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A program for construction of a crossing-symmetric unitary Regge theory of meson-meson scattering is
proposed. The construction proceeds through solution of a nonlinear functional equation, { = G(s), for certain
partial-wave scattering functions . The functional equation is analogous to a conventional dynamical
equation, in that the scattering amplitude is generated from input functions which describe the primary forces
between mesons and possible inelastic effects. A solution of the equation provides a scattering amplitude
having Mandelstam analyticity, exact crossing symmetry, exact unitarity below the production threshold, and
meromorphy of partial waves in the right-half | plane, with the consequent Regge asymptotics. Inelastic
unitarity [0 < n(l,s) < 1] is not guaranteed, but may perhaps be achieved through constraints on inputs. In any
case, the partial waves are bounded throughout the physical region; such a bound was not ensured in earlier
schemes based on the Mandelstam iteration. In this first paper of a series, the equations are formulated for the
case of weak coupling, in which no Regge poles enter the right-half I plane. Inelastic effects are described by
crossed two-particle processes and assigned input functions. Later papers will treat the case of strong coupling,
in which Regge trajectories are generated dynamically, and the extension of the formalism to include many
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coupled channels.

I. INTRODUCTION

We are interested in the theory of the scattering
matrix as a possible setting for hadron dynam-
ics.!”® The advantages of S-matrix theory as a
phenomenology are well recognized, but the value
of the theory as a dynamical or quasidynamical
scheme has not been fully assessed. During the
1960’s there were, to be sure, earnest attempts
to construct an S-matrix theory from first prin-
ciples. Following ideas of Mandelstam,? Chew,?
Regge,®' 7 and others, one attempted to calculate
the S-matrix by solving integral equations that
were derived from analyticity, crossing sym-
metry, unitarity, and certain simplifying physical
assumptions. The most ambitious schemes were
calculations of m-7 scattering using one form or
another of the “strip model” (Refs. 3, 7, 9, 10,

11, and 12, and other papers quoted therein). In
such schemes, the difficulties of the mathematics
and the numerical calculations greatly obscured
the subject, so that it was hard to separate any
shortcomings of the physical models from mere
failures of mathematical method.'”® Another dis-
turbing point is that so much work in S-matrix
theory has followed the bootstrap point of view,®
according to which one seeks nontrivial solutions
of homogeneous crossing-unitarity equations.
There is no real evidence that such solutions exist,
and besides, there are compelling reasons to in-
vestigate S-matrix theory from a broader perspec-
tive in which inhomogeneous equations with driving
terms would be allowed. Especially, one should
try to incorporate the quark model, which seems to
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be contrary in spirit to bootstrap theory, and which
is now more convincing as a phenomenological
scheme than it was in the heyday of the bootstrap
philosophy.

Recent studies!*~?2 carried out with the help of
nonlinear functional analysis'? have clarified the
mathematical structure of S-matrix equations. It
has become evident that Mandelstam’s original
formulation, based on a unitarity equation for the
double-spectral function, is not tractable for the
case of physical interest in which Regge poles lie
to the right of the line Re [=1. We are led instead
to a pure partial-wave scheme, which will be des-
cribed in this series of papers. This new scheme
seems to avoid the principal mathematical diffi-
culties of earlier approaches. It can be analyzed
rigorously to a great extent, and is suitable in
principle for controlled numerical calculations. It
should allow us to separate the purely technical
questions from questions of physical content, and
thereby allow a more orderly evaluation of S-ma-
trix theory as a realistic dynamical scheme. We
do not adopt the bootstrap viewpoint, but our tech-
niques could be used as well in pursuit of a boot-
strap theory.

The extraction of specific predictions of the theo-
ry will require lengthy numerical calculations,
which are now in a preliminary stage. In view of
the difficulty of the calculations, it is fair to ask
what may be gained by carrying them out. We do
not expect to arrive very soon at a realistic theory
of m-m scattering, although that is one of our long-
range goals. Rather, we first hope to give an in-
structive example of a dynamical calculation of
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scattering, valid at strong coupling, and meeting
general requirements of crossing symmetry,
analyticity, and unitarity. Since we solve an in-
tegral equation exactly, there is no dependence on
perturbation theory. Regge trajectories would be
generated dynamically, through the action of a suf-
ficiently strong meson-meson force. The pro-
posed calculation provides an interesting alterna-
tive to field theory in approaching the strong-
coupling problem. The connection to field theory
may eventually prove to be rather close. Indeed,
in part II of this series we shall describe a scheme
which looks as though it could be an approximation
to A¢p* field theory.

Most recent discussions of hadron dynamics have
been in terms of field theory, with emphasis on
quarks and their confinement, and with little at-
tention to the scattering matrix. It is likely that
our approach, with its emphasis on mesons and
the scattering matrix, is not incompatible with a
field theory of quarks, even if a theory such as
ours, which works at the level of ordinary had-
rons, would have to be regarded as semipheno-
menological from the viewpoint of theories work-
ing at the quark level. At important question,
which is under investigation but far from being
answered, is: How does an underlying quark
scheme makes itself felt in an S-matrix theory of
hadrons? This is a question which both quark
theorists and S-matrix theorists will eventually
have to face, since contemporary quark theories
usually do not predict an S matrix, while the
S-matrix remains the principal observable of in-
terest. One possibility is that the quark structure
of hadrons influences the S matrix through Cas-
tillejo-Dalitz-Dyson (CDD) poles.22~2% 18 With
analyticity in 7/ the CDD phenomenon is not ruled
out, but it becomes more complicated; instead of
poles in the D function, one has a more involved
analytic structure. The CDD singularities are
not yet fully understood, but our scheme is prob-
abiy able to accommodate them. Another possi-
bility is that quarks, being unobservable, play no
overt role in equations for the observable S mat-
rix. The equations incorporate the quantum num-
bers and symmetries of the quark model, without
making direct reference to quarks. The realiza-
tion of such a scheme would require the treatment
of many coupled scattering channels. That would
be a difficult task, but not necessarily an impos-
sible one at some level of approximation. A re-
vival of the bootstrap viewpoint, if possible at all,
would require a multichannel scheme.

