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Dynamical equations for a Regge theory with crossing symmetry and unitarity.
II. The case of strong coupling, and elimination of ghost poles*
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Equations for the construction of a crossing-symmetric unitary Regge theory of meson-meson scattering are
described. In the case of strong coupling, Regge trajectories are to be generated dynamically as zeros of the D
function in a nonlinear N/D system. This paper is concerned mainly with writing the inputs to the N/D
system in such a way that a convergent theory with exact crossing symmetry is defined. The scheme demands

elimination of ghosts, i.e., bound-state poles at energies below threshold where trajectories pass through zero.
A method for ghost elimination is proposed which entails an s-wave subtraction constant, and allows the

physical s wave to be different from the l-analytic amplitude evaluated at l = 0. A dynamical model is

suggested in which the subtraction constant alone generates the meson-meson interaction. An alternative ghost-
elimination scheme proposed by Gell-Mann, in which only l-analytic amplitudes are involved, can be discussed

in a formalism including channels with spin.

I. INTRODUCTION

In part I of this series of papers we proposed a
program for construction of a crossing- symmetric
unitary Begge theory of meson-meson scattering. '
The construction is based on the solution of a non-
linear functional equation, $=G(g), for certain
partial-wave scattering functions P. In part I, the
operator G was defined for the weak-coupling
case, in which no Regge poles enter the right
half of the / plane. Our present task is to define
G for the strong-coupling case, with Begge poles
in the right half plane. The meaning of tt) and G

was explained schematically in the Introduction
to part I [see Eqs. (11.8)-(11.10)]. The explicit
expressions for the functionals A and 8 of (11.7)
were given in (I2.53)-(I2.54) for the case of weak
coupling. In the present work, A and B have the
same physical significance as before; A is related
to the elasticity, and 8 is the force function (a
left-cut term pius an inelastic term) in the IV jD
equation. The main new feature of the strong-
coupling case is that the formal expressions for
A. and B, which may be read off from the Frois-
sart-Gribov representation of the partial-wave
amplitude, are not obviously well defined. A re-
arrangement of the expressions, involving con-
tour distortions and changes of integration order,
reveals that they are well behaved after all.

In Sec. II we work out the "raw" formulas for
A and 8, by direct calculation from the Froissart-
Qribov amplitude. Vfe introduce certain essential
assumptions about Regge trajectories o(s); for
instance, n(s) is required to be analytic and in-
vertible in a particular finite region of the s plane,
and Ima(s, ) must have the proper sign. We can-
not predict the validity of these assumptions in

general, but we hope that they will be valid at
least for certain choices of physical inputs (inter-
meson forces and inelastic effects).

Section III is devoted to the problem of rearrang-
ing the expressions for A and B. Some of the prob-
lems encountered were discussed previously by
Omnes' and Squires, ' who noticed that the discon-
tinuity of the partial wave a(l, s) over the left cut
in the s plane appears on first sight to grow as a
power of s at s =- ~. Omnes and Squires sug-
gested certain contour distortions as a means of
regularizing this discontinuity. The specific sug-
gestions of Befs. 2 and 3 were not sufficient for
our purposes, but by making refinements we found
that the method of contour distortions is indeed
effective in regularizing integrals. The analyticity
of n(s) mentioned above is a necessary condition
for success of the method. %e find it hard to
imagine existence of a Regge theory without some
kind of analytieity of o, since we see no chance of
continuing the Froissart-Gribov partial wave to
small values of Re/ if analyticity is not available.

An appealing feature of our scheme is that it
involves only the half / plane Be/~ —&, where
0 &q &-,'. Thus, we need not investigate the whole
Regge trajectory n(s); only the part of it with
Be~ ~ —q enters the equations. In particular,
we can ignore the Gribov-Pomeranchuk singul-
arities~ and other complicated phenomena that
may occur in the left I plane (see R. G. Newton,
Ref. 15).

The behavior of 8 and a at large II I
is closely

related to that at large s. There are two aspects
of large ~l

~

behavior: First, one must guarantee
exponential decrease of partial waves at large
Re/, which is required for the correct support of
double-spectral functions; second, one must have
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a power decrease at large Iml, to ensure conver-
gence of the Watson-Sommerfeld integral that
occurs in the partial-wave development of double-
spectral functions. The first point is handled by
a modification of the method of part I. The second
point requires an analysis similar to that of
Frederiksen et al. (Ref. I21}, which is summarized
in Sec. III.

If there are Regge poles in the right plane, we
cannot get good behavior at large Iml and large
s simultaneously. The contour deformations that
make explicit the good behavior of A and B at
large s have the effect of giving bounds with ex-
ponential increase in Iml, rather than the desired
power decrease. This situation is caused by the
t-channel Regge-pole terms. A closer investiga-
tion suggests that we are confronting the partial-
wave version of the old difficulty of catastrophic
powers of s in the Mandelstam iteration (Chew
et al. , Refs. I3, I9, and I10). We are led to deal
with it in the way proposed by Chew et al. , namely,
to multiply the s-channel elastic part of the double-
spectral function, p"(s, t), by a cutoff factor h(s).
For convenience we have introduced the cutoff
already in part I, although it was riot necessary
in the weak-coupling case. When the cutoff is
present, it is no longer necessary to distort
contours of the t-channel Regge pole terms;
one can solve the N/D equation even if the force
function B has polynomial growth at large s.
With this observation alone, however, the situa-
tion does not look better than it was in the Mandel-
stam iteration. The great advantage of the partial-
wave approach is that after the equations with cut-
off are solved, one can perform the contour de-
formation to show that the partial waves of the
solution are actually bounded at large s for fixed l.

The presence of the cutoff is in effect a restric-
tion on the form of the central spectral function,
and is just one aspect of our semiphenomenological
treatment of inelasticity. With p" defined so as
to include the cutoff, we have

p(s, t) = p"(s, t) + p'""(s, t),

where p""(s, t) would arise from all s-channel
inelastic states, and would reduce to p"(t, s) for
t &16. It is very difficult to make a model, how-

ever, in which p""(s, t) is manifestly a sum over
inelastic absorptive parts and is also equal to
p"(t, s) for small t.

In discussions of the strip model, the term
p"(t, s) in (1.1) is associated with the picture shown
in Fig. 1. This term corresponds to peripheral
processes of two-meson exchange, with four and
more mesons in the s channel. Such an interpreta-
tion cannot be taken quite literally, so that the
corresponding part of the overlap function is not
necessarily positive. We make a few additional
remarks on this topic in part 1V. Our scheme is
essentially different from the bootstrap strip mod-
el, in that we have nonperipheral contributions to
inelasticity and short- range cross- channel driving
forces in v. We shall see presently that it is pos-
sible to make a nontrivial model with v =0, but
even this model is very different from the strip
model, since it contains a short-range "contact
interaction" of mesons, described by an s-wave
subtraction constant.

A long-standing problem in Regge theory is the
question of ghost poles' (see Ref. 17). If the even-
(odd-) signature partial wave has a Regge trajec-
tory a(s) which passes through an even (odd) in-
teger at s =s~ &4, there will be a bound-state
pole at s+ unless the Regge residue function
P(s) happens to vanish at that point. Such "ghost"
poles are inconsistent with cross- channel uni-
tarity for s~ ~ 0, and inconsistent with observation
(in 0 0 channels such as vv, vK, . . . }for s~ &4.

p(s, t) = p"(s, t)+ p" (t, s)+ v(s, t),

where the central spectral function v is regarded
as given. All we know of p(s, t) independently of
models is that it is equal to p"(s, t) for s &16 and
p" (t, s) for t(16, with p"(s, t) being given in
terms of two-body absorptive parts for s &16.
The requirement of a cutoff suggests that s-chan-
nel two-particle states should not be present at
full strength simultaneously with t-channel two-
particle states at full strength, if s and I; are
simultaneously large. Thus, the cutoff forbids
a kind of "double-counting. " In a complete cross-
ing-symmetric theory, p would have the form

FIG. l. An heuristic view of the contribution of

p (t, g) to the overlap function. The dashed lines
represent states containing an arbitrarily large (even)
number of particles.
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We expect a ghost problem to occur only in even-
signature amplitudes at f =0 (see Sec. IV). Gell-
Mann' suggested that a ghost at I =0, I=0 in wn

scattering might be eliminated by P having a zero
at s =s~. In his view, the trajectory would be
associated with a set of coupled channels, includ-
ing channels with spin (vm, NN, etc.). At f =0,
channels with spin contain "nonsense" (negative
integer) values of orbital angula. r momentum f, .
If the trajectory "chooses nonsense" at s =s~
(i.e., is associated only with nonsense channels
in a channel labeling based on f.), then the Hegge
pole mill not appear in the ~~ channel which is a
"sense" channel at l =0. To our knowledge, this
mechanism has not been verified in a concrete
model, and it leaves one without a method of ghost
elimination in a theory without spin, such as X/4
field theory. Perhaps Gell-Mann's idea could be
realized in a phenomenological way in our scheme,
through constraints on v. That would be a tech-
nically difficult feat, if possible at all. We sug-
gest a more dixect may of eliminating the ghost,
which does not involve spin, and which has some
interesting consequences.

