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A study is made of the relationship between the triangle anomaly and zero-eigenvalue solutions to the
Euclidean Dirac equation in the presence of a pseudoparticle field.

I. INTRODUCTION

It has been evident from the beginning" that the
triangle anomaly' is important in determining the
properties of a Fermi field in the presence of a
pseudoparticle. ' 't Hooft' observed that the mass-
less fermion functional integral vanishes when
the Fermi field is coupled to a gauge field with
nontrivial topology. This integral can be expres-
sed as a product of the eigenvalues of the Euclidean
Dirac operator'

D = —iy ~ (8 —iA) .

When A is a pseudoparticle, the spectrum of D
includes a zero-eigenvalue bound state. As a con-
sequence, the functional integral vanishes.

The physical reason behind this result was sug-
gested by 't Hooft' and was elaborated upon by
Callan, Dashen, and Gross' and by Jackiw and
Rebbi. ' They propose that the functional integral
over the fermion fields in the presence of the
pseudoparticle vanishes because it represents a
transition in which a conservation law is violated.
The conserved quantity is the gauge-variant chiral
charge. The presence of a gauge-variant piece in
this char'ge is a reflection of the existence of the
triangle anomaly.

We find ourselves in a remarkable position.
The triangle anomaly and the zero-eigenvalue
eigenfunction of D appear to be two sides of the
same coin. This is surprising because the former
arises from subtle ultraviolet renormalization
effects in the quantum field theory while the latter
is simply the solution to a classical eigenvalue
problem.

It is the purpose of this paper to reveal the con-
nection between these two things. Our conclusion
will be that if the gauge field to which the fermions
are coupled has a nontrivial topology, then the
spectrum of D includes either a zero-eigenvalue
bound state or a zero-eigenvalue unbound reson-
ance. Either one of these will cause the functional
integral to vanish. The connection will be made
by studying the equation for the anomalous diver-
gence of the axial-vector current. This approach
to the problem was originally suggested by Coleman. '

In Sec. II, we will lay out the argument. In Sec.
III, we will discuss the fine points more carefully.
Section IV will be a detailed calculation in two
dimensions. Some interesting features appear
there as a consequence of the fact that "infinity"
in two dimensions is S, which is not simply con-
nected.

II. THE ARGUMENT

Throughout these discussions, the gauge field
will appear as an externally applied c-number
field. As such, it is not necessarily a solution to
the equations of motion. We introduce the Euclid-
ean space propagator for the massive Fermi field
in the presence of the gauge field. It satisfies

(D irn) S(x, y-) = 5(x —y) . (2.1)

Using the continuum g~~ and bound g& solutions to

DiI) = Ai|),

we can express S as

d~ &), (x)4i (y), ~ Vx)P,'(y)
~-im ~ ~. -im

(2.2)

(2.3)
E. denotes a set of angular-momentum-like quan-
tum numbers.

We will deal with a Pauli-Villars regulated S

Sa = lim [S(m) —S(p.)]. (2.4)

S„Tr[y„—y,Sa(x, x)]= im Tr[y, Sa(x, x)]+ t, . (2.5)

In four dimensions,

1
t, =16, Tr[r„„~„.], (2.6)

and, in two dimensions,

1 1
PP PI/ (2.7)

The first term on the right-hand side (RHS) of

The existence of the triangle anomaly is the state-
ment that
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(2.5) is

im Tr[y, S,(x, x)]

gauge field is nontrivial so that T~ & 0, then there
must exist at least one zero-eigenvalue eigen-
function of D. This would be the connection that
we seek.

III. THE FINE POINTS

(2.9)

0=- dV d~ 2'~ ~" ~~Ky" y'~~K
K

-irn
dV gjy, gj . +T& .

j j
The topologically interesting quantities

(2.10)

(2.11)

1
T2 2

d & z~pvFuv
217

(2.12)

have now appeared.
If we recall that y, anticommutes with D, we can

observe that

y, g&= g & unless ~=0. (2.13)

Hy making reference to (2.8), we conclude that
all contributions to the first two terms of (2.10)
are zero except for those coming from ~=0. If
the continuum did not extend to ~-0 of if the con-
tribution it made in that region were zero, we
would not have to consider the first term on the
RHS of (2.10). We would have

J
such that
X. =0

dV f,. y, gj+ T„. (2.14)

This step is justified because it is only the ~= 0
region that will be contributing in later expres-
ions.

We now integrate (2.5) over all space and assume
the the surface term from the left-hand side (LHS)
is zero. This gives

The conditional tense which was used in the last
part of Sec. II was meant to indicate that there
may be some problems associated with the argu-
rnent which was given.