In the remainder of this section we shall indicate
how our scheme relates to earlier work. The rea-
der not familiar with earlier literature may find
the systematic discussion beginning in Sec. II to be

more readable.

First, consider the scattering of unit-mass pseu-
doscalar mesons without isospin in the simplest
case where the Mandelstam representation has no
subtractions or single-spectral terms [see Eq.
(2.1) of the following section.] By taking the dis-
continuity of either side of the unitarity equation,
Mandelstam? found that the double-spectral func-
tion p(s, t) is represented as follows, for sbelow
the production threshold:

p(s, l)=f dt,fdtzK(s, Lty t)A (s, DA(s_, 1),
4 4

(1.1)
4<s<16

3 man(t
Ads,0=7 [ axote (T35 )

(1.2)
07175 -

The kernel K is well known,?' # and the upper limit
of the double integral in (1.1) is defined by the
first-quadrant zero of K~2, We define p®(s, t), the
“s-channel elastic part” of p(s, t), as the right-
hand side of (1.1), for all s =4. Following Zimmer-
mann® and Atkinson,'® we write the total spectral
function as

p(s, t)=p(s, t) +p° (¢, s) +u(s, t), (1.3)

where v(s, t) is a symmetric function which is non-
zero only in a certain subset of the region with
§>16, t>16. The basic premise of the strip mo-
del is that v(s, t) can be neglected entirely. For
want of a better name, we shall call v(s, ¢) the
“central spectral function.” It corresponds to
states above the production threshold in both the

s and ¢ channels. Without considering many cou-
pled channels, one cannot determine v(s, ¢) dy-
namically. In the first papers of this series we
suppose provisionally that a model of v(s, t) is
given; v(s, t) is regarded as a prescribed “driving
term.”

For a formulation consistent with the results of
m-m phase-shift analysis, a dynamical treatment
of the channels that contribute to v(s, ¢), consis-
tent with that of the 7-7 channels, will probably
be necessary. Indeed, the observed high-energy
behavior of phase shifts in 7-m scattering suggests
that other channels have an important influence on
the m-7 system.?® Large positive asymptotic val-
ues of the phase shift are seen through Levinson’s
theorem to be associated with CDD poles,? and
the latter presumably arise from resonant inter-
actions in channels coupled to the 7-7 system (for
similar remarks on the 7-N system, see Ref, 31).
It is possible to extend the equations we propose
so as to couple and unitarize additional two-body
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channels, for instance, other meson-meson chan-
nels such as KK and 7, or baryon-antibaryon
channels like NN. Such an extension, to be des-
cribed in a later paper, may be carried out so as
to preserve crossing symmetry. In either the
single-channel or the multichannel formulation,
crossing symmetry demands the presence of cros-
sed two-body processes such as are represented
in the term p°(¢, s) in (1.3). Thus, we have in-
elastic effects somewhat like those of the multi-
peripheral model, in both the single- and many-
channel formulations. A highly realistic theory
would probably require explicit treatment of many-
body channels, at least in an isobar approximation.
Nevertheless, it seems likely that much can be
learned from a well-controlled scheme based on
direct and crossed two-body processes alone. In
particular, it will be interesting to see if the ris-
ing of Regge trajectories can be caused by suc-
cessive openings of channels of higher and higher
mass. Our system is such that trajectories a(s)
eventually turn back into the left / plane at high s,
but with enough channels included, rather large
values of Rew (s) might be attained. (We remind
the reader that experimental evidence for infin-
itely rising trajectories is impossible to acquire,
and that theories based on such trajectories meet
severe problems of principle). Another interest-
ing question concerns the diffractive effects pro-
duced by the crossed two-particle processes. Does
one get a Pomeron trajectory, and if so, what are
its properties?

Since (s, t) is henceforth regarded as given, the
definition of p¢l(s, ¢) as the right-hand side of (1.1)
amounts to a dynamical equation for determina-
tion of pel. This nonlinear integral equation was
analyzed by Atkinson.'® As Atkinson proved by
means of a fixed-point theorem, there is a unique
small solution in a certain function space, which
may be computed by iteration, when v(s, ¢) is suf-
ficiently small and smooth. A solution of (1.1)
gives a crossing-symmetric amplitude which is
unitary in the elastic region, and has the correct
support of double-spectral functions. Atkinson
was able to show that the requirement of inelastic
unitarity, 0<n(l,s) <1, can be satisfied through
constraints on v(s, /). The physical meaning of the
particular constraints required is not clear, how-
ever. Atkinson’s solution of the crossing-unitarity
equation is neither a strip-model solution nor a
bootstrap solution. His v is larger than p®, since
v is small and p® is second order in v. If one puts
v equal to zero, the fixed-point method only suf-
fices to show that the trivial solution, p®=0, ex-
ists. The question of existence of a bootstrap sol-
ution (i.e., a nontrivial solution of the homogen-
eous equation with v =0) is completely open.

