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By introducing a new kind of variable we find simple Lagrangian and Hamiltonian descriptions of a classical

particle interacting with an external non-Abelian gauge field. Both conventional particles and supersymmetric

particles carrying pseudoclassical spin are considered. The physical interpretation of these models is discussed.
The models are quantized following Dirac's procedure. Finally, the isospin representations to which the

resulting quantized particles belong are investigated.

I. INTRODUCTION

A classical description of particles with non-
Abelian charge (we will call it isospin in the fol-
lowing for convenience) has been given by Wong'
in terms of equations of motion. We show how a
Lagrangian description of such particles can be
given by using a new set of variables. ' These new
variables can be commuting or anticommuting,
giving two different kinds of formalism. We also
discuss the associated Hamiltonian formulation
and the quantization of the systems using Dirac's
well-known method' and its generalization to anti-
commuting variables due to Casalbuoni. 4

Recently it has been shown" that a "classical"
description of a particle with spin can be given by
a supersymmetric Lagrangian. When suitably
quantized it describes particles with spin 2.
Therefore the description is not a conventional
classical description (a conventional classical
limit should involve letting the spin quantum num-
ber tend to infinity, and the quantization of such a,

classical description should give particles with
arbitrarily large spin), and we will use the term
"pseudoclassical" for this description as suggested
in Ref. 4. In the following we will show how the
spin and isospin descriptions can be combined to
give a supersymmetric Lagrangia, n describing a
"classical" particle with spin and isospin. We
quantize the models and show how this gives mod-
els which can also be described by conventional
field theories. The spins of the quantized particles
are 0 or &, depending on whether they are ob-
tained from spinless or pseudospin classical par-
ticles, respectively. Starting from commuting
isospin variables, the quantized isospin can take
arbitrarily large quantum numbers. This means
that these variables when quantized give a kind of

superfield formalism, which describes an infinite
number of different kinds of particles. Starting
with anticommuting isospin variables, only a fin-
ite number of quantum numbers for the isospin of
a particle are obtained. This classical descrip-
tion of isospin should therefore be called pseudo-
classical.

In Sec. II we describe the commuting variable
description of isospin. In Sec. III we describe the
new features encountered when the isospin vari-
ables are anticommuting. In Sec. IV we incorpor-
ate the pseudoclassical spin in our models. Sec-
tion V finally deals with the isospin content in the
"superfields" mentioned above.

II. CONVENTIONAL CLASSICAL PARTICLE WITH ISOSPIN
DESCRIBED BY COMMUTING VARIABLES

We assume that we have a non-Abelian gauge
field associated with a compact semisimple gauge
group G which we describe by the potential A„and
the field tensor

+ q, = 8 „A„"—& „A„-g fag~A„Av~ ~

We choose an irreducible representation of the
Lie algebra of the group. These nxn matrices

then fulfill the commutation relations

[T,T ] =i f„8~T~

We also introduce n complex dynamical variables
8,(r), in addition to the position I"(7). The dyna-
mics of the particle can now be described by the
action

S= Ld7

I. = -m(~"~ )
'i' +i &, D„B,

Day~y = (9a +~gx"A
if Tgy&y
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This action fulfills the following consistency re-
quirements:

(i) It is real up to a. total time derivative.
(ii) It is invariant under coordinate transforma-

tions of the parameter 7.
(iii} It is invariant under gauge transformations

in which both 0, and A„are transformed. The in-
finitesimal transformations are

8, (8,) =8, +igA T,"(,88

(2.2)

(iv) The equations of motion are consistent with
Wong's equations as discussed below.

From the action (2.1) follow the equations of mo-
tion

This gives the following constraints

P, =O,

P. -i8. =0,
II„II~ m' =0,

where

n„=P„+gA„I
(Note that P, is not the Hermitian conjugate of P,
since the Lagrangian contains a non-Hermitian to-
tal derivative. )

Since P&x +P,8, =L, the Hamiltonian is just a,

linear combination of the constraints

H =-,'C(11„11 mg+C. (P. -i8.')+C.P.' .
8, +zgx"A~7, 8 =0,

mxp 0.'~ -p
I ~ p ~ %$/Q gI ppxd7'

Here we have introduced the isospin variable

I =0, &,~0q .