The first problem is with the surface term
which was assumed to be zero in (2.10). The
contribution from the bound states to this surface
term is certainly zero. The contribution from the
continuum is of the same form as the first term
on the RHS of (2.10) except that 1/A is replaced by
1/m. We will see that the first term of (2.10)
makes a contribution only in special cases, and,
in those cases, it is finite. Thus when 1/&- I/m
the surface term will be zero.

This brings us to the second problem which has
to do with the continuum contribution on the RHS
of (2.10). In the usual case, the continuum will
extend to ~-0 and, therefore, may contribute in
(2.10). Even so, if the interchange of the integra-
tions in (2.10) were valid, we would conclude that
the contribution is zero. However, the two-di-
mensional example worked out in Sec. IV shows
that this interchange is not justified in general.

Let us investigate the circumstances which are
associated with a nonvanishing contribution from
the continuum. We will argue that the continuum
contribution is zero unless there are bound states
or unbound resonances at ~= 0 in the spectrum of
D. In order to do this, some additional assump-
tions will be used. We will assume that there
exists a region characterized by a radius R out-
side of which the field strengths F„„are negligible
In the ease of the pseudoparticle, F„,falls rapidly
(-r ') when r is greater than the pseudoparticle
size.

Now, we will cut off the integral over all space
at some large radius r which is much greater than

We can interchange the integrations if we leave
the r —~ limit outside of the & integration. The
resulting expression involves

When ~; = 0, we can choose things so that

(2.15) 2'A, ~ dQ g
3

1 K
(3.2)

If n, and n are numbers of these two kinds of
eigenstates, then we obtain

n n Tg (2.16)

The conclusion from (2.16) would be that, if the

We would like to know how C behaves in ~ as
OO

~

For R&r, A is approximately a pure gauge.
Thus, we can expect that the behavior of the sum-
mand in C will be similar to its behavior when A
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is zero. That is, me expect that for any ~&0

r3 . dQ (I)tzry ry, (1)„z-—sin(&r+ 6) . (3.3)
2s~

We expect both a, and b, to be of order one in
general. Special cases are the following:

(1) Free case.

From (3.3}, we can see that in an expression such
as

ho=0,

ao 1 (3.14)

lim d& XC Ar, (3 4) (2) Bound state or unbound resonance at A. =o.

it is only the point at ~= 0 that mill contribute.
Thus, a, -(R&)'.

(3.15)

lim C(&,r}= cb(&} . (3.5}

(3.6)

c ls obtained from 8 by

(3.7)

Because of the oscillations, the contributions to
8 from X's which are much greater than 1/r is
small. An estimate for B is

di(. Q())., r) . (3.8)

We nom need an estimate for C in the region

mrs 1, (3.9)

(3.10)

In this region, A is approximately a, pure gauge
so the behavior of C in r will be similar to the
free ease. We are also inside the radius at which
the oscillations of C as a function of r begin.
Thus, me can expect that the radial-part wave
functions mill behave like

(3.11)
in four dimensions. As K runs over all its values,
jwill run over the set (0, 1, 2, 3, . . .}. For the
free case, bp 0. Normalization requires that

o 2+ (gR)2((+))b 2 (3.12)

The constants ap and bo are determined by the
boundary conditions at r =R. At small ~, the mave
function inside A will be independent of & except
for normalization. Equation (3.11) becomes

&' '(Vi!)'[a (I, 0)(r/R)'+b, (l, 0)(r/R) ('" ]. (3.13}

We would like to determine c. In the free case,
c is zero due to a cancellation between contribu-
tions from different K values. So there is no con-
tribution to (2.10) for that case.

In order to determine c, me mill consider the ex-
pression

[In this case, (3.12) is altered. ]
Thus, the first term in (3.13) will completely

dominate the second unless

ap-0 as ~-0. (3.16)

=0

(3.16)
mhen A has nontrivial topology.

The calculations of the next section will provide
an example of the general arguments which have
been presented here.

IV. TWO DIMENSIONS

A. The topology

Two dimensions mould present us with a para-
dox if (2.16) were true. This would arise from
the fact that while the LHS of (2.16) is an integer,
the RHS need not be an integer for the external-
field problem in two dimensions. If me restrict
our attention to gauge-field configurations of

Except when this happens, (3.13) will make emctfy
the same contribution to C that it does in the free
case. But, in the free case, c is zero. Thus, we
conclude that the continuum can contribute to
(2.10) only when there is a bound state or unbound
resonance at ~= 0.