An unsubtracted Mandelstam representation im-
plies that there are no Regge poles in the right
half ! plane, since the Froissart-Gribov partial
wave’ obtained from such a representation is ana-
lytic in the right plane. We wish to allow Regge
trajectories a(s) with an arbitrarily large upper
bound on Rew, and that requires the Mandelstam
representation to have an arbitrary finite number
of subtractions. Atkinson extended his analysis of
the Mandelstam equation to the case of one sub-
traction,'® but when a greater number of subtrac-
tions is needed there is an essential difficulty.
The problem is that (1.1), with a subtracted ver-
sion of A;, is no longer equivalent to s-channel
elastic unitarity, as far as the first few partial
waves are concerned. Equation (1.1) was obtained
by taking the / discontinuity of the unitarity equa-
tion for the s-channel absorptive part A, (s, ¢).
The latter contains subtraction terms, which are
polynomials in {, and have zero discontinuity. One
would have to know the subtraction terms, which
contribute only to s-channel partial waves with
l< L, to reconstitute unitarity from (1.1). One
can attempt to deal with the problem by taking the
absorptive parts of low partial waves as functions
to be determined along with p¢l, The ¢-channel ab-
sorptive part A, is written as the first L terms of
its Legendre series plus a remainder given by a
subtracted integral over the double spectral func-
tion. The absorptive parts of low partial waves
are determined by a set of N/D equations, which
are coupled to the Mandelstam equation. A cutoff
h(s) is introduced as a factor of the integral in
(1.1), as in the work of Chew et al.®" '° The set of
equations was studied by Atkinson,'” who obtained
an existence theorem for a crossing-symmetric
solution, analogous to that of the unsubtracted
case. The solution is unitary in the elastic region,
but it was not possible to rule out a truly serious
violation of unitarity at high energy. Atkinson
could prove only that the partial waves are bound-
ed by a power of s, the power being proportional
to the maximum value of Rec.

The trouble arises because the Mandelstam
equation is an incomplete statement of elastic
unitarity. It is then natural to try a pure partial-
wave approach, in which a complete statement of
elastic unitarity is the simple equation

5117 la(, s,)-a(l, s )] =q(s)a(l, s,)a(l,s_). (1.4)
Furthermore, a strict partial-wave approach
should bring out the true power of Regge theory.
The essence of Regge theory is partial-wave
structure, which is naturally obscured in the
plane-wave Mandelstam equation. The traditional
objection to a partial-wave approach has been that
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it would seem to make the imposition of exact
crossing symmetry an awkward matter. We have
known for some time, however, that exact cros-
sing symmetry could be built into a partial-wave
scheme without Regge poles in the right half I
plane.'®'?° Recent work®” has shown that crossing
symmetry in a partial-wave scheme with Regge
poles is also possible. We have explored several
options in the choice of a partial-wave equation to
serve as a dynamical system. Inthe case with
Regge poles in the right plane, the only satisfac-
tory scheme that we could find is one with the N/D
method as a principal element. This is not sur-
prising, since the N/D method (i.e., the Jost
function method) is indispensable in nonrelativistic
Regge theory.® The N/D representation inevitably
gives the deepest view of the partial-wave ampli-
tude, since it allows one to discuss the genesis of

J

Regge trajectories and the CDD ambiguity as well.

Since full crossing symmetry demands inelasti-
city, we apply the inelastic N/D equation of Refs.
24 and 25. This equation was first derived, in
fact, with the intention of applying it in a crossing-
symmetric amplitude construction. The inputs to
the equation are #(l, s) and B(l, s), where 7 is re-
lated to the usual elasticity function 7 [in the man-
ner described in Eq. (2.38)] and

B, $)=c,(l, s)+2 f‘” 1- (1, s')

T Ae g(l, s’)(s'-s) ds’.

(1.5)

Here ¢, is the left-cut part of an appropriate par-
tial-wave amplitude, and » a phase-space factor.
In the simplest case without CDD poles or sub-
traction constant, the N/D equation is

i st ) =B, s) 1 [T EGI=BLS) g o, sryas (1.6)

7
A s-s

The partial-wave amplitide a(l, s) may be construc-
ted from 7, B, and the solution z of (1.6). Now
crossing and unitarity imply that 7 and B are non-
linear functionals of a(l, s) and the central spectral
function (s, £); let us denote these functionals by

n=Ala,v], B=Bla,v]. (1.7)

We see that (1.6) amounts to a functional equation
for the unknown function pair

¥=(n,B). (1.8)
The equation may be written as
P=G@;v), (1.9)

where the nonlinear operator G is defined in three
steps:

(i) Given y, solve the N/D equation for n.

(ii) From 3 and », construct a.

(iii) From a, construct

G@) =(Ala,v], Bla, v]). (1.10)

There is nothing new or problematical about steps
(i) and (ii); the difficult part of the method has to
do with the proper definition of the nonlinear func-
tionals (1.7). An important role for the N/D me-
thod in relativistic Regge theory has been sug-
gested before, for instance, by Mandelstam?®® and
Bali, Chew, and Chu,!° but serious problems con-
nected with these functionals were not solved, and
perhaps not completely recognized. The expres-
sions for Ala, v] and B|a, v] as obtained directly
from the Froissart-Gribov representation of a(l, s),
contain integrals which on first sight appear to di-
verge, and other integrals which appear to have

bad behavior at large s or large |I]. We have to
make extensive rearrangements of these expres-
sions, and place restrictions on v, in order to
show that A and B are actually well defined and
have good asymptotic behavior. The subtlety of
Regge theory is evident in some rather intricate
cancellations of dangerous terms.

