a gauge field. (The single
meson currents occur if the spin-0 field has
a nonzero vacuum expectation value. )

The matrix elements for ordinary weak proces-
ses of currents involving weak gauge fields are of
higher order in the weak and electromagnetic cou-
pling constants. Similarly, if the weak and strong
gauge groups are subgroups of a larger gauge
group G, there will be currents involving the new

gauge fields in G. However, these new gauge fields
would be expected to couple very weakly to ordi-
nary hadrons. Hence, we will ignore all currents
involving gauge fields and restrict our attention to
currents constructed from one or two spin-0 fields.
These fields must couple strongly to hadrons to be
of relevance to J3 decay. We note in passing that
the phenomenological current" A„= ~„m will not
arise in any known renormalizable theory. (We
assume, of course, that ~, is not a weak gauge
boson. )

The two meson currents arising from gauge the-
ories are of the form

(4.l)

where the meson fields are arranged in a column
vector P, T is a matrix in this space of meson in-
dices, and 8, =-8„—8„. Currents of definite inte-
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ger isospin are constructed in analogy with the
fermion case. Let P'~ represent an isomultiplet of
meson fields of isospin I,. From two isomultiplets
of fields construct the currents

(4.9)

As a second ex-mple, let g' and p' be non-
self-conjugate isodoublets, with components

Ol, :—i g (Im ~i,m, i m )C,(-1) bg" s,p',
mamb

(4.2)

(4.10)

and

Ol„=i g (Im~i m I,m, )C,(-1} debts„ltd'

and similarly for ft)' . For gP ~Pb ~T ~Tb a1,
the charge-raising isovector currents

mamb (iyats ~b +iy tba ya) (4.11)

Ol Ol ( I)I-21bPl (4.5)

so that J'„=0 if I —2I, is even.
It should also be mentioned that self-conjugate

scalar fields usually have qT =+ 1 while self-con-
jugate pseudoscalar fields usually have qT = -1.

For example, consider a self-conjugate isovec-
tor pseudoscalar field tt (t}p,= t}r,= —1),and a self-
conjugate isoscala, r field o. From (4.4) we have
the isovector currents

Omf =-Om (4.6)

If o is pseudoscalar (t}~,= t)r, = -1}, then from
(3.10) the first-class current Z'„vanishes, and

J „=20 (4.7)

is a second-class vector current. The charge-
raising (m = 1}current is

J~ —im ~~„o+zo~ m

—2f 7T 8 o' (4.8)

If g is a scalar (tl~, = t}r, —-+ 1) then from (3.11)
J „=0 and the first-class axial-vector current is

(4.3)

The transformation of these currents under P, C,
and T, and the construction of first- and second-
class currents is exactly the same as in the fer-
mion case and will not be repeated. Equations
(3.6) through (3.11) and the accompanying discus-
sion apply equally to the present case. [In (3.7)
one replaces t}~r and t}cr by one. ]

The only additional complication occurs in the
case that y' and pb are both self-conjugate (p' and
p't are members of the same isomultiplet). It then
follows from (4.2) and (4.3) that

pl ( 1)1 lb Ibpl-- (4.4)

implying an obvious vanishing of some of the cur-
rents in (3.9).

When a = b, q T,q Tb
= 1 and 0' „=0' „so that J„

= 0. That is, two distinct isomultiplets of fields
are again required to form a second-class cur-
rent. Finally, if ft)'=pb is self-conjugate, one has

are first- and second-class vector currents. If
gP, = qT, = -qPb = -qTb = 1, then the first- and sec-
ond-class axial-vector currents are

pa&8 yb ~ @btg ~a (4.12)

Currents can also be constructed from a single
isomultiplet of strongly coupled spin-0 fields. De-
fine

and

0 ' =se„p' (4.13)

(4.14)

which carry isospin I,. In the special case in
which p' is self-conjugate

A

0ma& -0ma (4.15)

The P, C, and T properties and the construction
of first- and second-class currents from 0 and
0 is the same as for the fermion case. Equations
(3.6) through (3.9) hold for these single-meson
currents if one rePlaces gpb, Tjc» qTb, qpr, and

cr by one.
The various first- and second-class currents

constructed from one and two meson fields can
emerge from weak-interaction gauge theories by
mixing fields in the weak multiplets in exactly the
same way as for fermion currents, as discussed
in Sec. III. (Single meson currents appear when
one of the members of the multiplet has a nonzero
vacuum expectation value. ) Axial-vector currents
require that scalar and pseudoscalar fields be
placed in the same weak multiplet (with appropriate
factors of i).

There is little difficulty in obtaining nonzero ma-
trix elements for these meson currents. Self-con-
jugate fields (which carry no conserved quantum
l.umbers other than isospin) can couple directly
to ordinary quark or nucleon fields. Alternately,
p' and (t)b may carry nontrivial but identical quan-
tum numbers. The necessary mixing may be sup-
plied by either meson or Yukawa couplings.

The contribution of single meson currents to p
decay is actually very small (proportional to the
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electron mass) because from (4.13) and (4.14) it
is apparent that the matrix elements of these cur-
rents are always proportional to the hadronic mo-
mentum transfer q„.

In conclusion, one can construct second-class
currents from strongly coupled spin-0 fields with-
out introducing extra quarks. The price one pays,
however, is large: Qne probably loses asymptotic
freedom' and introduces parity violation' to order
Q.