Our plan, as described in Sec. IV, is to let the
bound-state pole occur in the I-analytic amplitude
a(l, s) at f =0, but construct the total amplitude
A(s, f) so that its s wave differs from a(0, s). The
actual s wave, denoted by a,(s), is determined
through a separate N/D equation which differs
from that for a(0, s) by having a subtraction con-
stant, or Castillejo-Dalitz-Dyson (CDD) poles,
or both. The extra, parameters of the N/D equa-
tion for a, are to be chosen so that a, does not
have a bound-state pole or ghost poles. For real
m-~ scattexing, s-wave resonance poles mould be
desired, and these might be associated w'ith the
CDD poles. Crossing symmetry and unitarity are
achieved through single-spectral integrals in
A(s, f). A similar idea for ghost elimination was
suggested by Saito, ' who considered the diffexence
between a, (s) and a(0, s) to be due to one CDD pole,
but did not show that the proposal was consistent
with a crossing-symmetric Regge theory. Also,
there are hints of the idea in a paper of Mandel-
stam' about theories with spin. Mandelstam con-
siders a possible difference between physical and
I-analytic partial waves, but supposes that any
difference is due to an elementary particle in the
channel at hand. Since me allow a subtraction con-
stant in a, without CDD poles (at least if that choice
gives no ghost in a, ), our proposal is more gener-
al, i.e., we do not necessarily require an elemen-
tary particle.

The subtraction term in ao may be understood
as corresponding to a "contact interaction" of
mesons such as one has in a X/4 field iheory,

with the subtraction constant being analogous to
the renormalized coupling constant. One can take
the subtraction term as the sole driving force of
the theory by putting v =0. If this is done without
CDD poles, the resulting system looks as though
it could be an approximation to the &$4 theory.
The separate s wave seems quite natural from
the viewpoint of field theory, even if decidedly
foreign to bootstrap theory.

A theory with r =0 has, in some sense, the
simplest inelasticity allomed by crossing symme-
try, namely, that illustrated in Fig. 1. It will be
interesting to see if such a theory has a Pomer-
anchuk trajectory when the coupling is sufficiently
large. That is, it is interesting to ask whether
peripheral inelastic effects can "cast a shadow"
in such a way as to cause a constant asymptotic
total cross section.

We do not insist on the ghost-elimination mech-
anism of Sec. IV as the only possibility. We intend
to discuss elsewhere the Gell-Mann mechanism
in an extended formalism including channels mith
spin. The Gell-Mann scheme, if realized, would
be more consonant with the philosophy of maxi-
mal analyticity and with dual resonance models.
Furthermore, our scheme of Sec. IV has certain
consequences for high-energy behavior of ampli-
tudes, which might in principle allow it to be ruled
out in a realistic model of ~-m scattering. This
matter will be examined in part III.

In Sec. V we collect the results of the paper to
state the equation ( =G(g) in regularized form. We
defer to part III the problem of shoming that a
solution of that equation actually provides a cross-
ing-symmetric unitary amplitude.

Our theory as currently formulated does not
have "infinitely rising" Hegge trajectories, al-
though me do allow the maximum value of Reo. to be
arbitrarily large. Also, the theory does not have
Regge branch points in the right half of the l plane,
thanks to the cutoff and restrictions on the be-
havior of the central spectral function. In ruling
out infinitely rising trajectories and Regge branch
points we ignore aspects of Regge theory which
are considered important by many authors. It
seems premature to allow such complications in a
program for actual construction of a Regge theory,
however, especially since the experimental and
theoretical arguments in favor of rising trajec-
tories and branch points are not conclusive. Some
of the techniques developed for our program, such
as our methods of handling large-l behavior, might
mell prove to be useful in approaching more diffi-
cult versions of Regge dynamics.

For simplicity we restrict the discussion to
equal-mass isoscalar 0 meson-meson scattering.
Extensions to account for pion isospin would be
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straightforward. The generalization to treat sev-
eral coupled channels with complete crossing sym-
metry will be treated in part IV of this series.

We use notation from part l, and give a summary
of notation in Sec. V.

II. THE FUNCTIONALS A AND 8 IN PRESENCE
OF REGGE POLES

p'i(t, s)=, dtg(t, t)P, (z„) .1
(2.8)

Lp

The complete expression for A„valid at all t, is
obtained by adding in the t-channel inelastic terms
provided by p'(s, t)+ v(s, t):

A, (s, t) = A", (s, t)

+ — ds'[p" (s't)+ v(s', t)J
a (&)

As in part I, we work with the Froissart-Gribov
representation of the reduced amplitude c(t, s},
namely

S —$ S
(2.9)

p s
c(t, s) = a(t, s)s —4

dtQ, ( z„} A(s, t). (2.1)
4p(s)'

Our notation is the same as in part I, except for a
modified definition of P(s). We define

p(s) =[(s+a')" +2]' a'&0

p (s) =(s''+2)'
(2.2)

(2.3)

A (s, t) =Qg(l, t)P', "(z„),
t=p

(2.4)

The function Pp was called P in part I. The pur-
pose of the term a' in (2.2) is to move the branch
point of P from s =0 to s =-a', in order to put it
out of the way of a contour deformation which will
be performed later. The cut of P runs from s =-a'
to s =-~, with (s +a')~~ &0 for s &-a'.

The t-channel elastic part of A„which is equal
to A, itself for 4& ( &16, has the Legendre de-
velopment

If A", is represented as in (2.7), this expression
for A, is well defined even in the presence of
Regge poles, provided that v(s, t) is such that the
s' integral in (2.9) converges.

An estimate of the large-& dependence of p"(s, t)
from (2.8) indicates a behavior t o. If we put (2.9)
into (2.1) we can then be sure of convergence of the
t integral only for Rel& Lo, since Q, (z) behaves
as z ' ' at large z. In order to define c(l, s) for
Rel &L„we must take account of Regge poles.
Before doing so, we have to explain our assump-
tions about general properties of Regge trajec-
tories.

To keep the notation short, we shall suppose that
there is only one Regge trajectory n(s) in the half
plane Rel --&. We fix e at the outset, with 0«& 2,
and refer to the region Rel --& as the "right half
plane. " The extension to account for a finite num-
ber of (nonintersecting) trajectories is immediate.
The trajectory is defined as the zero of the de-
nominator function D of 62.52):

)
1 " r(n(s}, s') n(n(s), s') „,
z 4 s —s

g(l, t) = (2t+ 1)q(t)h(t}a(l, t, )a(l, t ) . (2.5) =0. (2.10)
We make a Watson-Sommerfeld transformation of
that part of A", with l values lying to the right of
all Regge poles. Let

n =max[Reo. (s,}J, (2.6)

where the maximum is taken over all trajectories
n and over all s =4. Let the integer L and the
number Lp satisfy the relations L& n & Lp& L+1.
Then a Watson-Sommerfeld transformation yields

2 ~ sinai
p

+Jr„(t, t)P,"'(z„).
I=p

(2.7)

The polynomial in (2.'l) does not contribute to the
discontinuity of A", over the s cut, which is equal
to the t-channel elastic part of the double-spectral
function,

(i) (Dn(s), s)x0, s&Q, (2.11)

where D, (t, s) =sD(t, s)/st Since D(t, s) is .analytic

Since n(l, s) will be known only for Rel&-s, o(s}
can be determined only for s such that Ren(s)
& -e. In fact, tr(s) is defined only in a finite re-
gion of the s plane, since for sufficiently large
~s~, Eg. (2.10) cannot be satisfied. The factor
r(l, s), given in (I2.35), contains the cutoff, and
the function space in which we seek solutions is
such that &(t, s)n(l, s) is small for all t when

~ s~ is
large. Thus, the trajectory leaves the right half
plane at large

~ s~, since the integral in (2.10) be-
comes small compared to 1.

Let 0 denote the set of all points in the cut s
plane (the cut being [4, ~)) such that o.(s) is defined
and Ren(s) & -z. Also, let Q be the closure of Q,
i.e., 0 plus its boundary points. Our first assump-
tion concerning o. is that
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n((u(l)) = I, ~(n(s)) =s . (2.12)

According to the inverse function theorem, "a
sufficient condition for the existence of the inverse
is that

in L for Rel&-c, and analytic in s in the cut plane,
it follows from (2.11) and the implicit function
theorem on analytic functions' that n(s) is analytic
in the finite region Q.

The assumption (i) is not sufficient to ensure that
the boundary BQ of the domain 0 is smooth enough
for our purposes, and also is not sufficient to rule
out discontinuities of e on bQ. Accordingly, we
shall assume that the inverse of the function n(s)
exists. The inverse, denoted by ar(l), takes the
domain o. (Q) into 0; we have

a(l s )=8(s, —s)- ' +a(l s ), s~4p(s, )
I —Q sg

(2.1 "l)

where a(l, s, ) is analytic in I in the right half
plane (but not necessarily continuous in s at s =s, ).