Our study of the dynamical equation (1.9) depends
on the methods of functional analysis.'* We shall
not emphasize such methods in the initial papers
of this series, but it may be worthwhile to indicate
briefly how the study goes. Full details will be
published elsewhere. First, we find a function
space (a Banach space) on which G is defined as a
bounded operator when v(s, t) is suitably restricted
(initially, we suppose that » has good asymptotic
behavior, and is sufficiently small and smooth).
The specification of the space involves analyticity
in I, smoothness in s, and asymptotic bounds in
! and s. The task of finding an appropriate space
involves experimentation with asymptotic be-
haviors, and the above-mentioned rearrangements
of integrals. Second, we use the contraction map-
ping principle (essentially an iterative method) to
show that (1.9) has a unique small solution when
v is sufficiently small and smooth. This solution
may be computed by iteration. Third, we show
that G is still defined as a bounded operator in our
space when v is not small, provided that certain
conditions are fulfilled. The set of conditions in-
cludes the requirement that any Regge trajectory
a(s), generated as a zero of the D function, be
analytic in a certain finite region of the s plane.
Unfortunately, the verification of the conditions



2358 PORTER W. JOHNSON AND ROBERT L. WARNOCK 15

depends on quantitative considerations which seem
to demand numerical calculations. The conditions
required are all reasonable, we think, and are
such that they can be checked numerically. ¥ G

is in fact defined and bounded at large v, we can
take the fourth step, which is to invoke the im-
plicit function theorem. According to that theor-
em, the small-v solution, ¢(v), has a locally
unique continuation in v which extends at least to
the first singularity of the Fréchet derivative (i.e.,
the generalized Jacobian) of the operator 1-G. In
a favorable case we could expect to increase the
strength of v (say, by a variable numerical factor),
and not reach a singularity of the Fréchet deriva-
tive before the strength parameter attained the
desired physical value. A singularity does not
necessarily stop the continuation, as was explained
in Ref. 14, Sec. IVF.

In potential scattering, a continuation from weak
to strong potential strength certainly exists. That
simple fact provides a motivation for the strength
parameter continuation in the relativistic case.
For a certain class of potentials such that the scat-
tering amplitude has a Mandelstam representa-
tion,?! potential scattering may be treated by the
method of this paper. The functional equation that
results has a very close resemblance to (1.9); in
fact, the terms in (1.9) which are most bothersome
to analyze occur already in potential scattering.
We see nothing in the relativistic equation to sug-
gest that it will be different from the nonrelativis-
tic one in allowing a parameter continuation.

As an introduction, this first paper is devoted to
the weak-coupling case, in which there are no
Regge poles in the right half of the / plane, and
the Mandelstam representation may be written
without subtractions. For the time being, the only
driving term in our equations comes from the cen-
tral spectral function v(s, t), and “coupling
strength” is understood as being some appropriate
measure of the size and smoothness of v. In the
weak-coupling situation the definition of the func-
tionals A and B of (1.7) is a relatively simple mat-
ter, The only complication arises from the nec-
essity of incorporating the correct exponential de-
crease of partial waves at large Rel. Exponential
decrease is required for correct support of the
double-spectral function, and the failure to account
for it has been responsible for well-known diffi-
culties in earlier applications of the N/D method
(for instance, the difficulty® of achieving correct
threshold behavior of partial waves). Our method
to incorporate exponential decrease may be des-
cribed very simply, but the justification for it is
somewhat subtle. We merely write the N/D re-
presentation for a reduced amplitude c(l, s) in
which both the exponential decrease and the thres-

hold behavior of a(l, s) are taken out by a multi-
plicative factor. In a linear N/D system such a
trick is worthless, since it introduces the singu-
larities of the reciprocal of the reducing factor in
the amplitude a(l, s) as finally calculated. In the
correct nonlinear system in which the N/D inputs
(1.7) are functionals of a(l, s) itself, the inputs
automatically adjust so as to prevent appearance
of singularities of the reciprocal reducing factor.
Our procedure is somewhat similar to Mandel-
stam’s method of strips in the ! plane,?® which was
found to be ineffective for our purposes.

In part II of this series we shall treat the defini-
tion of the functionals A and B in the strong-cou-
pling case, where Regge poles enter the right half
! plane, and the Mandelstam representation in-
volves subtractions. We shall also propose a
method for avoiding Regge ghosts, i.e., for pre-
venting bound-state poles at energies below thres-
hold where trajectories pass through integers. In
this connection we find it necessary to include a
new kind of driving term associated with an s-
wave subtraction constant. One may in fact put
v(s, t)=0 and take the subtraction constant as the
sole input. In that way one obtains the scheme
mentioned above, which seems to resemble a r¢*
theory.

In part III we give the proof that a solution of
(1.9) in fact yields a crossing-symmetric ampli-
tude with Mandelstam analyticity, and discuss
some other technical questions. Part IV will be
devoted to the many-channel formalism. Later
papers will contain mathematical details, exis-
tence proofs and the like, which are not empha-
sized in parts I-IV. In parts I-IV we hope to ex-
plain all of the main issues without giving the
tedious estimates which are necessary for a full
mathematical discussion,

1. DYNAMICAL EQUATION FOR THE WEAK-COUPLING
CASE

For simplicity we discuss pseudoscalar, iso-
scalar meson-meson scattering, with the meson
mass set equal to 1; the inclusion of isospin to
account for 7-7 scattering would be an easy ex-
tension of the formalism. Our purpose is to con-
struct an amplitude A (s, {) having an unsubtracted
Mandelstam representation without single-spec-
tral functions:

