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We fully develop the content of the Schwinger variational principle for the phase shifts in potential scattering.
We introduce matrix Pade approximations built up from the perturbation expansion of the Green's function.

They appear to lead to a new type of (Pade) approximation when optimized through the variational principle.
These new approximations, which are no longer rational fractions in the expansion parameter, appears to have

the full analytical richness of the exact solution. For the case of a nonchanging-sign potential these new types
of approximations provide the best bounds to the phase shifts and bound states. The extension to arbitrarily
singular potentials is also discussed. A numerical example confirms the extreme efficiency of the method

Typically, for values of the coupling giving rise to one or two bound states the phase shifts are obtained within

10 ' of their exact values, and this on the full range of energy, by including only the first and second
Born terms of the perturbation series.

INTRODUCTION

Variational methods have been extensively used
in potential scattering for computational purposes.
Also, Pads approximants (PA's) have been ex-
tensively investigated and their convergence prop-
erties established for a wide class of potentials. ' '

Actually the standard variational procedures
have been preferred since they involve almost the
same computational difficulties as the second Born
approximation and produce very accurate results
if the number of trial functions is large enough.
The PA's may reach arbitrary accuracy only if an
increasingly high number of terms in the Born
series is supplied.

However, the algebraic nature of the Pade algo-
rithm finds its full use when a differential or in-
tegral equation is lacking and only the perturbation
series is available, as in field theory.

Remarkable progress was achieved after real-
izing that the PA's could be derived from varia-
tional principles' ' and that the off-shell momenta
of the Green's function could be treated as varia-
tional parameters. ' Starting from the Ritz princi-
ple the use of PA's on the half-shell T matrix for
computing bound states and resonances was rigor-
ously justified. ' Quite independently, the theory"'
and applications" of matrix PA's were developed
and a great improvement in low-energy nucleon-
nucleon scattering was achieved. ""By com-
bining the variational and matrix aspects of the
PA's very accurate results were obtained for the
phase shifts of a sign-changing potential with a
very-low-order approximation. '4 This purely nu-

merical approach was then found to have its theo-
retical foundation in the Schwinger phase-shift
variational principle. "

This last approach is the most general since it
combines, as we shall prove, the algebraic prop-
erties of PA's with the extremal properties in the
off-shell momenta. We shall also prove that for
potentials of definite sign the phase shifts and
bound states computed from the [N/N ] PA provide
strict bounds, converging monotonically to the ex-
act solution, and that this result can be extended
to arbitrarily singular potentials if a suitable reg-
ularization procedure is used. "

As a numerical example we have considered the
S wave for the exponential potentials. The [1/1]
PA to the K matrix involving the physical and at
most two off-shell momenta always provides very
accurate solutions (better than 1%) for coupling far
beyond the typical values of strong interactions.

As a consequence the variational matrix PA be-
comes competitive with the standard variational
methods and allows extensions to field-theoretical
models to which the standard methods cannot be
applied.

I. THE SCHWINGER VARIATIONAL PRINCIPLE
FOR PHASE SHIFTS

We consider the scattering operator K(E), the
solution of the Lippmann-Schwinger equation, for
a Hamiltonian H =H, + gV,

K(E) = gV+ gVGO(E}K(E)&

where

Go(E) = 2 [(E+ie —Ho) '+ (E —ie —Ho) ']. (1.2)

The formal solution of (1.1} reads

K(E) =[1—gVG, (E)] 'gV,

which is the [1/1] operator Pads approximant to
K(E).
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We assume V to be a positive, regular, central
potential and consider a set of eigenstates Iq ) of
H, and 7 the total angular momentum (the label j
will be omitted); n will take the values 0, 1, . . . ,
L-I with E=q, '/2~v and S~ will be the space
spanned by

I q, ), . . . , I q~, ). The physical ampli-
tude is given by

(q IK(E) Iq ) = —tg6/(2mq, ) (1.4)

and the off-shell matrix X, restriction of K to S~,
reads

x.s(&)=(q I&(&) lqs& o. p=o I . I -1.
(1.5}

n=0, 1, . . . , N —1, can=0, 1, . . . , L —1

it is clear that Si icg2 ic ~ ~ cgj, icS if 8 is
the Hilbert space on which K is defined.