The boundary sQ consists of the cut [4, s, ] plus
the map by &u(l} of the straight-line segment with
end points (-c,1m'(s, )), (—e, 1mo. (s, +)). A graph
of this boundary is shown in Fig. 3, for the case of
a simple model trajectory.

The residue of the Regge pole in the reduced
amplitude c(l, s}will be denoted by P(s). By Eq.
(12.51), it has the representation

1

D, (l, s)

n'(s)w0, s~Q.

In view of the identity

(2.13) 1
" B(l, s')r(l, s')n(l, s')

7r s —sI
—l = n(s)

(ii) D(n(s), s) w0, sue. (2.15)

D, (a(s), s) u'(s)+D, (n(s), s) =0 (2.14)

and assumption (i}, an equivalent requirement is
that D, not vanish. Our second assumption, there-
fore, is that

(2.18)

It follows from assumption (i) that P(s) is analytic
in 0, since the expression in square brackets in
(2.18) is analytic in l in the right half plane, and

analytic in s in the plane with cut [4, ~). The resi-
due P(s) of the pole in a(l, s) is related to P(s) by
the equation

The third essential assumption is that the imagi-
nary part of the boundary value on the cut,
Ima(s, }, has the proper sign; namely

4~ fx(g)

p(s) = p(s}.„P(s (2.18)

(iii) Imn(s, ) &0, s &4. (2.16)

Assumptions (i)-(iii) can be, and must be,
checked numerically in any application of the
scheme. For a discussion of analyticity and in-
vertibility of n (s) in potential theory, see R. G. New-

ton, Ref. I6, Chap. 14. According to the implicit-
function theorem, the condition (i) excludes crossing
or bifurcation of Regge trajectories. In other
words, if D(n„so) =0 and D, (a„s )v0,0then there
exists a unique n(s) such that o.(so) = no and
D(o. (s), s) =0, for s in a sufficiently small neighbor-
hood of so.

For simplicity we suppose also that Reo(s, ) has
only one relative maximum, and that the trajectory
can have Rea &-E for some interval of s only if
o.'(4)&-s (see Fig. 2). These assumptions are
suggested by results from potential scattering (see
Ref. I6)," and are made only for notational con-
venience. Questions of notation aside, the shape
of the trajectory is unimportant, as long as prop-
erties (i)-(iii) are verified. Our assumptions
imply that the trajectory enters the right half
plane at some energy s, ~4 and leaves it at an
energy s, ~4. The boundary values of a(l, s) may
be written as

Imc
I

I

I

I

I

I

I

'.
I

o/
cr

/

I

I

I

I

0
Rec

FIG. 2. A Regge trajectory of the type described in
Sec. II.

Thus, P(s) is analytic only in the upper and lower
halves of 0 separately, because of the cut of the
first factor in P(s) which goes to the left from
s =4. The functions e, P, and j3 have the reflection
property f (s) = f*(s~).

To proceed with the continuation of (2.1}to the
region Bel li-„ the first step is to move the con-
tour in (2.8) from the line Rel =Lo to Rel =-e. In
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I&a
24-

l6-

so doing, one picks up contributions from the two
Regge poles at I =o(t, }. The residues of the poles
entail the factors a(o(i, ), t, ), which we evaluate
with the help of the unitarity condition (I2.37). The
latter condition may be written as

c(l, t, )+2ii(i, t)
1 +2ir(l, t)c(l, i, ) ' (2.20)

( )
1 —q'(I, i)

4r(l, t) (2.21)

-2 0

-e-

ea
In evaluating (2.20) at l = o(t, ), we make use of the
fact that I(l, i), defined in (I2.36), is analytic in
l for Rel & -~, continuous for Rel = -e, and hence
bounded for i near n(t, ). The poles in numerator
and denominator then cancel to yield

-l6— a(a(t, ), t, ) = ~[2iq(t)h(t)] '. (2.22)

Ims

With the help of (2.22) one can move the contour
in (2.8) to the left to obtain

p"(~, s) = — «&(I, t)I'l(at. )
1

40-

20-

Re a(s) - I/4
+ —8(s, —tQ f (t, s) .

where n.f is the t discontinuity of f,
f(i, s) =[2o(i)+I]P(t)p. (a .),
c f (t, s) = —.[f(i„s)—

. f(i, s }].1

(2.23)

(2.24)

(2.25}

-20—

s&. I I 4 I ', sl Re s-30 -IO l0 30
Similarly, one may move the contour in A. ,", after
first including the polynomial in (2.7) as part of
the Watson-Sommerfeld integral. The result is

g I, t&

—E.

-40—
—v8(s, —t)n. g(i, s),

(i )
[»(t)+I]P(t) ~(e) ( )sinn@(t)

(2.26)

(2.27)

FIG. 3. (a) A model of a Regge trajectory given by
the formula

Through the introduction of (2.9), (2.23), and
(2.26} in the Froissart-Gribov integral (2.1}we
obtain

a
&(s) =—1—

~ 1/Zs —sp+ib (s —4)
c(l, s) = V(l, s) + g c,.(l, s),

4=0
(2.28)

The graph is for sp ——32, a = 64, b =0.5. In this exam-
ple, the curve o. (t) leaves the real axis at t = 4 with
infinite slope, but the region of large slope is so small
that it does not show up in the graph. (b) A domain 0 of
analyticity of the model trajectory z(s) of (a). The
boundary of the domain consists of the cut [4, s&] and
the curve Re@(s)=- ~, which is nearly a circle. The
inverse of o. (s) is

a b b 4a
(d(e) =sp — ——+-

Q+1 2 2 &+1 + b2+16 —4s

where V is the central-spectral-function term
defined in (I3.7), and

(2.29)

$,(s, t) = - 48(s, —t)C g(f, s)

(2.30)
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$,(s, t)

2 'i, , 1 1= 8(s, —o(t)) — ds'&f(s', t), +
e(t) S —Q S —S

c,(l, s) =c,(l, s)+c,(l, s)

1 "ds'r(l, s')c(l, s,')c(l, s')
7r s —s

(2.37)

&,(s, t)+ &,(s, t)

(2.31) st dst p(s/) -l
s' —s s' —4

=d)t —16)—J dd'(, +, )

x —. dl'g l', tP, , z, , ,
«6

1 ds'
C5 =—

77 S —S

(2a+1)P(s')W(l, n, z, ,t, , ))
(n —l)(o+ l+ 1) —a=a (s' )

(2.38)

(2.32)

Since 4g(t, s) behaves as s '" at large s, a
superficial estimate would. indicate that c, behaves
as s ~ 'lns. Since we wish to allow an arbitrarily
large value of n, we cannot allow such a behavior;
it would violate unitarity. The difficulty is only
apparent, however, as we shall demonstrate later
by means of a contour deformation. The t integral
in c, appears not to converge for small values of
Rel, since ttf(s', t) behaves as t "' at large t.
Again, the cure for this apparent obstacle is a
contour distortion.

To derive the force function B for the N/D equa-
tion, we must separate the elastic unitarity term,
which is part of c,. We change the order of inte-
grations to obtain

cz =(c, + V)++get,
i=2

(2.40)

where the subscript L means "left-cut part. " The
force function B that we seek is c~ plus the princi-
pal-value integral of (1 —t))/2r, as shown in Eq.
(I1.5). The sum of that integral and (c, + V)~ may
be represented neatly through an application of the
identities (see Ref. I10)

x . dl'g(l', s')Z, (l, l', s, s') . (2.39}
«)6

The third term of (2.37) is the desired elastic
unitarity term. Notice that &c4=-&c„so that

c, +c4 has only a left cut. Also, 22=0 for s=s',
so that c, has only a left cut. The total left- cut
contribution to c is then

dl'g(l', s')Z(l, l', s, s'),1 " ds'
—,'[c,(l, s,)+ c,(l, s )+ V(l, s, )+ V(l, s )]

Z=,„dtQ, (z„)P,, (z, ,)
2p(s) '

7'(S')

= ~~+ ~2,

d' Q t(z't}P t (z. t)
2p(s')

7'(S')

P(s') ' W(l, l', z,„t„))
s' —4 (l' l}(l'+l+ 1}'

(2.33)

(2.34)

(2.35)

= [c,(l, s)+ V(l, s)]~+—
"[1 —tl'(l, s'}]ds'

1 —t}' (1 —n)'
2r 4r 4r

(2.41}

(2 42)

We define

c,(l, s) = —,
' [c,(l, s,) + c,(l, s ) + V(l, s.) + V(l, s )],

(2.43)

(s')

2p(s) '
dtP, (z, ,)

( }„,Q, (z„) P t "[1—fi(l, s')]'ds'
4r(l, s')(s' —s)

' (2.44)

2p(s')'
(sd 4) )+I Ql(z t) ~ (d2.36)

The function W was defined in (I2.32). The l' in-
tegral of Z, may be evaluated by closing the con-
tour on the right. There are contributions from
the Regge poles as well as from the pole at l'=l.
The residues are evaluated with the help of (2.22)
and (I2.33), and the result of the calculation is
that

The complete formula for B is then written as

B[a, v; l, s] =g c,(l, s) . (2.45)

For construction of the amplitude c(l, s) from the
N/D method, we also need C(l, s), which differs
from B by containing the complete Cauchy integral,
rather than the principal-value integral, of (1 —q)/
2r. The function C is analytic in the cut s plane,
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and is given by

[I —q(f, s')]'
v „4r(l,s')(s' —z)

' (2.46)

f(f, s) =n[c, (f, s)+V(l, s)] . (2.48)

The expression for c, may be put into a more
useful form by applying the well-known identities'2

P„(-z)=e""P„(z)——sinzv Q„(z), Imz &&0.