1 -3 0
Als, 1) == f f dxdy p(x, y)

X{ 1 . 1
(x=-s)y—-t) (x=—u)y-s)

1
+(7——_~—t)(y—u) J o (2.1)
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Crossing symmetry is ensured by symmetry of
the double-spectral function,

p(s, t)=plt,s) . (2.2)

Because of symmetry under interchange of ¢ and
u (Bose symmetry) the odd partial waves of A are
zero. The even partial waves are equal to the
Froissart-Gribov amplitude a(l, s) evaluated at
even l. The latter is

4

al, )= s [ @A, @

where @, is the Legendre function of the second
kind, A, is the ¢ -channel absorptive part,

1 (” 11
Ads,n=1 [ ds'p(s',t)(s,_s+s,_u> ,
4

(2.4)

and z,, is the cosine of the scattering angle for the
s channel:

2t (2.5)
s-4

2 =1+

=cos0; . (2.6)

The idea of our program, stated in the simplest
terms, is to express A, in terms of the partial
waves a(l, s) and the central spectral function
v(s, !). Equation (2.3) may then be construed as an
integral equation for determination of the partial-
wave amplitudes. With the goal of expressing A,
in terms of partial waves, we first note that in the
elastic region of the s channel, 4 < s <16, the
unitarity equation gives

Aty 9=3 @1+ 1a(s)all, s,)all, s)PE (2,),
i=o

(2.7)
where A is the s-channel absorptive part and
a(l, s,)=lim qa(l, sti€), (2.8)
€04
P(2) =3 Py(2) + P, (=2)], (2.9)
s—4 1/2
q(s) = < > . (2.10)

The Legendre series (2.7) converges only in the
large Lehmann ellipse.® If the amplitudes a(l,s)
are analytic in / for Rel > -€, and decrease suit-
ably at infinity in the [ plane, the sum (2.7) may
be replaced by a Watson-Sommerfeld integral
which converges in the entire cut plane, namely

a9 =3 [ a8l g)au, s )
x P)(z,,). (2.11)

The subscript —€ indicates that the integral follows
the path Rel=—¢€ —io to —€ +io, We require that

(2.12)

The “s-channel elastic” part of the double-spectral
function is defined as

1
O<e<s3.

o (s,l)=§117[As (t,,s)=A(t_,s)], 4<s <16.

(2.13)

To compute this function from (2.11), we recall
that P,(z) is analytic in the z plane with cut

(==, =1), and that its discontinuity over the cut is
given by

% [P(~z,)= P, (-z_)] =—sinml P,(2), z>1.
(2.14)
Hence
s, £) =le,—f_€ A1@1+1)q(s)all, s, )all, s )P, (z.1),

4<s<16. (2.15)

Clearly, p®(s, ¢) is equal to the complete double-
spectral function p(s, ¢) only for s< 16. For lar-
ger s one has to include inelastic contributions to
A which modify the discontinuity of the latter. It
is, nevertheless, convenient to define a function
p¢ at all s, ¢ > 4 as follows:

pils, )35 |ttt 9Pey),  (2.16)

¢(l, s)= Q2L+ 1)h(s)g(sha(l, s,)a(l,s.),

where h(s) is a prescribed smooth function which
is identically equal to 1 for 4 <s <16, and which
tends to zero at least as rapidly as an inverse
power of s at infinity. The exact rate of decrease
that %(s) must have will be specified in part II; it
is related to the maximum value of Rea, where
a is the leading Regge trajectory. In the present
case without Regge poles one can actually take 7z
to be 1 identically, but it will be more convenient
not to do so. The cutoff function # is similar to
that of Chew et al.,® '° except that we do not re-
quire it to be identically zero at large s.

The central spectral function v(s, t) is now de-
fined in terms of the total and elastic double-spec-
tral functions as

(2.17)

p(s, t)=p°l(s, t) +pei(t, s)+v(s, t). (2.18)
We shall see presently that p®(s,¢)=0 for <16,
Since

(pel(s,t), s<16
(s, £)= { (2.19)

pllt,s), <16
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it follows that v(s,¢)=0 if either s or ¢ is less
than 16, I v(s,t) is regarded as given, then Egs.
(1.2), (2.18), and (2.16) furnish the promised ex-
pression of A, in terms of @ and v, and Eq. (2.3)
indeed is an integral equation for the partial
waves if v is given.

The correct support of p(s, ¢t) will be obtained
automatically in this scheme. The partial waves
that we construct obey a bound at large ! and fixed
t of the form?®

lal, s, )| <kl 32[z,+ (25,2 = 1)12] R | (2.20)
L,=|l]+1. (2.21)
This follows from (2.3) if A, has appropriate

smoothness and asymptotic behavior as a function
of {. Also, P, has the bound

| P(2)] sklz+ (2% = 1) /2]Re0 (2.22)

We may close the contour of integration in (2.16)
by an infinite semicircle in the right half plane,
provided that

[zs4+(zs42_1)1/2]2szst+(zstz_ 1)1/2 . (2-23)

Since the integrand is analytic inside the closed
contour, p(s, t) will be zero whenever (2.23)
holds; that is, whenever

16s

t< s—4°

(2.24)