(2.3)

(2.4)

(2.5)

It gives the following time evolution of the con-
straints:

—P.' =zC, -gCrl~jr. ,0,A„,

—(P, —i8, ) =-iC,
The equation of motion for I" follows from (2.3),

I -gf zx"A I~ =0 . (2.6)

By adding the action of the kinetic energy of the
field

d xE& F

to the action (2.1), and making the field dynamical,
one can obtain the field equations of motion

—(II II)' »z }=0 .d 2

d7.

These equations determine C, and C„and give no
new constraints. Since the Poisson brackets be-
tween our constraints P, and P, -i8, are not zero,
we replace them by Dirac brackets. The variables
P, and P, can then be eliminated.

Finally we get the following Hamiltonian descrip-
tion:

Dn8~ gp p +np
jI

ns
6n88)) gfay8A)(

where the particle current is

(2.7)

(2.8)

H =-,'C(II„II" —m')

rl„rr~ m'=0,
where

(2.10)

(2.11)

J"(.) ((fd~( (* *(~)))=(~)'~" ( -) (2())
Pu + gAvI

I =0, &,~0q

(2.12}

The equations (2.4), and (2.6)-(2.9) are those
given by Wong. ' The current (2.9) is the current
associated with the gauge symmetry of the particle
action.

We now turn to 4he Hamiltonian formulation of
the model, using the method of Dirac. ' We treat
x", 8„and 0~ as independent dynamical variables
and find their conjugate momenta in the usual way:

L mxv a n
Pp op g ~ p o gg/2 gAjIIBx lx xp)

—. =i8'BL
a

0
a r

BL
P, = )~-0.

The nonzero Poisson brackets between the remain-
ing variables are

(~)' P ) 6)'

(8., 8,') = —i6.,
(2.13}

These lead to the correct Dirac brackets for the
isospin variables,

(f, f8) =f.&f& .
Quantization is straightforward. The nonzero com-
mutators of the fundamental operators P„, x",
G„and 0~ are

[P„,x"] =-ia6„',
[8., 8,'] = u6.,
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We may diagonalize the x" operator and describe
the system by an object g(x, 8 ), which is a wave
function as far as the variables P& and x" are con-
cerned, but which is a state vector for the 0, and

0, operators. The momentum operator then acts
as a differentiation operator. The Hamiltonian is
unimportant and the remaining constraint

8 2

ik-+gA I" —ni' g(x, 8 ) = 0gx" (2.14)

III. CONVENTIONAL CLASSICAL PARTICLE WITH ISOSPIN

DESCRIBED BY ANTICOMMUTING VARIABLES

defines the physical states. (Note that for non-
trivial representations of semisimple groups there
is no ordering problem in the isospin operator
since [8„8,] T"„=RTrT =0.)

Equation (2.14) coincides with the Klein-Gordon
equation for a scalar particle interacting with the
non-Abelian gauge field except that the isospin de-
pendence of the wave function is represented by a
continuous variable rather than by a finite number
of components. This has the remarkable conse-
quence that the wave function is able to describe
particles belonging to infinitely many different
representations.