(2.49)
%ith s, t&4 these identities give

—,
' [P„"'(z„)+P„"'(z„)]

= —,(I+cosvv)P„(z„) ——»nv&Q„(z J
(2.50)

In using this result to evaluate c, through (2.30),
we find Legendre functions having only right-hand
cuts in the s plane, whereas there were inconven-
ient left cuts before.

III. THE FUNCTIONALSA AND 8 IN REGULAR FORM

In this section we transform the &/D inputs 4
and 8, defined in (2.47) and (2.45), so that good
behavior in all regions of l and s will be evident.
%e begin with a discussion of q„which dominates
the large-s behavior of B. The input terms from
p' in (2.43) are well behaved by hypothesis. Of the
remaining term in (2.43) from c„only the Regge-
pole term, the first term in (2.30), is problem-
atical. Furthermore, if we evaluate that term with
the help of identity (2.50), we find that the piece
from Q„(z„)has suitable behavior at large z as it
stands. %e need discuss only the piece involving

+Of&

The other functional A, which is identified with the
function 'g~ ls

A[a, v;l, s) = [I—4r(l, s)f(f, s)]'"
where

tic in f in the upper or lower half of the region Q.
Consequently, we may distort the contour of the
term with & &» to follow the course shown in Fig.
4(b), i.e. , the integration will follow the upper
side of the real axis from 4 to -80, and return to
s, along a path for which Benz(t) &n( so-) H.ere
80 ls chosen so that —z &o( 80)) and 0&80&0 ~

where g' is the constant that appears in p(s), Eg.
(2.2). The part of the path from —s, to s, will be
denoted by ~(l;). It is the image under the map-
ping ~ (the inverse of o) of the path I', in the o
plane, shown in Fig. 4(a). There is a similar
distortion. of the integral with p «) into the lower
t plane. The union of the curves I', and I' is
called I .

The contribution of ~(l') to d, is of order
s ~ 'o~ 'lns at large s. The remainder, the in-
tegral from 4 to —so, is

o(~)+}

R80~ -0
I

1+

a( ~o) o(4)

„1

/

a(~t-)

xg (2&+I)P(f) . P„(z„)
SlllK +

(3.I)

First, suppose that n(0) &- z. Because of the
analytjcjty properties of ~ and p assumed in Sec.
II, the function in square»ackets m (3.I) is anaiy-

FIG. 4. The dashed curves represent the original
paths of integration for certain Hegge-pole terms (for
instance ee, 4f:&) in the a plane [Fig. 4(a)] and in the
t plane [Fig. 4(b)]. The solid curves are the deformed
paths usedinthe discussion of Sec. III. In (a), the paths
I'~ have end points e(-so) and e(s& ). The union of I',
and I is called I' in the text.
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Ps! 4

.
(s 4)„, dt s,s (t) [qt(z„,)(t, —4)"P„(z„.) —(I)t(z„)(t —4) P (zt, )] I (,) .

Sp

(3 2)

We have applied the relation (2.19) between p and p. If (2(ts) =0 for some ts, &4, then (3.2) applies as writ-
ten only if P (t, ) =0, as in Gell-Mann's ghost-elimination mechanism. If t](t„)st0, then (3.2) is to be re-
placed by a modified expression to realize the ghost-elimination scheme of Sec. IV. In the modified ex-
pression, given later in E(I. (5.17), there is no pole at (2 =0 and the present method of analysis still works.
The function (3.2) may be analyzed by applying the identities (2.49), which lead to the relations

(t, -4)"(')P
(,)(z„,) —(t —4)"(')P„(,)(z, ,) = —.(4 —t)"("sin'I(o(t) Q„(t)(-z„), s&4+s, (3.3)

)- ( )-~'"+ ' "-
I
—siPI(z„)s —s0&t &0, s&4+s0.

The integral (3.2) then takes the form

(3.4)

—4t)(s)'
v(s —4)'+'

-Sp

4 —t
dt g 1(z„)(2 (2+ 1)(1 +cost(I2) sin)to p(t) Q (-z„)

p t

dtPI(z„)(2n+1) . e " P(t) Pa(z, ,) . (3.5)

If (t(0) =1, then

1+cost(ct(t)
sing(2(t)

and the integral behaves as
p

S
—1 ddt Ins [1+a.'(0) I] 0 ((InS)-2 )

(3.8)

(3.7)

(3.8)

Heretofore, (2 (0) & —e; if n() ) = —e for some v & 0, we
move the contour only to —s, & 0 such that a(- s0)
= —E and find that d, is of order s ' 'lns. The inte-
gral t)c, that appears in the functional A in (2.4'I) may
be treated in a similar way.

To summarize,

0 ((lns) ' }, (2 (0) = 1

c (l, s) = 0(s () '(lns) ), —e&n(0)&1 (3.9)

0 (s ' ' lns), tz (v.) = —e, T & 0

IO(s (" '(lns) '), -e&(2(0) &1
(3 1 )

IO(s ' 'lns), tx())= —e, r&0.

The first term in (3.5) is of order s " s0 2lns at
large s. The second term is the dominant part of

and its behavior is determined by an arbi-
trarily small neighborhood of t =0, since ct'(t)&0
by assumption. If o(0)&1, the integral behaves as

p

S
—1 dt Ins[a(0)+a'(0)t] 0(Sa(0)-1(lnS)-1)

of the partial-wave amplitude itself.
The contour distortion in (3.1) has the effect of

bringing in QI (z) at complex z. Since Qt (z) grows
exponentially as a function of Iml for Iml-+~
when Imp&0, respectively, it appears that c, will
not satisfy the bounds at large Iml required for
convergence of Watson-Sommerfeld integrals such
as that in (2.23). Fortunately, we need not employ
the distorted form of the integral in solving the
N/D system, thanks to the presence of the cutoff
function 11 (s). We know from the undistorted form
(2.43) that c, is at least bounded as

KS&
I c,(l, s) I &,t, , s&4, Rel& —e, (3.11)

for some y &0. The cutoff can compensate this
potential growth of c, at large s.

Accordingly, we set up a Banach space T, which
is similar to the space S of part I, Sec. III, except
that the asymptotic behaviors of p and q are dif-
ferent. In place of (I3.2) and (I3.3), the conditions
met by elements (1-)],B) of T are

I, III(t, s) I, s I().R([,s) I &,",
t2

(3.12)

I, II-q(l, s)I, sI()J}(f,s)I = ' ",'„'
(3.13)

Here p and p0 are defined in (2.2) and (2.3), and

It is possible to obtain the exact asymptotes of c,
and ~c, by applying the method of Ref. I25. From
those asymptotes one can work out the asymptote

P, (s) = tt(s —4, cr(s))

(s+ 2st t2 8)21
s —16 (3.14)
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~(x, t) = [t' "+ (x+ t)' "]'. (3.15)

We shall find that the operator G, defined by the
N/D system as in (I1.8)-(I1.10), maps a subspace
U of T into T, provided that (a) a trajectory or

generated from any element of U satisfies condi-
tions (i)-(iii) of Sec. II, (b) functions l) from P
have no zeros, and (c) the N/D kernels obtained
from elements of U do not have unit eigenvalues.
Now suppose that a solution of the dynamical equa-
tion in such a subspace U is known. One may bound
the high-energy behavior of the partial wave

a(l, s,) constructed from that solution with the help
of the contour distortion in Fig. 4. At fixed l (in

particular, at a fixed physical value of l) we shall
have

~
a(l, s,)

~

—res '0' '(lns) ' (3.16)

That is, the behavior at large s and fixed l is much
better than is required for membership in the
space T. This bound follows from formulas (I2.51)
and (I2.49), in view of the fact (to emerge in the
following) that c, determines the large-s behavior
of B.