The stationary values of S,~, where 4 varies in

8~„, can be worked out and read"

The amplitudes X ~(E) are the stationary values of
the Schwinger functionals

8,8(g) = g(q I vlf&+g(glvlq&)
- g&& I

v gvG, (z}v
I

&&. (1.6)

Letting h ~ be the space spanned by Iq, ), . . . , Iqz, , &

and S~„be the space spanned by

(G.v}"Iq & (1.7)

x~«= stationary value of 6t(4 ) lq c h «
XN +XN+l.

—g(X„.. . , X«) (1.6)

XN +XN+ j @2M-I +@2M

The meaning of this symbolic notation will be ex-
plained in Appendix A, where we also show that.
X~« is the (N/N J matrix PA to X.

Consequently we shall write

= [N/N] (1.9)

where the superscript L has been introduced in or-
der to remind t;he reader that we deal with L x L
matrices.

The restriction g of the transition operator T to
S~ is related to X by

i2mqpP, (1.10)

II. VARIATIONAL BOUNDS

If we redefine the vectors in (1.6) so that I4'&
=V'~'I@& and IP )= V'~"

Iq ), we then deal with
L' vectors and a completely continuous operator
V'~'G, (E)V'~'. The subspaces $~«will be defined
replacing

I q ) by
I P ), and the associated pro-

jectors P» will be introduced.
It is easy to show (see Appendix B) that X~" is

where P o 6 p 5gp ls a Projection onto the Physical
state. Owing to the covariance properties of the
ma. trix PA, ' Eq. (1.10) is satisfied at any order by
the matrix PA to 1 and X. As a consequence any
convergence property proved for X will immediate-
ly extend to V'.

the exact solution of Eq. (1.1) for the potential

VL, g —V' PJ. ~V (2.1)

Equation (2.1) gives the physical meaning of the
matrix PA.

As a consequence of S~ ~cS»„cSwe have

Vz, w r, xi (2.2)

and by the Feynman-Hellman theorem, "we get

(2.3)

where 6~ ~ is the phase shift corresponding to the
on-shell amplitude of [N/N]z~, that is, the phase
shift produced by the potential V~ „. This occurs
for a given E andg&0. For g&0 the inequalities
(2.3) must be reversed.

Similar relations hold if one varies L and N is
fixed. Since 6» is obtained from the matrix PA
to 3, it will depend on the L —1 off-shell momenta

q; as a consequence of (2.3) the best approxima-
tion is obtained by choosing the minimum of 5»,

min 6z «(E,g, q„. . . , qz, ) ~ 6(E,g) (2.4)
(c~)

for g&0. For g&0 the min is replaced by max in
(2.4) and the inequality is reversed. Equation (2.4)
is a very convenient version of the phase-shift
variational principle since it is computed from the
perturbation series of the Green's function.
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Starting from the Ritz principle a similar in-
equality can be shown to hold for the bound
states, " namely

g s (g ~ + c ~ ~ ~ (g (0 (2.5)

III. A NUMERICAL EXAMPLE

The variational Pade method has previously been
applied for computing the phase shifts and scat-
tering lengths of square-well potentials. For a
single square well the exact result is numerically
reproduced, using only one off-shell momentum
when it is equal to the momentum of the particle
inside the well. " (Since it is for the semiclassical
value of the momentum that the extremum is
achieved, we are allowed to think of a deep connec-
tion between the variational matrix PA and the

180
g= -6

if g~ labels the value of g for which the Sth bound
state occurs at a fixed energy E&0.

The computation of the g ~" is easy since they
appear to be the Sth-ordered zeros of the deter-
minant of the matrix PA denominator [i.e. , the ma-
trix whose inverse appears in Eq. (1.9}], i.e. , the
zeros of the Jost function of the potential V~„.'

The best approximation is then given by

maxg~ss(E g qo q qz- )~gs (2.6)
[e~]

where also q, can be varied since it is no more re-
stricted by the energy-shell condition q, '/2m = E.

For singular potentials the previous method can
be used by introducing a suitable regularization
according to the same procedure as for the scalar
case." The regularization parameter & then ap-
pears as an extra variational parameter.