It is also possible to diagonalize, for example,
the real part of 0, . But it is more appropriate to
treat 0t and 0, as creation and annihilation opera-
tors for harmonic-oscillator modes. An arbitrary
state vector can be obtained by applying creation
operators on the oscillator vacuum. Thus we may
write

q(x, 8') =q(x) +et'. (x) +-,'8,'8,' .|j,( x)+ ~ ~ ~ .
(2.15)

It is obvious that the isospin operator does not
mix the terms in this series, and that the nth
term describes particles whose representation is
the nth symmetrical (reducible) power of the rep-
resentation T If the .gauge group G is SU(2) and
if T is its fundamental representation, then the
wave function can describe each finite-dimensional
representation in exactly one way. But this is an
exceptional case, usually some representations
are omitted and/or some are described in infinite-
ly many ways. If, for example, G =SU(3) and T"
is the simplest representation whose powers gen-
erate all representations, namely 3+3, then each
representation is generated in infinitely many
ways.

and

L, = -m(x"x„)'~'+ ie, D„8,

L„,= -m(x~x„)" + —8,D„e, ,

n n
Tba Tab ~

(3.1)

(3.2)

nI"=z0,T,b0, (3.3)

instead of Eq. (2.5).
In deriving the Hamiltonian formalism, to save

space we first bring L, to the form L, by dividing
0, into Hermitian and anti-Hermitian parts:

1e. = ~ (8„+ie.,),

8„= (8, +8,),1

e..=. , (8. -8.') .1
2

Then

2 d7

and

n 1
0a Tab0b ~ 0aiTaibj 0bj

with the following antisymmetric matrix T„».

n & ab ba
/

aibj 2
~Tab ~Tba

Omitting a total time derivative we therefore have
a Lagrangian of the form of Eq. (3.2).

We now pass to the Hamiltonian formalism from
the Lagrangian L,. The treatment of anticommut-
ing variables has been investigated by Casalbuoni. 4

Following his methods, we introduce the conjugate
momenta

D„e, is defined as in Eq (2..1) but the isospin vari-
ables are anticommuting in this section

[e., e, ],= [e.', 8,],=0.
It is easy to show that these models satisfy the

four consistency conditions listed in Sec. II and
that the equations (2.3)-(2.9) in the Lagrangian
formalism look identical in the above two cases,
except that in the case of Hermitian 0, the expres-
sion for the isospin is

It is also possible to let the isospin variables 0,
anticommute. In this case it is also possible to
use Hermitian variables, provided that the ma-
trices T are antisymmetric. Thus, we consider
two Lagrangians

BL2 mph n a
/ ~ u y g/2 gl4pI px &u)

aL zP = = ——0a ~0 2 a

This gives the constraints

(3.4)
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Z

y, =- P, + —0, =0,

g, —= Il„H" —rn =0,

tion

~ ~

8 2

-fe „+ gA„-,'e. T.",g, -m' q(x} =0. (3.9)8x

8 8 8 8 8 8
(A, B =A

8X" 8I „8S„8x" 8e, 8I.

8 8

8~. 80.
' (3.5)

This Poisson bracket has the following properties:

(i) It gives the time evolution of any function F
of the dynamical variables as

where ii„and I" are as given by Eqs. (2.12) and
(3.3), respectively. The Hamiltonian becomes

1 2c =-.c)c„c — ') c. J. —~.),
where C, is an anticommuting function of the dy-
namical variables.

We define the following "Poisson" bracket:

In this case, since the operators 0, do not com-
mute, it is impossible to represent them by dia-
gonal matrices. But instead the anticommutation
relations (3.8) and the finite number of the vari-
ables 6, permit us to represent them by finite-
dimensional matrices. The wave function in (3.9)
can therefore be considered to consist of a finite
number of components.

In contrast to the case in Sec. II the wave func-
tion in Eq. (3.4} can for each choice of matrices
T only describe particles with a finite number of
different isospins. In Sec. V we investigate which
representations are generated by an arbitrary ma-
trix representation T of a unitary group.

IV. INCLUSION OF PSEUDOCLASSICAL SPIN
F = (F)H} (3.6)

(ii) It has the correct symmetry, that is (A, Bj
=z(B, Aj, depending on whether A and B both are
anticommuting or not.