The next important question is the large-t behav-
ior of $„ the integrand of c, in (2.29). We discuss
the second term in $„which involves the integral

J
ds' ,

' " ds' , " ds' 4 or,
'

trf(s', t) = — —, bf(s', t) +, A~(2a+ l)p(s') P (zzr)-, P,(z„)
a(t) s' s '

4 s s 4 s —s

2m+ 1 s', P z
4 S —S Otm(S')

(3.17)

The contributions of the three integrals in (3.17) to c, will be called d„d„d,.
We evaluate the t integral in d, with the help of (I2.32), for Hel& or . We then combine d, +d, with c, from

(2.38) to obtain

d, (l, s)=„- .. .~ (2rr+ I)8(s') ~ I a I I 4
—

4
II'(I tr. z..r. &)-

2P(s)r rrg)
+ —, ,r. ~~ dtqr(z„)P. (z„}

. - O'=+(S')
(3.18)

The integrand of d, is regular at s = s, as one sees by evaluating its third term at that point through the
use of (I2.32). The expression (3.18) was obtained for Hel& rr. , but it may be continued analytically into
the entire half plane Rel& —z. Because of the denominator or(s'} —l, it might seem at first sight that d,
would have a cut in the l plane following the trajectories cr(s,), frpm l = rr. (4) to l = or(s„). Actually, d, has
no such cut, as may be verified by moving the s' contour in the manner of our treatment of d, . We prefer
not to move the contour, however, since we shall find later another term to add to d„and the sum of the
two will be manifestly analytic for Rel & —e.

The remaining term d, from (3.17) is subjected to a contour deformation such as we used for d, . The
result is

4i 4 ds'
(2or+ Ig(s'), sin'va rIr (—z, ,) t . (3.19)

7l'
q S —S

p p s'
~ fM~(s')

Here we require that sp~12, so that -z~t& 1.
It is now clear that the t integral in (3.19}converges absolutely for Rel ~ —z, if we make an appropriate

choice of E and s,. The two terms involving P cancel at large t, so that the expression in square brack-
ets behaves as I; '. The corresponding part of the t integral converges absolutely for Rel ~ —z, provided

( sor, ) 1 —&z. -Since z& 0 may be chosen to be arbitrarily small, and since o. (0)—1 is required by uni-
tarity, our assumption of monotonicity of or(s) for s & 4 ensures that we can always meet the condition
or(-so)&1 —e. The term in Q is even less restrictive regarding or, and the corresponding t integral con-
verges absolutely.

The first term in d, has a factor s " ', which looks dangerous at large s. A contour deformation again
shows that there is actually no difficulty. The integrand has no cut for 0 —s' —4, so the deformed integral
has only a contribution from the path ro(I'). The deformation should be done only for large s, since it ob-
scures the situation at s =s'.

The other term in c„ from the s' -rr denominator of (2.31), may be treated in much the same way. The
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analysis is easier, since we need not subtract and add a term analogous to d4 as we did in the decomposi-
tion (3.17). The subtraction was made to secure the convergence of the t integral in the first term of
(3.19). The denominator s' —u= s'+s+ t —4 contains a t, which gives convergence of the t integral without
subtraction.

The integral defining the function, of (2.36), which appears in c„does not converge absolutely if Rel
As was noticed in part I, Eq. (I3.10), the integral may be decomposed into an absolutely convergent

integral and the known integral (I2.32):

dtP, , (z,.,) 4 „,Q((z„)—,'4 „,Q, (z, ,)+, 4 „,[p(s)'-p(s')']Q, (z, ,)

. p(s) ', , p(s)' p(s')'-1 1
(3.20)

When the I integral of (2.39) is carried out, residues being evaluated with the help of (I2.33) and (2.22), we
find that

p(s) 1 d
dt (II i)A (l Ii i) 1 d, p(s) -p( ) K(l, s )

s —4 v, s' —s, ' ' ' ' ' „, s —s' (2I~ 1)(s' —4)'

ds' p(s)' —p(s')' (2o.'+ 1)p (s')
s' —s, (s' —4)' ~ (o'. —I)(o.'+l+ I) —Ot =0t (S ' )

(3.21)

Now c, is expressed in terms of integrals which
converge absolutely at Rel= —e. This expression
is convenient only for small Rel, say Hei&I,„
where L, is the number defined after (2.6). At
large Hef the original form (2.39) is better suited
for demonstrating the bounds (3.12).

For small Rel, the denominators l —(z(s',) in the
third term of (3.21) may vanish, so one must be
careful to get the proper continuation in l through
the Hegge trajectories (x(s,'). If we add this third
term to d„however, we see that the sum is ob-
viously analytic for Rel& —e. Because the 5"s
are equal to —1 at I = n(s'), the numerator of the
sum has a zero at that point. Thus, it is conve-
nient to combine d, with the third term of (3.21)
for Rel &L„but to leave c, in its original form
(2.39) for Ref & L,. The second term in (3.21) is
analytic in l if n is restricted appropriately; see
footnote 13.

This completes our discussion of large-s and
large-t behavior. The final formulas for A and B,
and a summary of notations, will be found in Sec.
V.

The second and third terms of d, have a ques-
tionable appearance regarding integrability at
s' = 4. For instance, if one applies the definition
(I2.32) of W and the known asymptotic behaviors
of Legendre functions it appears that the second
term in the integrand of (3.18) behaves as
(s' —4)' " ' at s'=4. Since o.'(4) is allowed to be
large, this could spoil convergence of the s' inte-
gral at s'= 4. On closer examination we find that
the actual behavior is no worse than
(s' —4)"""kiln(s' —4) i, because the terms in
o.'(s,') cancel those in c((s'). To demonstrate the

cancellation, one invokes the bounds

in(s, ) —n(s ) i, iP'(s, ) -P(s )i iln(s —4) i

'

~ &(s 4) Re& ( s+ )+( /2 (3.22)

The inequalities (3.22) hold when (1 —q, B)(= U, as
may be seen by appealing to the definitions (2. IO)
and (2.18) of o'. and 6. For example, to bound Ao.',
take the first terms in the Taylor expansion of
the difference

D(c((s,), s,) —D(o' (s ),s )= 0, (3.23)

and note the assumption (i), Eq. (2.11). One may
show that the higher terms in the Taylor expan-
sion are negligible for s near 4, by applying the
contraction mapping theorem.

In the remainder of this section, we shall indi-
cate the main steps in the demonstration that the
operator G maps the subspace U into T. We must
show that ((I', B')= (A[a;v), B[a;v]) satisfies in-
equalities (3.12) and (3.13), when A and B are
evaluated at a partial wave a(l, s) which is con-
structed through the N/D equation from (1 —j,B)
c U. The demonstration depends on the behavior
of Q, at large l, . The Laplace representation of
Q, (Ref. 12, formula 8.822.2) gives

Q (z)=[z+ (z' —1)' '] ' 'R (z) (3.24)

[1+x (cosh 8 —1)] ' 'd e, (3.25)

(z 2 —I)I /2

x=
z + (z' —1)'/' ' (3.26)

where z & 1 and 0&x & &. An essential property of
R „not shared by Q„ is that it has the same bound
that its derivatives have at large l and fixed x.
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(s —4) ' 'Q, (z„)= u(s —4, t) ' 'R, (x),

2[t(t + s —4)]'
u(s —4, t)

u(s —4, t) =[t'~+ (t+s —4)' ']'

(3.29)

(3.30)

(3.31)

In proving the bounds (3.12), (3.13), there are
two main points that require attention. First,
many of the terms in A and B entail a factor
p(s)' or p(s')'. To ensure proper behavior at
large s and large Rel, these factors are compen-
sated by factors from Q, functions. The required
factor from Q, is u ' in (3.29); indeed,

The following bounds are proved in Appendix A of
Ref. I21:

IRi(z) I, l«r'(~}l, I
"RI'(z)

I
= ~(t~) '",

(3.27)

IR (~)
I
= ~»(I/'x}, l«I(~)

I
l~'R", (~) I

= ~

(3.28)

These results hold uniformly for Bel ~ —1+ 5, any
5& 0, and 0(x(—,. It is convenient to state (3.24)
in terms of the variable u of (3.15):

Second, we must get a factor l, ' ' in the bounds
of B' and 1 —j', whereas only l, ' ' comes directly
from Q, . The extra factor of l. ' has to be obtained

by partial integration. The necessity of partial
integration is the source of requirements on deriv-
atives in the definition of our function space T.