WEB method. In fact, it is also conjectured that
for a p-wells potential the [p/p]~' matrix PA pro-
vides the exact solution for the physical ampli-
tudes, the extremal values of the off-shell momen-
ta are the classical momenta of the particle in the
individual wells. ) With two square wells of oppo-
site signs several extrema are found and the ex-
tremum closest to the physical momentum always
provides a very accurate result. '4 We have con-
sidered here a continuous potential in order to
have an exhaustive numerical check of the method.
The S wave of the exponential potential has been
chosen since the analytic solution is known for the
S matrix and can be easily worked out up to sec-
ond order for the off-shell K matrix.

For V= e ""we have computed the phase shifts
and scattering lengths for different values of g
positive or negative (see Figs. 1-4 and Table I)
and the first two bound states g„=g„(E) (see Fig.
5}. For weak values of g in the attractive case 0
)gR —1 (for g& —1.44, there is no bound state so
that g= —1.5 corresponds roughly to the physical
value of the vNN coupling), the results are excel-
lent with a [1/1] PA and L = 2, namely when only
one off-shell point is used; the exact solution is
reproduced within 10 ' at any energy. With L = 3
the accuracy reaches 10 4. For very high cou-
plings g- —10 we have two bound states and with
L = 3 accuracy is still 10 ' and rises to 10 4 with L
=5. For a repulsive interaction the accuracy is
always higher for the same value of ~g~. With L
=3 the scattering lengths are reproduced within
10 ' for any g. For example, see Fig. 6 for the
[1/1]s matrix PA to the S-wave scattering length
for L =2, 3 when g = 10.

Finally the first two bound states are reproduced
with L =2 within a few percent for g& —100. With
a sign-changing potential V = e "&"+ p e "2", p & 0,

90

[1z1]'v
[1x1]' v

360

270

.5 1.5 I v]

180

90

[1x1]'v
[1i1]'v

FIG. 1. The exact S-wave phase shift, broken line, of
an exponential potential is compared with the scalar
l1/1j PAandthe variational[1/1] matrix PAforI. =2, 3,
namely for one and two off-shell points, for the coupling
g=-6 in the attractive case. The variables used are
defined as in Appendix C.

—[1X1]'

1.5

FIG. 2. Same as Fig. 1 but with g =-8.
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FIG. 3. Same as Fig. 1 but with g=-10.

the numerical experience shows that if one chooses
the extrema corresponding to the values of q,
which are closest to the physical momentum q„
usually the phase shift is best reproduced. Fur-
thermore, the accuracy is still comparable to the
case where the potential does not change sign even
for values of the coupling such that two bound
states are present and the phase shift changes its
sign. See the particular numerical examples for
the sign-changing potential in Figs. 7-9.

IV. CONCLUSION

The method we propose proves to be very effi-
cient and rigorously justified for positive potentials
and can be extended to relativistic equations such
as the Bethe-Salpeter equations and to many-body
nonrelativistic interactions. The method applies

FIG. 4. The variation of the phase shift with the off-
shell momentum q& is shown for the [1/1] matrix PA
when g=-8, (

&~=1.

to field theory as well since the off-shell Green's
function is well defined by its perturbation expan-
sion. Even though the variational procedure cannot
be ensured (this may be due to unknown effects of
infinite renormalization on the variational principle
for the phase shifts), the quasipotential solution"
will always be provided by the [1jl] matrix PA if
the number of off-shell points is increased until
numerical stability is reached.

'The efficiency of the variational method can be
understood if we look at the analytic structure in
the coupling constant. The ordinary [N/N]~ matrix
PA's are rational functions of g with NL zeros and
NL poles; even though infinitely better than a di-
vergent Born series, they can in some cases be

TABLE I. The exact scattering length is compared with the scalar [1/1]' PA and the vari-
ational [1/1] matrix PA for L =2, 3. The extremal values of the off-shell momenta q& for
[1/1] and q&, q2 for [1/1] are also quoted.