The Poisson brackets of the constraints are

Our formalisms for describing a classical par-
ticle with classical or pseudoclassical isospin can
also be combined with the formalism for pseudo-
classical spin" to describe a particle with both
spin and isospin. The Lagrangian in the second-
order formalism is

L =10+Lm+L

I-.'(11„11"-m'), P. + —6, =-f. ii)'gA„t), T„.
This means that there is only one first-class con-
straint, namely

—,'(c c" — ') —)) );A"8,T()' —6,) =0. ,

1, i
L, =-2, ~ (.~.-fxk. ) —

2 0 ~. ,

e 2 z
L = ——m' + —(g, (, + m X)j' 3

Lr =& i(9,8, -gl A& gv eqvF

(4.1)

We then change the Poisson brackets to the
"Dirac" brackets,

(A, B1.=(A, B)-P (A, x.)(x., x.) '(X. , B},

and eliminate n variables, P, . After this elimina-
tion we have the Dirac bracket

(P„,x"] =-A@6„",

[e., e, ], = e6.,
(3.8)

and the first-class constraint gives the wave equa-

(3.7)

When quantizing, these Dirac brackets give the
commutation and antic ommutation relations

Here, for definiteness, we have chosen to de-
scribe the isospin by Hermitian anticommuting
variables; the other alternatives give only trivial
modifications. This Lagrangian differs minimally
from the one describing a pseudospinning particle
intera, cting with an external electromagnetic field
considered in Ref. 6. The new dynamical variables
as compared to the model in Sec. III are e, X, g„
and |I)„. Of these, only the la.st one is physical,
and it is connected with the pseudoclassical spin.
The variables X, tjt. , g„, and0, are anticommuting,
e and x" are commuting.

This Lagrangian satisfies three of the consis-
tency requirements listed in Sec. II. Namely, it
is Hermitian and manifestly gauge invariant, and
the action J Ldv is reparametrization invariant if
a change of para. meter T- T' is accompanied by the
variable transf ormations
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dTe-e' = e
di (4.5)

l dT
X X X d

x"
q

$"
p $5~ Og unchanged.

For interpretation of the equations it is useful
to make a nonrelativistic approximation. We in-
troduce the following notations:

The equations of motion are modified by the spin
interaction as shown below. In addition, each of
the three pieces of the Lagrangian in Eq. (4.1) is
invariant up to a total time derivative under the
following infinitesimal supersymmetry transforma-
tion generated by an anticommuting variable n(I):

x' =(~„v),

2 4g 4g&igft =a

F",, -F,--(I=1, 2, 3),

F;I = —e;I Bl„(i,j,@=1,2, 3),

3„=(s„Y)

(4.6)

(4.3) ln the limit v/1, = 0 the second of Eqs. (4.4) tells
us that $,=0. Making also a gauge transformation
such that A' can be neglected locally we get the
following approximate equations of motion from
(4 4).

This invariance is essential for eliminating the
nonphysical degree of freedom go.

I.et us now consider the equations of motion.
Varying the variables e, X, and g, gives the con-
straint equations

(i' —iXX"l)&)/e' —rn'+igI l)"F l)" =0,

(x"q„+my, )/e =0,

2g, —mX =0.

%'e may choose a parametrization in which
8 = 1/m, Rlld lllRke R supersymmetry tl'Rnsfol lllR-

tion to get X =0. Then by the third constraint,

$, =0 so that y, can be eliminated by a 7 inde-
pendent supersymmetry transformation. The two

remaining constraints and the rest of the equa-
tions of motion now take the form

(4.7)

mv = gi (E™+vxB)+ —VI B
m

From the last equation it follows that the par-
ticle has a magnetic moment (g/m) s. Thus if
s is its intrinsic angular momentum it has gyro-
magnetic ra. tio two (It fo.llows from the quan-
tization below that s and not, for example, 2s
is the spin. An alternative way to see this would
be to derive the angular momentum from Noether's
theorem. )

The isospin current of the particle which enters
as the source in the equations of motion for the
gauge field,

m'2 —m'+i gI q"F „,q' =0,

jc&g„=0,

Dnapg pv ga v (4.8)