1t is convenient to define the boundary functions

_ 16x _ 4x
W=7, W=7 (2.25)

o is the inverse of 7, and
pel(s,)=6(t=T1(s))ps, t)
= 9( S—O(t )) pel(s’ t)y

Although (2.3) gives an equation for a(l, s), it is
not the equation we want for further work. The
principal objection to the equation as it stands is
that a(l, s) is a very awkward choice for the un-
known function as soon as Regge poles enter the
right half / plane. Another objection is that even
in the case without Regge poles, there is a diffi-
culty in taking the limit Rel~-¢ in (2.3). Although
the limit exists, it cannot be taken inside the ¢ in-
tegral, and that causes analytical complications.2®
Both problems are taken care of nicely if we re-
place Eq. (2.3) by an equivalent equation based on
the N/D representation,

We shall now derive the N/D system. We work
with the reduced amplitude

c(l, s)=a(l, s)</’(s)) , (2.27)

pls)=(s"2+2)2, (2.28)

The function [p(s)/(s — 4)]* is defined with a cut
(=, 4] in the s plane,. in such a way that it is posi-
tive for [/ real, s>4. This reducing factor is cho-
sen to remove the exponential decrease of a(l, s) at
large I, as well as the threshold behavior (s - 4)".
We can then write N/D equations for c(l, s) without
the constraints of exponential decrease and thres-
hold behavior. It is evident from (2.3) that c¢(!, s)
is analytic in the s plane with cuts (-«, 0], [4, ).
The right cut arises from the cut of A (s, ¢),
whereas the left cut comes from that of p(s), and
from the s discontinuity of

(s=4)"7'Q(24). (2.29)

This follows because (z - 1)} @,(z) at complex ! is
analytic in z aside from a cut [~1, 1]. The discon-

(2.26) tinuity of c(l, s) over the right cut is obtained from
s, t=4. (2.3) and (1.2) as
1 4p(sy ° o
a7 let, s,)=c(l, s0)] =;(sp%1))x—+, l dt @, (z41)p%(s, t) +p°(t, s) +u(s,t)]. (2.30)

To recognize the elastic unitarity term in (2.30), we substitute the Watson-Sommerfeld representation
(2.186) of p°!(s,t), take Rel >— €, and reverse the order of integrations to obtain the first term in (2.30)

as

W(ll Zs4)
l)(l’+l+1) ’

1 f ar g, s

where with Rel >Rel’,3°

(2.31)

(=0 +1+1) f: dz @ (2)Pr(2) =W (I, U', §) =(1- &) (£P{(§) - P(£)Q] (£)]. (2.32)
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Note the standard Wronskian identity,3°
wi(, 1, £)=-1. (2.33)

Because of (2.20), (2.22), and a similar bound for
P/ (z), we may close the contour in (2.31) to the
right and find with the help of (2.33) that

i
S [ @uaptis, 1)

7(l, s)c(l, s,)e(l, s.),

s— 4>‘/2 [s —4}’
s p(s)
In the region where k(s)=1, which includes at least
the interval [4, 16], the expression (2.34) is the
elastic contribution to the discontinuity (2.30) of

c(l, s). The remainder of the discontinuity is de-
noted as

1-n2(,s) __ 4p(s)
4r(l,s) w(s—-4)y7!

(2.34)

where

r(l, s)=h(s) ( (2.35)

x [ at Qe p® (e, $) +u(s, 1)

(2.36)
The full unitarity relation for c(l, s) is then
1
% let, s)-c(l, s )] =7, s), s, ), s)
2
R W ULIR (2.37)

4 (l, s)

The function 7(l, s) is equal to the usual elasticity
n(l, s) only at values of s for which 2(s)=1. The
actual overlap function [i.e., the contribution of
inelastic states to the absorptive part of a(l, s)] is
1-n(, s) _1-n%(4, s)
4q(s)  4q(s)h(s)

+[n(s) - 1l g(s)a(t, s,)a(l, s.) .
(2.38)

Nevertheless, (2.37) has the usual formal structure
of a unitarity relation, so that c(l, s,) may be writ-
ten in terms of the pseudo elasticity 7 and a pseu-
do-phase shift § as

~ +2i80,s) _
c(l, S*) = 0, sle 1

2ir(l, s)

We may then apply the N/D method in the standard
way,?* 2% choosing a denominator function D such
that (at real 1)

D(l,s,)=[D(,s,)|e%®

(2.39)

(2.40)

Because the support of pel (¢, s) +v(s, t) is confined
to the region with s> 16, both n and 7 are equal to
1 for s<186.
The s-plane dispersion relation for c(l, s) has the
form
~ ! ? 7 ’
el s)=c, 1, s)+% _/ ds'r(l, s’)e(l, s;)e(l, s’)

4
A s’'-s

s'[1- 72, s7)]

7 f 4l s =) (2.41)

We get the expression for the left-cut term ¢,
simply by subtracting the right-cut term from
(2.3). By (2.3), (1.2), and (2.30) we see that

CL=C +Cy, (2.42)
e 4 © ds’
el s S'—s

f dt p(s’, t[l%TQx(zst)

i
- (P(s 21)“’ Qx(zs’t)],
(2.43)
4 psy
° = ds'p(s’, t)
Jaee [ TERDS, e

The term c, comes directly from the second term
in (1.2). For the N/D method we need the func-
tions C and B, where

C=cp+cCy, (2.45)

B=cy+c,, (2.46)
_1 r~[1-7(, s"]ds’

)2 [ T =) (2.47)
_P = [1-7i(l, s)ds’

call, $)=2 fls T (2.48)

Here P denotes Cauchy’s principal value, so that

1-7(, s)
C(l,s,)=B(l, s)i (L s) @s) (2.49)
The N/D integral equation is?* %
(L, s)n(l, s)=B(l, s)
1 f‘” B(l,s)=B(l,s’)
+= —_——
T J, s=5
x »(l, s"n(l, s’)ds’. (2.50)