Exact [1/1] ' [1/1]'V [1/1]'V q]/V q,'/p, q,'/p,

2.0000
4.0000
6.0000
8.0000

10.0000
12 ~ 0000
14.0000
16.0000
18.0000
20.0000
22.0000
24.0000
26.0000
28.0000
30.0000

1.8675
2.5427
2.9465
3.2339
3.4570
3.6393
3.7935
3.9270
4.0448
4.1502
4.2455
4.3325
4.4125
4.4866
4.5556

1.7778
2.2857
2.5263
2.6667
2.7586
2.8235
2.8718
2.9091
2.9388
2.9630
2.9831
3.0000
3.0145
3.0270
3.0380

1.9657
2.5398
2.9440
3.2321
3.4558
3.6383
3.7921
3.9247
4.0411
4.1447
4.2377
4.3222
4.3903
4.4703
4.5359

1 ~ 8674
2.5426
2.9465
3.2339
3.4569
3.6388
3.7922
3.9247
4.0418
4.1480
4.2449
4.3323
4.4123
4.4865
4 ~ 5555

0.6240
0.5732
0.5313
0.4957
0.4645
0.4366
0.4114
0.3883
0.3668
0.3466
0.3275
0.3893
0.2918
0 ~ 2748
0.2583

0.4765
0.4246
0 ~ 3809
0.3386
0.2782
0.1526
0.2860
0.4130
0.6796
0.9462
1.2128
1.3462
i.2878
1.2544
1.2210

1.1334
0.9793
0.8459
0.7268
0.6105
0.5105
0.4838
0.3172
0.4285
0.4116
0 ~ 3860
0.3691
0.3635
0.3572
0.3520
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IO
Iso

[)/I]'v
[I/i]'v

IO

FIG. 5. The exact binding energies for the first and
second bound states (broken lines) are compared with the
variational [1/1]~ PA for L =1,2.

inadequate to approximate the complexity of the
analytic structure of the T matrix.

The variational procedure modifies the analytic
structure of the PA's, which are no longer rational
functions of g. In fact the extremal values of the
off-shell momenta are functions of g and allow the
PA to get a structure with the same richness of
singularities as the exact solution.

The best example of such a. mechanism is pro-
vided by the [1/1]' PA for a square well: Before
the variational choice of q, the [1/1]' is a rational
function with two poles; after that [1/1]' is the
exact solution, namely a function with an infinite
number of poles.

APPENDIX A: MATRIX PADE APPROXIMANTS

Let T(x) be an analytic matrix with Taylor ex-
pansion at the origin given by

(Al)

The right Pade approximants are defined by

'[X/M ]„„,= 'p„(x)'q„-'(x)

200
1

300 E MeV

FIG. 7. The exact S-wave phase shift (broken line) for
the sign-changing potential V(&) =V& 8 ""&+V'2 e ""2 is
compared with the scalar [1/1]' PA and the variational
[1/1] matrix PA for I =2, 3. %e have chosen &&=500
MeV, V2=-90 MeV, &&=0.6 F, &2=2.8 F, and 4m=&
=1 so that go=(E/41. 4682)~ 2 F ~, where E is the energy
in MeV.

and the left PA's by

(A3)

lp(x) Rq (x) 8/ (x) 0(x/+M+1)

'q„(x)T(x) —'p„(x) = O(x" "').
Theorem I. If the left and right PA's exist they

are equal. It is a, trivial consequence of the defini-
tion. By virtue of this theorem we shall drop the
labels or L in [N/M].

(A4)

(A5)

EXACT

' [X/M )„„='q„-"(x)'p„(x),

where Rq„(x), ~q„(x) and sP„(x), P„(x) are ma-
trix polynomials of degrees Iand N in x, such that

QP

5.45

20-

IO

FIG. 6. The [1/1] matrix PA to the S-wave scatter-
ing length for L =2, 3 is plotted against the off-shell
momentum g& when g= 10. For [1/1] the various curves
correspond to g2/p =0.1, 0.2, 0.3, 0.4, 0.5.