~ I@~et yv 0
m

e, +sg A, „x~- y~E'„.y' J., e, =0,

mr~-gI Eq, x — /~DE Ep~~g

This is a manifestly gauge-covariant set of eq-
uations. In deriving the last equation, use has
been made of the equation of motion for the iso-
spin which follows from the equation of motion
for 8, ,

For Eq. (4.8) to be consistent the covariant de-
rivative of 8 ' must vanish. Using Eqs. (4.4)
and (4.5) this can indeed be verified. The van-
ishing of the covariant derivative of 8 ' can also
be expressed as the current conservation equa-
tion
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e, (J "+gf 8„ABE&"")=0. (4.10) The nonzero Dirac brackets of the Hamiltonian
and the constraints are

Concerning the physical interpretation of the
different components of the current (4.9) we notice
that the first and the second terms correspond
to a Gordon decomposition. This corresponds
physically to a decomposition of the current into
a part associated with the moving charge and a
part which describes the intrinsic spin content
of the particle. The last term is needed to make
the current gauge covariant. At a given point it
can always be gauge-transformed away. The
current J ' can also be shown to coincide with
the Noether current corresponding to the gauge
symmetry up to the divergence of an antisym-
metric Lorentz tensor.

The passage from the Lagrangian (4.1) to the
Hamiltonian formalism presents no new problems.
The conjugate momenta are

P„„=—(x„—,'il{(){„—)je -gI A „,
1P~„

P, =O,

( e~+)D 24KGi

[P„H].=--,'~. ,

i 4D& AD ID ( AKQ'

(4.13)

4e = (kf()"re

{)„=(kg)"rer„
(4.14)

In this representation the constraint pD gives the
Dirac equation

It can now be seen that the spin operator de-
fined in E(l. (4.6) satisfies the angular momentum
commutation relations as promised in the dis-
cussion of the gyromagnetic ratio. Since it is
permissible to add also arbitrary multiples of
the secondary first-class constraints to the Ham-
iltonian, ' we can choose it to be identically zero
so that all variables are constant in v. The y
matrices afford a representation of the anticom-
muting spin variables'.

Px=0
lP = —~i/

[ r('(i ff 6
&

gI A &)
-—m ] (){(x)= 0. (4.15)

H = --,'e f«+ -', i y Q~ + C,P, + C P „,
P«=- II „II"—m'+-,'i geg" F„f"I,
QL) =. $ &p ™$~

The Dirac brackets are now given by

(4.11)

P, = ——.'i8, .

The Hamiltonian becomes

H = ——,'e(ll„ll" —m'+ ,'ige()("F"„,-(I{')

+,'iy( (")|If~ —-m(|{,)+CePe+C„Pq+Ce(P, + ,'i ()({—
+C, „(Pt' ,'(g~)+-C-. (P. + ,'(e. ). -

As usual, the constraints involving P&„, P„and
P, which arise because the Lagrangian is of first
order in the anticommuting variables p„, g„and
8, have nonzero Poisson brackets with themselves
and are of second class. Changing the Poisson
brackets to Dirac brackets and eliminating these
momenta gives a Hamiltonian

(a) I = 28( T;( 8(,

(b) P = e', T,~ e, ,

(c) I"=8(T((8;,

win [8, , 8,], =5,i, e", =e,

with [ e', , e,], = 5,,
with [ 8, , 8(] = 5,(.

For case (a) the generators T,, must be anti-
symmetric, whereas no symmetry is required
in the other two cases. However, in case (c) the
method given below works only for antisymmetric
generators. In this case it is simpler to note,
as briefly mentioned before, that if we represent
8; by 5l58' we get

0 =4& 8f'+keg 8& 8)+ ' ' '

with g;& symmetric matrices and

yc 8+ yet 8
C ij

(5.1)

V. ISOSPIN CONTENT OF THE WAVE FUNCTION

We have constructed the generators of the gauge
group Q in three different ways. For 7;,. be-
longing to some irreducible representations of
the Lie algebra of G (we put ii = 1)

{A,B{ .=A(

8 8

8P~ 8e

8 8

8P„8X

8 8 8 8
8P„Bx" 8e 8Pe

8 8 8 8

84s 84s 8X 8P)(

8 8 . 8 8

88, 88, 8y„8y&

(4.12)

8
88& &) i&

8I g= TrT $+T,~8)

with

= r „q,8, + V', ,(y«8, 8, + q„,e„e.)+ ~ ~ ~,

(5.2)
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01', = T I ~A»+ &~;let.

and so on, so that the nth-rank symmetric tensor
transforms as the symmetric nth tensox product
of g.