V. DISCUSSION AND ALTERNATE MECHANISMS

The experimental results of t alaprice' et al.
and Sugimoto' et al. strongly suggest the presence
of large second-class axial-vector current effects
which are invariant under time reversal. How-
ever, the experimental situation is still confused
and additional experiments are urgently needed,
both in P decay and in charged-current elementary
particle reactions. (Second-class neutral currents
are extremely unlikely, as is discussed in Sec. ll. )

We now comment on the plausible explanations
of the observed second-class effects, assuming of
course that they are verified by later experiments.

(1) The observed effects cannot be due entirely
to nuclear physics complications, because the anal-
yses of the experiments are independent of the im-
pulse approximation.

(2) The next possibility is that fundamental sec-
ond-class currents are present in the weak La-
grangian. It is easy to introduce second-class
currents into nonrenormalizable theories. As we
have seen in this article, however, second-class
currents which contribute to P decay cannot be
introduced into renormalizable theories without
violating popular theoretical notions. Pexhaps the
simplest way is to introduce strongly coupled
spin-0 fields into the theory and to construct the
second-class currents from them. Alternatively,
the second-class currents can be constructed from
fermion fields. However, there are still difficul-
ties in this case. In order to have nonzero P-decay
matrix elements one must either introduce strongly
coupled spin-0 fields (and, usually, extra quarks}
into the theory or else consider gauge theories in
which the weak and strong gauge groups do not
commute. In the latter case the physical hadrons
cannot be singlets under the strong gauge group
unless it is dynamically broken. Qther difficulties
are discussed in Secs. III and EV.

(3) The third possibility is that the observed ef
fects are due to isospin-violating corrections to
the matrix elements of first-class currents. The
corrections that enter at the quark or nucleon lev-
el would be expected to be of order n, while those
which enter at the nuclear physics level should be

of order Zn. The reported effects,"however,
are large (of order unity after kinematic factors
are removed).

As a simple example, consider the first-class
current

where g~ and P„are either quarks or nucleons.
lsospin violation (either electromagnetic or due
to a, small term in the strong interactions) can be
introduced by letting m~ and m„be different. The
lowest-order strong vertex correction to the ma-
trix element of J„between p and n states is shown
in Fig. 3. The exchanged boson B can be a scalar,
pseudoscalar, vector, or axial vector. Qne finds
by explicit calculation that the diagram leads to
"second-class" form factors f,(0} and g,(0) which
are of order g'(m~ —m„}/(m~+m„) with respect to
the first-class form factors, where g is the cou-
pling between the B field and the fermions. This
result suggests that the isospin-violating correc-
tions will be small.

It is of course possible that the 6' and% quarks
are very light and that

I me- m~1 /(me+ mg is not
small. (A recent estimate of the quark masses by
Gasser and Leutwyler" has yielded this situation. )
In fact, Halprin, I.ee, and Sorba~' have recently
pointed out that if this is the case a naive calcula-
tion could lead to large values for g,(0) in the nu-
cleon matrix element [enhanced by 2M/(me+ m )
over the quark form factor, where M is the nucleon
mass]. However, they argued that when one folds
in the nucleon bound-state wave functions, the in-
duced second-class form factors in the nucleon
matrix element will be small. This is certainly
reasonable; if this suppression did not occur one
would expect large isospin violations in all physi-
cal processes. It therefore seems unlikely that
isospin violation can account for the observed ef-
fects. However, more detailed estimates, es-
pecially at the nuclear physics level, are desirable.

(4) The experimental results" could be ac-
counted for without the presence of axial-vector
second-class currents if the weak-magnetism
terms are approximately twice as large as pre-
dicted by CVC. (We are referring to the strong
form of CVC, which is more accurately called the
isovector triplet hypothesis. ) In fact, a recent

FIG. 3. The loudest-order strong vertex correction
to the current in (5.1).



GENERAL TREATMENT OF SECOND-CLASS CURRENTS IN. . .

paper by Calaprice and Holstein" suggests on
other grounds that CVC may be violated.

The problem is that CVC has been well tested
for the first-class charge form factors in pion
P decay and 0'-0' nuclear P decay. Hence, viola, -
tions of CVC would most likely be due to the exis-
tence of second-class vector currents, 4' which
have all the same difficulties as second-class ax-
ial-vector currents.

It is of course possible that there exists a CVC-
violating first-class vector current that contri-
butes to weak magnetism, but not to charge form
factors at zero momentum transfer. An example
1s

v„= s"(g~o„„g„). (5.2)

This current, however, cannot arise in a renor-
malizable theory. The first-class renormalizable
currents, which are constructed in Secs. III and

IV, will in general" contribute to charge form
factors. (The contribution could vanish by a dy-
namical accident, but this would be unsatisfactory
and unlikely. )

(5) We have so far assumed that P decay is de-
scribed entj. rely by the exchange of a single vec-
tor boson between the leptons and the hadrons.
There are, of course, other contributions. High-
er-order weak processes, such as shown in Fig.
4(a), are too weak to be relevant. Another possi-
bility involves the exchange of Higgs bosons (alone
or with gauge bosons) as shown in Fig. 4(b). By
Higgs bosons we simply mean scalar fields which
couple both to leptons and hadrons. It is usually
assumed that Higgs fields couple extremely weakly
to fermions. However, one can devise models in
which the Higgs couplings are sufficiently large
that the diagrams in Fig. 4(b) are important. A
careful-investigation of these models is still in
progress, but the preliminary result is that such
models either fail to produce the apparent second-

FIG. 4. (a) A higher-order weak diagram. (b) Some
typical diagrams involving Higgs field exchange. Higgs
fields are shown as dashed lines.

class effects or else lead to other results that con-
flict with experiment.

(5) Pne might abandon the framework of renor-
malizable field theory. Alternately, one might
consider the possibility of nonperturbative solu-
tions to a field theory, as was hinted at in Sec.
IIIC.
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