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Pseutloparticles from solitons*
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It is shown that pseudoparticles can be derived from solitons. A transformation is found between the finite-

energy solutions of the two-dimensional sine-Gordon theory and the special class of collinear finite-action
solutions of an SU(2) gauge theory in Euclidean space.

I. INTRODUCTION

The connection is made between collinear
pseudoparticle solutions' of pure Yang-Mills the-
ory in four-dimensional Euclidean space and the
soliton solutions of the two-dimensional sine-
Gordon equation. Finite-action solutions of the
Euclidean classical equations of motion —pseudo-
particles —have recently been exploited in the
computation of the functional integral to describe
the corresponding quantum field theory. ' In earlier
work, quantum-mechanical interpretations have
been given to solitons —finite-energy solutions
of Minkowski classical equations of motion. 4 In
this paper, it is shown that the family of classical
finite-action Euclidean solutions for an SU(2)
gauge theory, corresponding to n pseudoparticles
on a line with arbitrary separations and sizes,
can be derived from the solitons of a Minkowski
equation of motion. '

II. COLLINEAR PSEUDOPARTICLES
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y = t, the Euclidean time.

p(x, y) is given by the solutions of
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which ensure nonsingular gauge fields A'„. Equa-
tion (2.4) is the Euclidean Liouville equation. The
solutions we want are
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is an anti-Hermitian matrix, and 0" are Pauli
matrices, generators of SU(2). The equation
of motion is
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It has been shown by Witten' that a solution to

(2.2) with finite action I= t n} 8m'/g' for integer
n is given by

III. TRANSFORMATION EQUATIONS

The connection between these solutions and the
solitons of the sine-Gordon theory is as follows.
The scalar curvature of a two-dimensional sur-

15 2337



2338 L. DOLAN 15
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the scalar curvature in these coordinates is

QR=
sina(u, v) au a v

'

Under a coordinate transformation, R is in-
variant. Thus

(3.1)

face with coordinates (x, y) and metric g„,
=e ""5„„is R = —V'pe . If we consider a co-
ordinate transformation u (x, y), v(x, y), where
the metric is now given as a function of u, v:

dv—= —e
dQ

(3.6)

Therefore

Equation (3.5) defines p(x, y). Equation (3.4) is
equivalent to (3.2).

The Beltrami equations can be solved when a
particular analytic function n(u, v) is chosen. '
Define e(u, v) =x(u, v) + iy(u, v). Equation (3.2)
implies that e„/e„=e ' . Consider the ordinary
differential equation for the characteristics in the
complex plane.

Let v(u) be a complex analytic function of u
where

2 8y2 e-P
sin~ ~u& v

' ~4
—dv

dent

(3.7)

For R = —2, we have —,'&'p =e~ and a' n/auav= sino. .
The latter equation is the sine-Gordon equation
in light-cone coordinates. It is known to have
soliton solutions. ' These classical solutions will
be used to derive the collinear pseudoparticle
solutions of the four-dimensional Euclidean SU(2)
theory.

Since any two-dimensional surface is conformal
to any other, we can find the inverse transforma-
tion x(u, v), y(u, v). It satisfies the following dif-
ferential equations:

y„—y„cosa
XQ sinn

—y„+y„cosax 7sin~

(3.2)

where x„—= ax(u, v)/au, etc. Such a system of first-
order linear partial-differential equations is
known as the Beltrami equations. ' They can be
derived in this instance by factoring the line ele-
ment. Since it is invariant under the coordinate
transformation, we have an identity:

ds' =du'+dv'+2 cosndudv

n(u, v) = 4 tan 'e"'" . (3.8)

This is the one-soliton solution. Solving (3.6)
with this o.(u, v), we find

v(u) =u —icosh(u+ v) +K

or

K = v -u+ icosh(u+ v) -=i/(u, v). (3.9)

K is the integration constant. Equation (3.9) is
a definition of P(u, v). Obviously dK=O=i&j&„du
+ sQ& dv. Thus

-dv
du

A particular solution to Eq. (3.10) is

(3.10)

e(u, v} = y(u, v)

Since ultimately the functions p(x, y) are to be
solutions of Liouville's equation, o.(u, v) must
be a (nonzero) solution of the sine-Gordon equa-
tion. For simplicity, let

=(du+e' dv)(du+e '"dv)

= (dx+ idy)(dx —idy)(1/ a*~)

= e ~(dx'+dy'). (3.3)

or

x(u, v) = cosh(u + v},

y(u, v) =u —v.