0 I

I q 2 q, Fermi

FIG. 8. The phase shifts obtained from the [1/1]
matrix PA for L =2, 3 are plotted against the off-shell
momentum q& for the same potential as in Fig. 7 at
E=60 MeV. For [1/1] 3 the curves 1, 2, 3, 4 corre-
spond to q&=1.25, 1.5, 1.75, 2 F, respectively. The
exact phase shift is & =41.458 and the [1/1] ' scalar PA
gives & = 93.398.
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From (A4) [or (A5)] we get a system of linear
equa. tions for the coefficients of ag, aP~ (~Q„,
P~). Letting

EXACT

Q„(x) = x'q„
0

aP~(x) = x'p„,
-0

the linear equations read

(A6)

T,-,q, =0, N+1~j ~N+M
-0

QT; i, q„=P, , o~j ~N

(A7)

(A8)
2 q0 Fermi "

with the convention q~ = 0 for k &M.
The computation of the PA by solving (A7) is

somewhat involved, and we will show that an equi-
valent symmetric form, more suitable for compu-
tational purposes, can be derived using the follow-
ing variational principles.

The equivalence theorems which state the equali-
ty of the right-hand form, the left-hand form, and
the symmetric form will be given for M=N+1; the
generalizations are obvious.

Let (R, g, and K be the functionals

(A14) and (A15) and write

2„=g(li), (R„=(R(p),

Ksi = K(Xq p)q F~ =g~i+6t~i —3Csi.

The stationary value of F, is obtained from

(A16)

2 g~-1 g~-1 ' +-1g 0
Bi,. BX,. BX,.

(A17}

FIG. 9. The same as Fig. 8 for E=200 MeV. The
exact result is ~=0.906 and the [1/1] scalar PA gives
6 = 177.24.

g = x' 'Pt,.T, ,
z=0

(AS) BF BS X-'g eX-' X 'g =0.
Bp, Bp. . Bp. . (A18)

(R= x' T,.p, ,
z=o

(Al 0) We label by li.,' and p, ,' the solutions of (A17) and

(A18), which ca.n be explicitly written as
N

3C =Q X,.(T,,„xT,„„)ii.,x'"-,
z=0 =0

(A 1 1)
0=0

(A1S)

and define W, and &, by

6:,(X, p) =2+61-3C,

8', (X, p, ) =613C 'Z.

(A12)

(A12)

The stationary value of 5, is obtained by solving
the following linear system in X and p, :

st@ st Tz X~ Tz+fz —XTz+Iz+1 x

where we have set

2,', =Z(l~'), 6t,', =6t(ii')

K,', =K(X', p, '), 5' =6t,', K,', '2,', .

(A20)

BS, Bg BX
BX; BA.; BA.;

g =8 =K =5"=P" (A21)

Theaxem II. The stationary values of F, and F,
are identical and one further has

=0,

Ti (Tiik xTi+0+i) i k'

(A14)

Left-multiplying (A14) by A, and summing over i
we get $„=3C„; right-multiplying (A15) by ii, we
get S„=X„.As a consequence

=0. (A15)

B5, BS BK
Bp, Bp. Bp, .

I

=x' T,. X„(T,,, xT,„„)x'.
=0

g t +'8 t X t g t S t K

In order to prove the last part of theorem II we
left-multiply (A1S) by 3C,', '2,', and notice that
p~K,', 'g,', fulfills the same system of equations as

namely (A14); consequently we have

We shall still label by A.„and p, ~ the solutions of Wn
= Pa+st gst. (A22)
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Right-multiplying (A20) by p, , x' and left-multiply-
ing by 6I,', 3C,', ' we get, accounting for (A22),

N

6t s ) =QT ( p& x

is the denomina, tor of [N/N+1]. The last relation
in (A26) is obtained accounting for (A25). We no-
tice that (A25) implies

i=O

=e,'t X,'t-' ~k' T,.„-xTi,k„p, ',.
s=O k=O

X Xi+k+ I lg/st st

and

x qk x pN ~p g Oy ~ ~ ~
p N

-0

-xN" S,'t = x'T, —p,
'x""

(A27)

est
2 (A23)

Theorem III. The stationary value of F2 is the
right (or left) [N/N+1] Pade approximant. We no-
tice tha, t Eq. (A19) can be written

xl+k T q
l =0 k=O

QN 1 k T k OP Z OP ~ ~ ~ PNi
-0

where

(A24)

Ty-k&k
2=0 =0

RP (x) (A28)

~N+1 I 0 ~st +st y

qn+, ~ =x (I a
—pa, ), k =1, . . . , N,

N+ I
qO = —X P, N.

(A25)

where (A8) has been used to identify the numerator
of the [N/N+ 1] PA.