To show the general pattern of the partial inte-
gration, we quote lemmas on an arbitrary integral
of the form

Q(t, s) =
(

i„dtQ, (z„)g(t,s), (3.33)
P(s)'

where t, (s) 4, t,&t, may be finite or infinite, and
the partial derivatives P, (t, s), g, (t, s) are contin-
uous. To estimate P, notice that

), , [t(t+s —4)]'/'- su(s —4, t) ' '
l+1 at

(3.34)

We substitute (3.34) and (3.29) in (3.33), and do a
partial integration in which Su ' '/Bt is integrated,
and its coefficient differentiated. After some cal-
culation and an application of the bounds (3.27) one
finds the following:

Po(s) = u(s —4, 4). (3.32)

Lemma I:

p(,')i ', /. u(s-4 t) '"—l~«s)l +,~ J « '„. [t '"l&«, s}l+t'"l&,«, s)l]
1' p

+

(3.35}

In a similar way we obtain a result for the s derivative,

Lemma 2:

@(I,s)
p(s)

1//4

;„u(s -4, t)-"" '
I y(t, s) I

I t((s) g(tz, s) I

1/2 t 1 t I/4 (s yt )3/4
+ 1 l

+ ',
/,

—'„',
(

' „, [I q(t, s) I+tl y, (t, s) I+t'"(s+t)' 'I y, (t, s) I ].
1

(3.36)

Several of the terms in B' and q' have exactly the
form (3.33), and for those terms the lemmas lead
directly to bounds such as (3.12), (3.13}. Other
terms have slightly different forms, but vari-
ations on the theme of the lemmas lead to the re-
quired bounds. Ful. l details will be reported else-
where; here we shall mention only some of the
salient points of the analysis.

(a) The first two terms of (3.18) are not of the
form considered in the lemmas, but no partial in-
tegration is required for these terms; there are
already extra powers of l in the denominator
(a —I)(a+I+1).

(b) The method of the lemmas must be elaborated
to study c„as given in (2.39), at large Itel and

P(s')' p(s')
(sI 4)!+1 Ql s('t ) (sg 4 ( ))si

- Rel

A calculation shows that

p(s') (s' —4) p(s')
u (s' —4, q(s')) p (s')

I R, (~') I.
(3.37)

(3.38)

large s. A closely similar term was analyzed in
Ref. I21, Appendix C. Only a small part of the
work of Appendix C is needed, however, since
our partial waves decrease more rapidly at large
I than those considered there; the bounds (C8)
and (C21) are relevant in the present case. The
second term in p„defined in (2.36), is major-
ized as follows at large Rel; we have
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(s' —4)p(s') p(s)
po'(s') po(s)

' (3.39)

The required factor [p(s)/po(s)] " in the bound of
F, , is obtained from (3.39).

(c) Similar considerations of monotonicity lead
to the required bound at large Rel of q„defined
in (2.44). The integrand of c, obeys the following
inequality, as a direct consequence of (3.13):

[1—lt(t, s)] xI h(s) I
s & (s —4) p(s)

l (l, s) l, ' p, '(s)

A numerical evaluation of the function (3.38} shows
that it is less than 1 for all s' provided that
a'& am»'-50. 5. Henceforth, we shall take a'= 50.
Now note that P(s}/P, (s) has it minimum value of
1 at s= ~. Hence, at all s, s',

Similarly, the term that contributes to A is

Ac, (t, s) = @,(t, s)

dtQ, (z., ) dt t(t', t)P„(z„).p(s)'
pg, s 4 ( )

(3.45)

We apply lemmas 1 and 2 to estimate i'}g p 3 and

their derivatives. To that end, we note that all
Regge poles lie to the left of Rel =L„so that the
partial waves which appear through g in p, and (II}3

obey inequalities similar to (3.12); namely, for
Re/ =L 0,

gy I 4 -l«l
l, Ia(l, t, )l, tl a, a(l, t, )l &»,

(3.46)

The function

(s —4)p(s)/p, '(s)

(3.40)

(3.41)

In order to majorize the functions g gy g2 that
appear in the lemmas, we employ (3.46) and the
following bounds of Legendre functions":

is less than 1 for a'= 50. Consequently,

(s' —4) p(s') p(s)
p, '(s') po(s)

' (3.42)

dt'C(t', t)
2

. l, P, .(z„)——
Q, .(z„)

L 0

(3.44)

for all s, s'; it follows that our bound for c, con-
tains an appropriate factor [p(s)/po(s)]R". One
would like to remove the restriction on a', but
the outlook for doing so is not encouraging; see
footnote 14.

(d) The discussion of the terms involving A",

(namely c, in 8, and tlc, in A) is simplified by
going back to our original representation (2.7} of

Because of the cutoff, the modified repre-
sentation in which Regge poles are exhibited is not
needed for definition of the mapping G. It is only
needed to demonstrate finally that the partial
waves of thy solution are bounded at large s and

physical l. We actually prefer the modified form
for numerical calculations, but for derivation of
bounds the form (2.7) is better. From (2.7),
(2.43), and (2.50), the part of c, of interest is
lp, + Q„with

y, (t, s) =
4 „, dt Q, (z„)Q K (l', t)P, ,'(z„),4p(s)'

g
t 0

(3.43)

IP, (z) I ~(tx, )x'y"',

I Pi(z) I «I 1-6 -6( 2 I)-» Re2l

I Q, (z) I =-x(t, x) ' [ln(1/x)]' "y "'

I Q,'( )1«t,"(-"-I) 'y "",
(3.47)

z)1, x=, ,t, , y =z +(z —1)
(z' —1)' -'

z+ z

0 &5 &-,', Rel &-q& ——,'.
After some calculation and easy estimates, one
sees that the lemmas yield the inequalities

I&(t)I, fit '(t)I ~« '& '. (3.49)

To estimate lp, we note that the bounds (3.46)
are valid for the partial waves of even integer l
that appear in (Ib„with the possible exception of
the s wave near t = 4. That is, the inequalities
(3.46) can fail only if Regge trajectories pass
through the integers in question. Since Ima(t, )
~0 for t&4, and since one may argue, as we do
in Sec. IV that n(4) &2, the only possible occur-
rence of a Regge pole is in a(0, t) at t =4. As
usual, such a pole is eliminated by the subtrac-
tion technique of Sec. IV, or by making lt(4) = 0.
In either event we have no difficulty from a pole

(3.48)

provided that the cutoff h(t) satisfies suitable
conditions. For the latter it is sufficient to assume
that pg has a continuous derivative and that
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of a(0, t), and we find easily that p, obeys the
same inequalities (3.48) as p, and p, .

Of all our estimates of terms in A. and B, the
estimates of p„p„and p, are the largest. The
latter then determine the choice of exponent y in

(3.12) and (3.13). From (3.48) it is seen that a
suitable choice is

y =La-4.1 (3.50)

(e) One must give attention to the definition of
Watson-Sommerfeld integrals at the energy s, at
which Regge poles cross the path of integration,
Rel' = —&. This problem occurs in connection with
c„as defined in (2.29) and (2.32), and c „defined
in (2.39) and (2.36). The l' integrals in question
have contributions from Regge poles of the form

(3.51)

for 4~s'&s, . As s' tends to s, from below, this
integral is defined by the Plemelj formula,

P, ' +vif{o,(s„),s, ) .dl'f (I', s )

i+
(3.52)

For s'&sy there is no Regge pole in the region
Rel' &- q, and the Watson-Sommerfeld integrand
is analytic in l' for Rel'&- &. In this case, the
path of integration may be translated a small dis-
tance to the right without changing the integral.
The limit of the translated integral (as s' tends
to s, from above) clearly exists, since no Regge
pole touches the integration path. Thus, the limits
from both sides of s, are defined, but one should
keep in mind that the two limits are not equal, in
general. It is easy to check that the s' discon-
tinuity does not spoil continuity in s of the s de-
rivatives of q, and c,. The existence of the Ple-
melj limit (3.52) is ensured if f{l,z(a)) is H51der-
continuous in l and a. Appropriate continuity can
be provided, in that it can be incorporated in the
full definition of the space T.

(f) We have now touched on all major problems
connected with regularization of the N/D input
functionals, A and B. Upon returning to the N/D
equation itself, Eq. (I2.50), one sees that there
are no further problems of regularization, thanks
to the cutoff which appears in the factor r. When
the Ã/D equation is regarded as a linear integral
equation for n with given (f},B), it is a regular
Fredholm equation on a Banach space V of func-
tions n(l, s) which obey the same bound as B [viz.
the first of the inequalities (3.12)]. Barring unit
eigenvalues of the kernel, there will be a unique
solution g in V.

IV. EQUATION FOR THE PHYSICAL s-WAVE AND

GHOST ELIMINATION

In our model of neutral isoscalar mesons, the
physical partial waves of odd l vanish, so that
ghost poles at integer l in the even-signature
Froissart-Gribov amplitude a(l, s) can cause a
difficulty only for l =0, 2, 4, . . . . [The amplitude
a(l, s) is not defined for negative integer l, and is
not needed for a construction of the complete amp-
litude A(s, t) valid at all s, t]. Furthermore, we
can rule out ghosts with l «2 by the Jin-Martin
theorem, "which asserts that at most two subtrac-
tions are needed in a fixed-t. dispersion relation
for 0 &t &4. The conditions of the theorem are met
in our scheme, if we succeed in enforcing unitarity
to the extent of making absorptive parts positive.
Of course, we aspire to enforcing the even strong-
er condition of inelastic unitarity [0 & q(l, s) ~ 1J by
constraints on inputs. Thus, the Jin-Martin theo-
rem and Regge asymptotic behavior of A(s, t) at
large s imply a(t) &2 for 0&t&4, and we see that
n(t ) =2, 4, . . . is impossible with t~ &4. If our
theory were extended to account for pion isospin,
we would have to be concerned about ghosts at
l =1 in the odd-signature amplitude. If the theory
is realisitic there will be no ghost at l =1, how-
ever, since the spectrum of m-m resonances and
various Regge-pole fits of data show that odd-
signature trajectories are well below l =1 at t =4.