We have now to consider the other two con-
structions, (a) and (b). The main point in our
method is the following: Let the gauge group be

with I.ie algebra J~. For T~» belonging to a
given representation p of I.~, the generators I
can be considered as an L~ subalgebra of an orth-
ogonalalgebra I.~o&„&, where n depends on& Rnd
on which of the constructions (a) or (b) we have
chosen. We can then take the wave function to
belong to an irreducible representation of L,so&„&,
since different such representations will never
be mixed. Knowing the eigenvalues of this latter
representation, it is a simple matter to find, by
a construction given below, the eigenvalues of
I and thus the reduction to irreducible repre-
sentations of L~.

We first show that I are generators of an
orthogonRl gl oup. Fox' the two dlffex'ent con-
structions we have the following:

(a) T",, are the generators of G in some rep-
resentation. They are antisymmetric (by assump-
tion) nxn matrices, where n depends on the rep-
resentation chosen. I~ can then be written as
P;,, T",„8,8„ i, j=1,2, . . . , n. According to the
Clifford algebra theory of the spin representation
of an orthogonal group, ' we have

8;(9» = -iI;»

and, since T;; is traceless, I form an I& sub-
algebra of I ~&,„&. The wave function is again a
spinor of this gx'oup. We note that for anticom-
muting 8 these form a Clifford algebra. The only
minimal (irreducible) ideals of this algebra are
the spinors or, for even orthogonal groups, the
even and odd half-spinors. For commuting 8, on
the other hand, we can form from 0; the full sym-
metric tensor algebra and thus get all nonspin
representations, i.e., all irreducible tensor rep-
resentations.

Let us now apply this to the cases where the
gauge group G is SU(2), SU(3), or SU(4). We first
choose T,"» to belong to a given representation of

This we call the generating representation
B~. For SU(2) we will be able to give a general
result for any A~, whereas for the higher groups
we study only the fundamental and adjoint repxe-
sentations. The method is in px inciple simple to
apply for other A~ as well, but the calculations be-
come too involved to be motivated by the interest
the result could have.

We start with G = SU(2). For the case where R,
ls Rn lntegex'-spin repx"eseQtRtloQ, we CRQ wx'lte

T&& as a block-diagonal antisymmetric matrix

0 i

0

0 Ri

-2g, 0

i'e'~ I form Rn Lig subalgebra of LIso(n)' The wa

function belongs to the spin representation of
SO(n), i.e., it is a spinor which can be expressed
in terms of the 8's.

(b) T;"; are now n&n matrices with no definite
symmetry. %'e shall assume that they are trace-
less, i.e., that 6 is a group of matxices of de-
terminant l. Then

0 li

-li 0

(5.9)

Tii 8 (T'J +T'i) + 2 (Tip Tji)

(5.5)

7"&», 7'.
&, are also antisymmetric. Therefoxe, we

can consider both constructions and find the fol-
lowing:

(a) I = I 2~ + 21 „+ + /I, i 2i (5.10)
I~ = Q T,,~(8i 8, + 8i 9i) +Q T";i (8; 8i —8, 8;) .

j &» t&»

(5 8)

~~ ~» + ~» 0~ = —L',2»-i+1 2~-i..»
+« ' (5 '1)