Finally from (A25) and (A28) we get

2 st st st
If we change the indices in (A24) a.ccording to k'

=N+1 —k and j=N+1+i we see that (A24) and (A6)
are identical and

N+x

sq„„(x)=Qx" qx

—RP (x) Rq -I(x)

=[N/N+ 1]r(„). (A29)

XN+lgr -1~ t
st st (A26)

Theorem IV. The symmetric form of the
[N/N+1] PA is given by

TO x Tl
T

TN x TN+j TO

[N/N+ 1]r(g) ——(To& T„.. . ) T„) (A30)

x TN+i T2N x T2N+1 TN

In fact replacing ),x' by X, and p.kx by p, and set-
ting

F"= TM-'T. (A33)

Mik T i+k x Ti+k+ j&

we can write

Ti&i+ X;Ti~ — ~i Mik&k
t=O c=O =0

=T p, +XT —XMp. .

The stationary condition for 5, gives

T =AM, T =My.

(A31)

(A32)

and the stationary value of F, obtained replacing X,

p from (A32) in (A31) gives

We recognize that (A33) is the right-hand side of
(A30) and by theorems II and III it is the [N/N+ 1]
PA.

In Eq. (A30) we have introduced a block matrix
and block vectors; the blocks are the L x L ma-
trices T„. Vector matrix multiplication must first
be performed according to the standard rules on
the individual blocks and then the block products
must be computed as L &&L matrix products. The
inverse of the block matrix is the actual inverse
of an L(N+1)x L(N+1) matrix and will be cast in
a block structure itself.
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APPENDIX B

It can be shown that the variational solution (1.9) is identical to the exact resolvent of P~»V'/'G, V'/'Pz»
restricted to the subspace 8» ~. Since we have proved that (1.9) is a matrix PA we write

([N- I/N]x/g) g =(q~
l
V"'[I —gP~»V"'G, (E)V"'P,»] 'V"'lqg). (»)

Setting

A =PJNV'

A =V' P~„,
AA=V' 'P V' '=V

a.nd accounting for Pz»V'/'lq ) = V' 'lq ) we get

([N —I/N]z/, )„=(q,lA'[1 —gAG, (E)A'] 'A lq, )

=(q.
I
A'A[1- g G.(E)A'A] 'lqs)

=(q, lV „[1—gG, (E)V „]'lq~)

(B2)

(B3)

(B4)

and it is evident that the [N —1/N] PA is the exact
solution for the nonlocal potential V~„.

Furthermore, from a known property of the PA
we have

In the scattering region E & 0 we have

g, , /2 2Zv= (2m-E—)' '= ——q, .
p,

(C5)

[N/N ]a= g [N —1/N]x/, .

APPENDIX C

(B6} The S matrix S = e'"0 is given by

8 =H(- v, g)/H(v, g),

where

(C6)

Setting 8= 1 our model Hamiltonian II =H, + V
reads

1+~ k! (v+ 1)(v+2) ~ ~ ~ (v+) }
'

Ho=—
1

2m
V(r) = V, e "". (C1)

The off-shell amplitudes computed from (C2) and

(C3) explicitly read

The integral equation for the stationary 8-wave
function Q(q, r) which vanishes at r= 0 is given by

sin qt' , sin qp'&
P(q, r}= —2m dr' ' '

scoq, r&
0 0

2 2 2

2«// V'+(q - q')' V'+ (q+q')"
3

K, (q, q') =—,P'(q, q')+P( q, —q')-
2P? p. 2/0 g'g

x«(r') 4(q, r'), (C2) -&(q, -q') -P(-q, q')]

where r&-—min(r, r'), r&
——max(r, r'), and q,

=(2mE)' '. The off-shell K matrix reads

(q'IK(E)lq&= dr '", V(r)y(q, r).
0

(C3)

where

+ 2m//, —,
' vK, (q, q, )K,(q„q')0(- E),

1 p' p(2q, +3q+q')
2 )/. '+ (q, +q)' 4 p'+ (q+ q')'

(C9)

In order to have dimensionless variables we have
set / (q. +q')

2 u'+(q. -q}' V'+(q. +q')" (C10)

v =—(- 2mE}' ', g =, V,.2 y/2 2m
(C4) For E&0, q, will be replaced by i-,'p, v.
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