We propose to treat the remaining problem of a
ghost at l =0 by making the physical s wave a, (s)
different from a(0, s), the l-analytic amplitude
evaluated at l =0. The amplitude a(l, s) will still
be defined, and will form an essentia1 part of the
theory, for Rel «-E. We allow a bound-state pole
to occur in a(0, s) at s =s~ &4, but this pole does
not appear in A(s, t) The latter . is constructed so
that it has a, (s) as its s wave, but a(l, s) as its par-
tial wave for l=2, 4, . . . . We expect that a pole
of a(O, s) will in fact enter at some critical value
of the coupling as the latter is increased from an
initial small value. In order that a trajectory go
far enough to the right in the l plane to produce a
resonance of nonzero spin (I ~ 2 in our model of
neutral mesons) it must pass through zero at a
point below threshold.

We introduce a separate N/D equation for a,(s).
Since this equation has the same left-cut term as
that for a(0, s), it is coupled to the l-analytic
system. The s-wave equation will have some new
input quantities: for instance, a subtraction
term, or CDD poles, or both. It may have either
its own inelastic function f},(s), which can be
chosen freely, or else may have the same inelastic
function q(O, s) that appears in the I-analytic sys-
tem. To choose the inputs to our scheme in the
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no(s) -ImDo(s, )
«t«s s —s r,(s)(s —0) ' (4.1)

«,«s }=
( } a, (s 1 .

Here ho{s) is a cutoff function, equal to 1 for s ~ 16,
which need not be the same as our previous cutoff
h(s). The denominator function is allowed to have
n CDD poles at the points 8,.)4, with residues
c,.(s« —s), and also a pole at infinity with residue
c. It is represented as

ft

D,(s}=1+(s—s) c —g 8' ~ —Si=l

1 " ro(s') Q(s')ds'
7F 8 —8

We suppose for the moment that the inelastic func-
tion and cutoff are the same as in the l-analytic
system at 1 = 0, since there is a complication in
tile arbitrary cllolce of «) (s) wolllcll 18 best dlscllss-
ed later. With the 8-wave force function denoted
by B„we then have

«)o(s) =«)(O, s), B,(s) =B(0,s), ho(s) =h(s), (4.4)

simplest possible way, we would take only a sub-
traction term in the s-wave equation, put «)o(s)

=«)(O, s), and set the central spectral function

1«(s, f) equal to zero. The subtraction term alone
provides a meson-meson interaction, reminiscent
of that in a Xf' field theory, which should lead to
nontrivial amplitudes. As we shall see presently,
the subtraction term induces an attractive force
in the l-analytic N/D system, at least when the
subtraction constant is sufficiently small, and this
force has nearly the same effect as a superposition
of attractive Yukawa potentials. If this force re-
mains attractive at large values of the subtraction
constant, one can expect the theory to have inter-
esting Regge trajectories. To extend this simplest
model so as to resemble a field theory having both
meson-baryon and meson-meson interactions, one
would add a central spectral function ««(s, f) cor-
responding to meson-meson scattering through a
boxdiagram, thebox being formed by a baryon loop.

A procedure of writing a separate N/D equation
for the 8 wave in a crossing-symmetric scheme
was introduced in Ref. Ij.a. Our present method
will be slightly different, in that we make one sub-
traction in the Cauchy representation of the 8-wave
denominator function D,(s). The subtraction point
is 0, with 0«s «4, and the N/D equations is an
integral equation for the function

and the N/D equation is

4+Bo(s) Bo(s «) —Bo(s)
8 —8 s ~ —si=1 t

1 Bo(S) Bo(s ) { } { }
jr S —8

(4.5}

The real constant Ao is the subtraction constant
mentioned above. The scattering amplitude a,(s,}
is constructed from go, &0, and the solution @ of
the N/D equation by means of the formula

a,(s,) =B,(s) +i —

2
. I —«)o(s)

2&0 8

B.(s;)
+ +D(s), s —0 's, —s

i -&

BOS t"08 $8 d8
lT 4 8 —8~

/

2. [ao(s,) —a, (s )J = r,(s)a,(s.}a,(s ) +

(4.'I)

The amplitude a, (s) is influenced by the I-analytic
N/D system by having at least the same left-cut
part as a(0, s). Correspondingly, the I-analytic
system must be influenced by ao if we are to have
a complete crossing-symmetric scheme. The re-
quired modification of the l-analytic system is ac-
complished by replacing its 8-wave absorptive
part by the absorptive part of a, . If A, is the orig-
inal complete absorptive part as given in (2.9),
then the modified one is

A«(s, f) =A«(s, f) —
4 dsA«(s, f)

1
f —4

f)2
+ro(f) [ao(f,}/

+ — . (4.8}4r, I)

If one chooses «Io(t) =«I(0, f), then only the f-channel-
elastic part of A, is affected:

A (s, f) =ro(t) iao(f, ) i'

+ 1 — d8 At 8~f) ~ (4.9)

The change A, -A. , amounts to adding a function
of f alone. 'The Froissart-Gribov transform of this
function of f has only a left cut in the 8 plane, and
resembles the Born term of a superposition of

(4.6)

By a calculation analogous to that of (I3.12), one
verifies that {4.3)-(4.6) imply
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Yukawa potentials:

4P(s)'
( 4)„, dt QI(z„)

&& I;(t) i a, (t,) i'+ ds
A I (s, t)

1 ' „1 df f(l, t)

(4.10)

The Rddl'tlon of (4.10) to B(l,s) ls 'tile ollly cllRllge

required in the l-analytic system. This term sat-
isfies all the required bounds, if y, and q, are
chosen suitably [for instance, as in (4.4)J. Since
the smallest integer I for which a(f, t) occurs in

3I ls liow I = 2, R bound-state pole ill Q(0, t) CRIlllot

contribute a singularity to the N/D system.
For future reference, we note that the integral

in (4.9) may be represented as follows:

whereas if n(0) =1 and c = 0, the space would be
made up of all continuous real functions g such
that

sup ls((s) (

= ligli &~.
4-s& ~

If c c 0 [Rnd n(0) &-6, sayJ we see from (4.3) and

(4.6) that

(4.13}

corresponding P satisifies (4.5), with new param-
eters ~,', 0', but with the same qo and Bo. This
is an application of standard N/D theory (see Ref.
124 and I25).

The bounds on B(0,s} and its derivative, obtained
in Sec. III, are sufficient to show that (4.5) is a
r egular Fredholm equation in an appropriate
Banach space. For instance, if Il(0) =1 and ce0,
the appropriate space consists of all continuous
real functions g such that

sup I»'s g(s)~ =lit)li&

(2~+1)p(t)
u{o.+ I)

a,(s,) -B,(s)~i, s -~,. I —I)tl(s )
2'jVO S

(4.14)

This result comes from (2.26) and a known integral
of the I egendre function (Ref. 12, formula 7.112).

We can now justify the above remark about the
attractive nature of the force produced by the sub-
traction term. I et us take a system in which the
subtraction term, A.,/(s —0) in (4.5), is the only
inhomogeneity (that is, c, c, , and v are all zero),
and I)0(s) =I)(0,s). Then for small A.„the term

~
a, ~' will be of order X,', and will produce a left-

cut contribution of similar order in the l-analytic
N/D equation. It follows that II(f, s) will be of order
&,', and the second and third terms in (4.10), being
quadratic in a(f, s), will be of order Xo . At small
A, the positive first term in (4.10) dominates, and

it has exactly the effect of a superposition of at-
tractive Yukawa potentials, so far as the l-analy-
tic N/D system is concerned.

It is necessary that D,(s) have no zero in the

t pla . Oth „ thep tat eghos~- l.
ation mechanism would merely trade one type of
ghost for another. It seems likely that one can in
fact avoid zeros of Do, since one has a free choice
of parameters (&„c,c, , sl) that have a strong in-
fluence on the behaviox of D, . In particular, the
signs of X, e, and g,. ax'e probably crucial for
preventing zeros.

The parameters Xo and 0 are not independent.
Given a solution of the equations for a given X, and

0, one can show that there is an N/D representa-
tion of the corresponding ao with a denominator
function subtracted at a different point O'. The

provided the cutoff decreases at least as xapidly as
s . Tile Rsylllptote (4.14) ls tile sRllle Rs 'tllR't of
a(0, s+). If c = 0, the amplitude a,{s,) is asymp-
totic„ in general, to a nonzero real constant.