The amplitude ¢ is constructed from C, 7, and the
solution 7 of the N/D equation according to the
formula
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c(l,s)=C(l,s)

1 f" B(l, s'w(l, s"n(l, s')ds’
mD(l, s) s'-s

bl

We now have in hand the necessary equations for
presentation of the dynamical scheme described

in Eqs. (1.9) and (1.10). The functional A is ob-
tained from (2.36) and the functional B from (2.46),
with the double-spectral functions that enter being
expressed in term of partial waves through (2.16).
At the risk of redundancy, we collect here the
formulas for A and B:

(2.53)

_ps) b(s")
[ 5o ayT Qt(zst)“WQ(zs't)}

, (2.54)

(2.51)
where
D@, s)=1-1 f 7, 20, snll, )»_a(sl s')ds (2.52)
1/2
A[a; U]= (1 ._._:r?:l(s) j dt @;(z, t)[Pc'(t s)+uls, l)]) ’
) —B ” 1 A(a’ l),l S')]ds 4 ©
Bla, ol ”[6 o, s)s'—s) 77,
4 d '
+55 P(S e f dt Q,(zst)[ ; itli(z_)
where

p(s, 1)=p(s, t)+p% (¢, s) +v(s, 1) , (2.55)

pcl(s,t) =:11—l,— [é dU (21 +1)g(s)h(s)

xa(l’', s, )a(l’, s )Py (24,). (2.56)
The dynamical equation is written as
(ﬁ’B):G(ﬁ;B),

where the operator G is defined in steps as fol-
lows:

(2.57)

(i) Given 7, B solve the N/D equation (2.50) for #.

(ii) From 7, B, n compute a(l, s, ) by means of
(2.49), (2.51), (2.52), and (2.27).

(iii) From a(l, s,) compute

G(#, B) = (Ala, v], Bla, v])
by means of (2.53) and (2.54).

It is understood that the various functions of / and
s are calculated for Rel=—-€ and 4 ss <. One
can see, however, that the amplitude c(l, s) as cal-
culated from (2.51) is in fact analytic in I for

Rel> - ¢, and also analytic in s in the plane with
cuts (-, 0],[4,). The function C is analytic in

s, but neither B nor 7) need have such analyticity.

III. EXISTENCE OF SOLUTIONS, AND CONSTRUCTION
OF THE FULL AMPLITUDE

We have obtained the partial-wave equation (2.57)
by formal arguments. To be sure that the scheme
makes sense, we should investigate existence and
uniqueness of solutions of the equation. We must
also show that a solution leads to a full amplitude
A (s, t) having unitarity, crossing symmetry, and
Mandelstam analyticity.

In order that the transformation G be well de-
fined it is of course necessary that the functions
7 and B satisfy certain conditions of analyticity,
smoothness, and asymptotic behavior. We can
show that if the pair (1, B) satisfies appropriate
conditions, then so does the pair G(7), B). That is,
the transformation is a mapping of a certain func-
tion space into itself. The precise description of
this space, and the proof that the operator takes
the space into itself, will be published subsequent-
ly. At present we shall mention only the most es-
sential features of the space. Namely, the func-
tions 7(Z, s) and B(l, s) are to be analytic in ! for
Rel > - €, continuous in ! for Rel=-¢€, defined for
s >4, and continuously differentiable in s in that
region. Furthermore, both functions should have
the reality property

f,s)=f*s)*. (3.1

The functions and their derivatives are to satisfy
bounds as follows:

l+[B(l,S)l,SlasB(l»SH\(ll;ilns ’ @2
kln(s)| [s-41""
L |1-7(, s)|, sia, (L, s)| < W[Pl(s)] ’
(3.3)

with
py(s)=——= (s+23‘/2-8)2 (3.4)

Further, ?)( 1,s)=1for 4<s<16. In addition,
there are requirements of threshold behavior, and
of Holder continuity of s derivatives, which we
shall not relate here. We define a Banach space

S of function pairs (1-7, B) having the properties
mentioned, and show that the operator G takes a
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subset K of the Banach space into itself, provided
that the central spectral function v(s, t) is suitably
restricted and sufficiently small. Furthermore,
we can use a fixed-point theorem to prove that
there is a solution to (2.57), unique in K, for each
such v(s,t). The solution, which varies contin-
uously with v, may be constructed by interation.

The scattering amplitude c¢(l, s,) constructed
from the solution (1-7, B) in the set K will obey
bounds similar to (3.2). When stated in terms of
the amplitudes a(l, s,), the bounds are

s—4 R 1

la(l, S*)ISK[ p(s) ] 1,3%Ins ’ (3.5)
s~4 Rel 1

|8ga(l, s*)lsx[ p(s)] =4 s (3.6)

A restriction on v(s, t) sufficient for our purpose
is that the Froissart-Gribov projection of its con-
tribution to A (s, t) be a member of the space S. If
V(l, s) is defined by

' 3
v, s)=£-%,7£6 1 Q; (ze)Vils, 1), (3.7)

1 /° 1 1
Vt(s,t)=;_/‘ dS,U(S', t)< s'=s +s'—u )’
16
(3.8)

then we require in the first instance that

K K
|V(l9s)|$l+_3/21Ts—, lasV(l,S)|<l+T§;ln—s-

(3.9)

As we shall show in part IV, it is possible to make
a simple model of v(s, ) which has some physical
appeal and also yields a V(J, s) that lies in the
space S.