This spoils Eq. (2.16). However, while (2.16) is
not true, me can still conclude that in the presence
of a topologically nontrivial gauge field, the spec-
trum of D must include either a bound state or
an unbound resonance at zero eigenvalue. In
either case, when the system is placed in a box of
radius Rp the lowest eigenvalue of D mill approach
zero faster than Ao '. The argument given by
't Hooft' allows us to conclude that the functional
integral is zero.

This completes the general discussion. We can
summarize our results by saying that through the
anomalous divergence equation the triangle anomaly
determines the structure of the spectrum of D to
a sufficient extent to guarantee that

fdgdgtexp] JdV (I) [--fy (8 -sA)] g} detD
Jd(t)dgtexp(- 1dV gt[ iy ~ a](I)}-detD,
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finite flux, then F„„must vanish at infinity and A
must be a pure gauge at infinity. Thus, in a simply
connected region, A can be expressed as

Dg= i-y (8 —iA)g= Xg,
(4.9)

A =ig ~g

g&U(1) for each x.

(4.1)

(4.2)

Out of the continuum g~, and bound g,- solutions to
this equation, we can construct the Green's func-
tion

~(„) p d~ 4i(x)(t'ai(y)
A. —isn

However, when we try to extend (4.1) to the entire
circle at infinity, we will not succeed because
this region is not simply connected. In higher
dimensions, infinity is simply connected, and
this difficulty does not arise. Now, if we are not
assured of the existence of a continuous function

which solves

(D —im)S(x, y) = 6'(x —y) .

(4.10)

(4.11)

g: S'-U(1), (4 3) Since the angular momentum operator commutes
with D, the solutions will be of the form

then we cannot carry through the topological argu-
ments which would require that T, be an integer.
We emphasize that the failure of the usual topolog-
ical arguments in the external-field problem in
two dimensions is a characteristic of that problem.
When the gauge field is a part of a coupled-field
problem, other physical conditions may require
that the flux be quantized.

Although the RHS of (2.16) need not be an integer
in two dimensions, we have also seen that there
may be contributions to the LHS which come from
the continuum and are not included in (2.16). In
order to understand this more fully, we have ob-
tained an exact solution for a particular choice of
A.

( P,(r)e"' )
(+ I( ( )

io+z)e

with

l=0, 1, 2, . . .

j=l+z
&

or of the form

(X-(r)e ' ~+ )e)

p(r)e "e) '

with

(4.12)

(4.13)

(4.14)

B. The example l=0, 1, 2, . . .

ForA, we take

Ap ~pv~v@

with

--f— r&R2 R2 7

4= r2——'f 1+ ln —, , R&r

r2=X 2+X 2
1 2

If we define F by

+pv ~pv+

then

12f —,, r&R

(4.4)

(4.5)

(4.6)

or

8 1 l+r — y+=iXX+ ~~r r ar i

8 1 84—+ — —l+r —y =iZX
Br Br

a 1 8@—l -1+r —X =i~y .Br r ar—

C. The bound states

Equation (4.9) becomes

1 ac—+ — l+ 1+r —y, = iA. fI), ,'dr r er

(4.15)

(4.16)

(4.17)

0, R&r

T, =f ~

The Euclidean Dirac eigenvalue equation is

(4.7)

(4.8)

We will now find the ~=0 bound states. It is
easy to see from the equations in the next subsec-
tion that there are no bound states for 0& ~2. The
bound states that we find here have no nodes.
Therefore, there are no bound states with ~2& 0.

The solutions to (4.16) and (4.17) are not difficult
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to find when ~= 0. They can be chosen to be eigen-
states of y, . For

an additional bound state appears at j = 2. This
pattern continues. For

1(f& 1

there are no bound states. For

1&f &2,

(4.18)

(4.19)

-2~f &-1,

there is one bound state with j= -&. For

-3&f &-2

(4.21)

(4.22)
there is one bound state at j = —,

'
~ For

2&f -3, (4.20)
an additional bound state appears at j = ——,'. This
pattern continues. The form of these solutions is

expl --,' f(~'/R') ](r/R)' "'
expl i(j ——,) 6] ~

0

(exp(--,'f)(r/R)' "' exp[i( j ——,') ((] t

0

(4.23)

0&f (1,
we have

expI --,'f(r'/R')] l

0
I, r&R

exp(--'f)(r/R) ' ~

), R&r

(4.24)

(4.25)

There is a similar solution with y, = -1 for
-1 ~f & 0. These are actually a part of the con-
tinuum.

D. The continuum

For nonzero ~, we consider the second-order
equations which follow from (4.16) and (4.17):

1 8 8-- —r—y, + (U, -)')y, =0,
~r (4.26)

when j is positive. The solutions for j negative
have a similar form except that y, = -1.