There are potential advantages in taking I),(s)
and ho(s) to be different from I)(O, s) and h(s). For
instance, it might happen that I)(0,s} violated in-
elastic unitarity by giving a negative ovexlap func-
tion (I2.38). One could then try to restore uni-
tarity with a different choice of I),(s). To allow a
free ehoiee of qo, one would take

where c~(0, s) is the left- cut part of c(0, s),

cz(0, s) =B(0,s)-—,', ds',1-1)(0,s')
II 16 21 0, s') s' —s)

(4.16)

There is a complication, however, since the pre-
scription makes sense only if a(0) &1. If a(0) =1,
the integral of 1 —II in (4.16) diverges, and one
would have to match the asymptotic behavior of the
input function I),(s) to that of the dynamical vari-
able 7/(O, s). With Rll Rppl'opl'lRte matcll, 'tile slllll

of the s' integrals in (4.15) and (4.16}could be
made convergent.

It seems worthwhile to collect the basic equations
of our theory. We choose the forms best suited to
calculation and furthex analysis, and in some cases
adopt more convenient notation. I.et us first sum-



PORTER %. JOHNSON AND ROBERT L. %ARNOCK

marize our notation: e and so are arbitrary and such that
2t

g f 1 +gt u=4-s -t
o&g &~, -4&s, &12, o(-so) &1 —e .

4S 16s &'1, x~0
g(s)=, y(s) =—,g(z) = )

s —16 ' s-4 '
~0, x&0

q(s) ={1—4/s)' ', p(s) =[(s+50)'~'+2]',

r(E, s) = q(s)h(s)

Lo is arbitrary and such that

I. ~ a &I o&I +1=integer,
= max Ren(s+),

The trajectory leaves (enters} the half plane Ref
ats=s, (8,):

Rett(s&+) =-~ =&(so), s, - —50 .

1
&f(s) =

2,. [f(s,) -f(s )],

d)fo) = inta)! a) a)D ); Re) =a,f dlf)))

p(s) = '
Ei(s)

P (s)

= [residue of Regge pole in a(E, s)]

I' = [union of pa. ths 1,and 1, Fig. 4(a)]

oo(1') = [image of I' under mapping oo, Fig. 4(b)],

&u(E) = [inverse of o, (s)], W(E, E', z) = (1-z') [Q)(z)P', (z) -P)i(z)gt(z)]

P(s)' E (s')' E (s) ""o-""
4'(E E' s s') =, dEP) (z. ~),, 4;)+, Qg(z. g) —, 4,)„,„Q,(z. ,)S —8 T (~r)

4(E, E', s, s') = )„dtP, (z, ,@,(z„)
2P(s)'

s'-I,
g(E, s) =q(s)h(s)(2E+1)a(E, s,)a(E, s ) .

The input parameters of the scheme are the fol-
lowing:

V(E, s)=, 4 „, dt's, (z.,)
4P (s)'

16

1 1x — gfs't) (s', f), +
Is —s s -Q

h(s) = [cutoff function] =1, s & 16,

Q(s), sf)'(s) =0(s E o+ ))

Xo = [subtraction constant],

s = [subtraction point]

[c&, s&] = [CDD pole residue, position],

c = [residue of CDD pole at infinity],

E'to(s) = [s-wave cutoff i'unction]

)jo(s) = [s-wave inelastic function]

The parameters ~o, . . . , go appear only in the
separate s-wave eciuation (Sec. p/').

%e shall state the dynamical equations so as to

incorporate the scheme of Sec. IV. The simple
change to make the alternative scheme, in which
only E-analytic partial waves are involved, will be
indicated at the end. For simplicity in writing,
we also suppose that t)o(s) =t}(0,s), although this is
not necessary [see (4.15) ff.].

The dynamical equation is an equation to deter-
mine the function pair )j) =(j,B):

)j =G()E') (5.1)

o

+— K(E, s, s')r(E, s')n(E, s'))fs',

(5.2)

)E(0, s}Q{s)= ' &' +cB(0,s) + g c,ff(0, s, s, )
A.o+B(0, s)

s

1 oo

+ — K(0, s, s')o.{0,s'))j)(s')ds',

(5.3)

The operator C is defined in four steps as follows:
(1) Given ())E,B), solve the linear integral equa-

tions for n and Q:

tl{E, s)n(E, s) = B(E, s)
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B(l, s) —B(l, s')
K/, s, s' =

8 —S
(5.4)

P(s) ' (l, ) B(l,),. l-fi(t, s)
s-4 ' ' ' 2r(l, s)

sD(l, s)

" B (l, s')r(l, s')n(l, s')ds'

(5 5)

a,(s,) = B (0, s) +i. 1 —yi(0, s)
2r O, s

s —s x, ~ B(0 s)
+ '„+~@;

The solution of (5.2) is required for s &4, for Rel
e,-and also for l on the trajectory o.(s+), s2

&s&s, [to be determined in step (3)j.
(2) Determine the amplitudes a(l, s,),a, (s ~)

from the formulas

1 "r(l, s')n(l, s')ds'
1T

n

D, (s) = 1 + (s —s) c —g
L 1=1 2

1 " r(0, s')4)(s')ds'~
8 —8

(5.7)

(5 8)

These amplitudes are needed only for 8 &4, Rel

(3) Compute the Regle trajectory a from the

equation

D(o((s, ), s+) = 0, s, & s & s,
and its inverse & from

D(l, (()(l))=0, Rel =-e, 0&lml &1m'(s„) .

(5.10)

Thus, we find o((s) on the real s axis, and &u(l) on
the curve I'. Calculate P(s, ), s, &s&s„and
p((u(l)), l(=l 1, from

1 " B(0, s')r(0, s')P(s')ds'

(5.5)

1
P( )s=

& (t )

"B(l s')r(l s')n(l s')ds '

0

8 —S -j l =a(s)

(5.11)

where
(4) Determine G(g) =(A„B) from a, a„~,&u, P by

by the following equations:

~(t, s) = [1-«(l,s)f(1, s)j't',

I(l, s) =&V(l, s) +
4 „, dt's, (z„) a('(((', ()('„(*,.) ~ &&(~, —()a((2 (() ~ ())((()('()(*,.))) (5.W

(5.14)

(5.15)

P "[1—g(l, s')j'ds'
s „4r(l, s')(s' —s) (5.15)

4)t (s)'B,(l s) =„(, 4)).i

dtq, (z„) jr( ot)[a,(t, )l' es( ,s-t-)d (2a+1)ti(t)
2

. & (s.) 0(st—.)——
2 sins& 1f FAR R +1

+- dl q(l', t) . , l, (s,.) ——0, (s~.)—
2 sinst' '

&
' &t' l' +1

dl'g (l', s') [4 (l, l', s, s') +@(l, l ', s, s') jB,(l, s) =— ds'
4 2%5

p(s)' p(s')' '

0 (1,s')-s, (s' —4)' s —s' J 2l+1 (5.18)
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x d&Q, ( .,) d ']2a ~ &), , ;[( '-4)'&, ]z. ,) —(s —4)'s', (z„)]+, P, (z, ,))
p (s'), , P (s')

& (~ &) ~(T)

ds', +, (2o+l)p(s'), -] sin'vo. Q~(-z, ,)i
7T q 8 —8 —Q

(5.19)

P(s) ' s-4 " p(, ) ] p(s) ie(r, Re], )-
I W(ly o]$83f(g )) p 4 ( g) ( 9 8 K(S )

~]2a+&)P ~]')]~]) ' *'
gq p - . )]+ ]q] f ] sqt I ~s't

(s -4) ,) s —s s —Q ) ~-0(qr)
(5.20)

1 1

~(o, + 1) ' I'(V + 1)
(5.21)

%ith such a system one must somehow constrain
the input V(f, s) so as to guarantee that P(s~) =0,
if a(s~) =0 for s~ &4.

The scheme as described above furnishes the
partial waves a(l, s,) for Ref = -e, s ~ 4, and the

Regge parameters o, (s„),p(s, ) for 4 & s & s, . As
we show in part III, these quantities are the in-
gredients of a rather direct construction of the

In the case of weak coupling, no Hegge pole en-
ters the half plane Hel &-&, and jB„B„andthe
second term of I3, drop out. Correspondingly, if
two or more trajectories enter the half plane,
these terms are understood as sums over all tra-

jectoriess.

To obtain the alternative system with only /-an-
alytic partial waves, we ignore the s-wave equa-
tions (5.3), (5.6), and drop those terms in B,
which involve

total crossing-symmetric A(s, f), valid a,t ai»
Alternately, one may continue u(l, s,) to

physical I by means of the equations given above,
and then sum the l.egendre series to obtain a rep-
resentation of A. valid in the I.ehmann ellipse in
the z„plane. Also, one may find]2(f, s) in the en-
tire cut s plane from the continuation of (5.5), the
latter being given by Eqs. (2.51) and (2.46).
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