(3.11)

+u +y, =&v +y'v ~

x„x„+y„y„= [coso (u, v)I (x„'+y„'),

p(x, y) = —ln(x„'+y„').

(3.4)

(3.5)

For the moment view u as an arbitrary complex
function of u and v. Let dx+ idy = ~(du+ e' dv)
and dx —idy =tv*(du+ e ' dv). Equating real and
imaginary parts and eliminating ~ from the equa-
tions, we arrive at (3.2). Now solve for e~ =1/
~*a = (x„'+y„') '. Had we merely substituted
dx = x„du+x„dv into (3.3), the equations would be

p = —1m'. (3.12)

Inserting this into (2.3), we find the gauge trans-
form of the vacuum.

We have thus established a connection between
the one-soliton solution of the sine-Gordon theory
and the "0-pseudoparticle" solution of SU(2).

The solution to Liouville's equation corresponding
to this particular solution of the Beltrami equa-
tions is from (3.5)
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IV. GENERAL SOLUTION

Return now to Eq. (3.10). The general solution
to z„/z„= g„/P„ is z =f(P) for any analytic f. The
general solution to (3.2} for a =4 tan 'e"'" is

x(u, v) =Rez(P),

y(u, v) = Imz(g),
(4.1)

Bg Bg
(4 2)

Any nonzero analytic function z(p) has an inverse
P(z) where

sz(y) ' s y(z)
Bp Bg

Since the p(x, y) are solutions to Liouville's equa-
tion, and Liouville's equation is conformally in-
variant, each p(x, y) is related to all the others
by a conformal transformation. Indeed this is
what (4.2) says. If p = —ln(Rez)' is a particular
solution to —,'~'p = eP, by conformal invariance

Bp BQ
p = —ln(Re&)'+»

Bg Bg

is also a solution as long as (I) has no zeros. ' %e
have thus derived all the solutions to Liouville's
equation from the one-soliton solution of the sine-
Gordon equation. The special class of p(x, y)
which yield the n-pseudoparticle solutions are
given by z(P), to be determined by inverting

where z is an arbitrary analytic function of the
complex variable P = cosh(u + v) + f (u —v }. The
Beltrami equations are two first-order partial
differential equations of two functions of two vari-
ables. The general solution should depend on two
real functions of one variable. This is consistent
with (4.1) since any arbitrary analytic function
z is also specified by two real functions of one
variable. The function p(x, y) which corresponds
to the general transformation (4.1) is from (3.5)

p(x, y) = —lnz„z*„

Bz Bz= —ln — (Ref)'
Bp Bp

for Rea; & 0. As an example, for n = 0, z = P and
for n = 1, z = [1—(1 —P')'~'] /P for a, = a, = 1. The
form of (4.3) has to do with the way in which
Liouville's equation is connected to the four-di-
mensional gauge theory. '

If a different o(u, v), say the two-soliton solu-
tion, were chosen in (3.6), a different function
P'(u, v) would be found. The general solution
z(Q') is an arbitrary analytic function of the new

P'(u, v). In particular, z„(p')z*„(p') would be
identical to z„(P)z*„(P)derived for o.(u, v) equal
to the one-soliton solution, since p = —lnz„z*„ is
the general solution of Liouville's equation for
any solution of the sine-Gordon equation. That
is to say z„z~ is independent of o.(u, v) as long
as it solves the sine-Gordon equation. However,
from (3.4)

Re z„z~)" =cosa, (u, v).

Although z„z*„ is independent of o(u, v), the trans-
formation z(u, v) =x(u, v)+ iy(u, v) itself is not
independent of the choice of z. This transforma-
tion cannot be used to write down the general
solution of the sine-Gordon theory.

V. CONCLUSION

A transformation has been found between class-
ical finite-energy solutions in Minkowski space
and classical finite-action solutions in Euclidean
space. Since the phenomena are connected, it
might be profitable to pursue the relation between
the procedures which are used to quantize these
classical entities. A hypothesis inherent in the
literature is that theories which have solitonlike
solutions, be they Minkowski or Euclidean, are
correctly quantized only when the solitons are
included. Since we believe solutions do play
a role in the quantum sine-Gordon theory, it is
consistent that the pseudoparticles should be taken
into account in four-dimensional gauge theory
as well.

1 —g [(a; —z;)/(a*, +z, )]
1=1
tt -1

1+ g [(ag —z, )/(a*; +z; )]

(4.3)
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