As an example of an unbound resonance at ~= 0
which appears for

r2
~ = IflR. ,

(4.30)
d, = 2[i+1 —e(f)(l+ 1) —()(R)'/ifi ].

+(a
I bl x) is the confluent hypergeometric function.

Also

y (r)=c e '"z"'I'(d Ii+1 la)

(4.31)

d = 2Il+ 1+ c—(f)(l+ 1) —()(R)'/if I].
For the outside region, we have the solutions

P, =o,~&,(l)(l~)+&,~ (&»(I) l~), (4 32)

())- = ((-~(+y(l )(lr)+ ~-~-((+g) (I ~ I&) . (4 33)

Our analysis will assume that f is not an integer.
A separate analysis verifies that the continuum
contribution that we are calculating has a value at
integer f which is the limit as f approaches the
integer from the side closer to zero.

The solution to these equations for the inside
region is

()),(r)=c,e '"z' &(d, ll+1ls),
with

1 8 8———r —y + (U —)(') y = 0,r
with

2lf, f ' 2f
+ r2 ——— r&A

(1-f)'
r2

l' 2lf, f ' 2f—+ +r' —+ — r&gr2

(4.27)

(4.28)

The constants a„b, , and c, are determined by
normalization and by continuity at r =A.

As we have seen in Sec. III, it is only the region
~ -0 and r —~ that is important. In this region,
we find that for f &0

(4.34)

and

(1+
, Z&r.r'

(4.29)

&(,~( I
~

I ~), -1«+f
x

2 & (, „)(I)lr), t+f & —1,

and for 0&f

(4.35)
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2--

FIG. l. Iz as a function of f. FIG. 2. Ic Rs a fllxlctloD off .

(4.36)
into its bound-state and continuum parts

I =I~+Ic (4.38)

I~ is n, -n and it is shown in Fig. 1 as a function
of f. Since we know that

Let us nom split

E. The result
or

(4.39)

(4.40)

I =- —im d'x Tr[y,S(x, x)] (4.37) it must be thatIc is as shown in Fig. 2.

Our last section mill verify Fig. 2. The expression fox Ic is

d2+ dg &+ 44) l+ 0) k —44xl-+ f
c ~-im

Using the expressions for the wave functions that have been derived, me find

(4.41)

Ic llm PPl
rp ~OO

(4.42)

for f &0, and, for 0&f,



15 FERMION S IN A PSE LJDOPARTICLE FIE LD 2335

From these expressions, it is not difficult to verify
that

(4.45)

and that

-1&f &0.

If Fig. 2 is correct, we should find

Ic=

(4.46)

(4.49)

Ic(f+1)=Ic(f) for 0&f (4.46)

and that

Ic(f —1)=Ic(f) for f &0. (4.47)

Thus, we need only eva. luate Ic for f in the range

It is important to carry out the sum on l before
the integral on X is attempted. The sums involving
the derivatives of the Bessel functions are not dif-
ficult. After the use of a recurrence relation, they
telescope. The other sums can be done after re-
lating them to a formula in Watson. ' The expres-
sion for It(A, r) which results is

lt(&, r)= —
2 &

(-;[&]rJ t([&fr)Z ~,(f&lr)-4(l&lr)'[&'~(l~lr) &f-(I~I )r+& ~„(l~lr)

(4.50)

From this, we can show that

lim K(&, r) = c5(&) .

To determine c, we use

(4.51)

tribution. However, although there are no bound

states when f satisfies (4.56), there is an unbound

resonance [Eq. (4.25) J.

V. CONCLUSION

c=lim lim d&It(&, r).
g~p 7 ~no

(4.52)

C= (4.53)

A tedious calculation gives the expected result

We have argued that in the presence of a topolog-
ically nontrivial gauge field, the spectrum of D
must include either a bound state or an unbound

resonance at zero eigenvalue. Either one of these
is sufficient to give

for

Ic =

Thus

(4.54)
fd g d gt exp(- fd V ~~~t D g)

fdgdgtexp( fdV -(tD, g)
(5 1)

(4.55)

and, with (4.45) and (4.46), Fig. 2 is verified.

G. The conclusion of section IV

In this calculation, the ideas that were discussed
in Sec. III are seen at work. In the region

Note added. It has come to our attention that
this work is related to a result in differential
topology known as the index theorem. " Indeed,
it appears that there is also a local version" of
this theorem which is closely related to the tri-
angle anomaly. Our thanks to L. Dolan and K.
Mac rae for bringing this work in mathematic s to
our attention.
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