For w(s, t) sufficiently small, there will certainly
be no Regge pole for Rel> —€. Since the function
n(l, s) is uniformly small for small v(s, t), the

w 1 ’
%j; dt Pel(s'; t) { (spisi)tn @, (zst) - (gfs_)

Now the integral on the right-hand side converges
absolutely for Rel=-¢€ by virtue of a cancellation
of its two terms at large f{. The other integrated
term is well defined on Rel=-¢.

After a fixed point of the mapping G is attained,
it still remains to construct the full amplitude
A(s, t), and to verify that the latter has crossing

function D(l, s) is uniformly close to one, and never
vanishes [see Eq. (2.52)]. Consequently, c(l,s) as
defined in (2.51) is analytic for Rel> —¢ since its
various ingredients have such analyticity. The
function 7(l, s) will never vanish at small v; it is
uniformly close to 1, according to its definition
(2.53). The linear integral equation (2.51), solved
in step (i) of the evaluation of the mapping G, has
a unique solution at weak coupling. It is a regular
Fredholm equation in this case, and the norm of
its kernel is less than 1. If the coupling strength
is increased, it may be possible for D(l, s) or

(2, s) to develop zeros for Rel> —¢ or for the
linear equation (2.51) to reach a condition such
that the corresponding homogeneous equation has
a nonzero solution (i.e., the kernel acquires a unit
eigenvalue). Zeros of D correspond to the Regge
poles, which will be discussed in part II. If 7
were to have a zero, the Fredholm character of
Eq. (2.51) would be lost, and the problem would be
much more complicated. Since 7(l,16)=1, one can
always choose the cutoff z(s) to be so rapid as to
prevent a zero of 7. The question of whether a unit
eigenvalue of the kernel in (2.51) occurs at strong
coupling is a quantitative one, which we cannot
answer without numerical calculations. A unit
eigenvalue is not necessarily fatal to the scheme,
but we shall not discuss the effect that one would
have. Earlier calculations with the N/D method
have not encountered unit eigenvalues, even at
realistic values of coupling strength.®!

Most of the technique required for proof of the
existence theorem mentioned above is given in
Ref. 21, but there is one new feature in the present
scheme which did not arise in that work. Namely,
the ¢ integral in (2.43) does not converge
absolutely for Rel=-¢, although it does so for
Rel> -€. The part of the integral that causes trou-
ble is from pel(s’, t). By applying (2.34) we can re-
write that term as

l 13 ~
(s' =4y Q;(Zsu)} =§%(ﬂ] dtp(s’, t) {(S_IW Qi (24¢)

- rl‘l)u—th (zs':)]

+[ ( lf’((ss))y -1 r el sDel, s, (3.10)

symmetry, unitarity, and Mandelstam analyticity.
Although we have taken the latter properties as
ingredients of our equations, it is not immediately
obvious that A (s, t), constructed from a solution
of the equations, will have these properties. To
show that all is in order, we first demonstrate
that the amplitude c(Z, s), obtained from a solution
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of (2.57), satisfies the unitarity equation (2.37).
We then prove that the corresponding amplitude
a(l, s) is actually given by the Froissart-Gribov
formula (2.3), with A, determined through (1.2),
(2.55), and (2.56). Since the Froissart-Gribov
formula implies the bound (2.20), the double-spec-
tral function (2.55) will have the proper support.
Now the solution to our problem is given by the
crossing-symmetric formula (2.1), with p deter-
mined from the N/D partial wave through (2.55)
and (2.56). This is true because the Froissart-
Gribov amplitude is the partial-wave projection
of (2.1). This partial wave is unitary in the elas-
tic region because it satisfies (2.37), with 7 being
equal to one for 4 <s <16,

To show that the amplitude (2.51) satisfies the
condition (2.37), it suffices to show that

1 W, s)D(1, s, )
2ir(l,3)[ D@, s,) —1] . (3.11)

c(l,s,)=

It is readily seen that (3.11) implies (2.37). Ac-
cording to Egs. (2.50)-(2.52), we have (suppress-
ing the variable 1)

D(se(s)= | Bls)sd lz%és))]u(s*)

P [~ B(s'W(s')n(s')ds’
+’I_T-,£

s'=s
+iB(syr(s)(s)
_= . 1-7(s)
=7(s)n(s) i () D(s,)
_~, \D(s_)=D(s,) _1=7(s)
=n(s) 259 (3) 297 (s) D(s,) ,
(3.12)

which is the desired result (3.11),
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To verify that c(l, s) of (2.51) is identical to the
Froissart-Gribov amplitude (2.3) (multiplied by
[p(s)/(s —4)]), we show that the two amplitudes
have the same discontinuities over their cuts in
the s plane. Since either amplitude vanishes at
infinity in the s plane, uniformly in direction, it
will follow that the amplitudes are equal. By
(2.34), (2.36), and (2.37) we see that the right-cut
discontinuities of both amplitudes are the same.
The left-cut part of the N/D amplitude is the left-
cut part of C(l, s), which was originally calculated
from the Froissart-Gribov formula. Thus, the
discontinuities of the two amplitudes agree on both
cuts, and the proof of Mandelstam analyticity,
crossing symmetry, and elastic unitarity is com-
plete.

For simplicity in notation we have chosen to
write the functional Bla, v] in (2.54) in a form which
is not recommended for numerical computation or
further analysis. One can eliminate some inte-
grations by reordering integrals and employing
Watson-Sommerfeld transformations. The rec-
ommended form, perhaps not so pretty as (2.54),
is obtained by specializing the formula to be given
in part II to the case without Regge poles.

The equations with Regge poles, developed in
part II, represent a smooth continuation with re-
spect to coupling strength of the equations of this
paper.
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