Again from the Clifford algebxa theory of spin
repx esentations we find

The wave function is an SO(2f +1) spinor belonging
to the representation (see Ref. 8) ' 'D .. . of 2

components. The eigenvalues of the simultaneously
diagonalizable generators L, .„.„„are+&. Thus
the eigenvalues of I' can be readily calculated and
assembled in irreducible representations of SU(2)
As an example we take 1=2. Then
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TABLE I, For a given representation B~ of the Lie algebra of SU(2) generated by matrices
T,"~, and a spinor representation of an orthogonal group generated by Grassmann variables
8„ the reduction to irreducible components of the SU(2) Lie algebra representation given by

(a) I~=28, T~~t, 8& and (b), (c) I =&,&,~e& is shown. The isospinl of the representation &~ of

SU(2) is related to the dimension of the orthogonal group as (a) 2l +1, and (b), (c) 2(2l +1).

(a)
G =8U(2) R~:integer spin [0;,9,]+ =6;;

Orthogonal
group

Spinor
components Reduction

80(3)

80(5)

80(7)
80(9)

80(11)

Orthogonal
group

3

3+0
5+2

+ +is 9 5
2 2 2

Reduction

(b)

0=SU(2) B~:integer spin [02~, 8;1+ =4~;

Spinor
components

80(6)
80(10)
80(14)

1+0
3+2+1+0
6+5+4+3X3+2+1+2x0

(c)

G =SU(2) Bg.half-integer spin [0;,0;l, =~;~

Orthogonal
group

Spinor
components Spinor Reduction

80(8)
Odd

Even

2

2x0
2+3x0

2X—

+3x +—9 5 3
2 2 2

2x4+2x2+4x0

»d the eigenvalues of 'DII are for (L», L,g the
four combinations (2, 2), (-2, +2), (+k, -a), and
(=,', --,'). Thus the eigenvalues of I' are -'„2,
-2, and =,' and we get the only irreducible repre-
sentation I = -', . In (a) of Table I we give the reduc-
tion for other R~.

(b) I = I.3, + I,46+2L 9+2L8,0+ ~ ~ ~

~ 4& -ly 4/+ g ~41 ~ 4&+ 2 (5.12)

L, », which is diagonalizable together with the gen-
erators that enter in I', does not occur here. It
does, however, occur in I' or I' and thus the wave
function is an SO(4/ +2) spinor belonging to the
even representation ""D

1 ~. ..~ ~
or the odd repre-

sentation ""D
~ ~. ..~ ~. The eigenvalues of the

1generators L», I.», I.«, .. ., L4& 4,+, are x~ with an

even (odd) number of minus signs in the even (odd)
representation. Thus we find for A~ with / =2 that

I'= L35+L 46+2L 79+2L8, M (5.12)

and the eigenvalues are, for the even representa-
tion, 3, 2, 2, 1, 1, 1, 0, 0, 0, 0, -1, -1, -1, -2, -2, -3.
The reduction is 3+ 2+ 1+0. For the odd represen-
tation we always get the same result, since the
absent generator L» absorbs the difference in the
number of negative eigenvalues. In (b) of Table I
we give the reduction for other R,.

%e next take R to be a half-integer-spin repre-
sentation. Then, all three generators T,, cannot
be chosen antisymmetric, and we have only one
possible construction, (b). We can still choose
T',

&
block-diagonal, i.e., for R of spin s we get
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TABLE II. Examples of the same reduction as in Table I, but with SU(2) replaced by 8U(3).

Orthogonal
group

SO(6), 0~0~

SO(6), 0~0~

SO(8), 0 =0~

SO(16), 0& 0~

Spinor

components Spinor

Odd

Even
Odd

Even
Odd/even
Odd/even

Reduction

3+0
3+0
3+0
3+0
8
2 x (27+10+10+8+8+0)

0 2i
1 ~

-zg. 0

-2i 0

(5.14)

The wave function is an even or odd SO(6) spinor.
%e find in the former case the eigenvalues of 13

to be 2, -2 and twice zero, and those of I' to be
2 1 10 3 3, and 3 ~ Thus, the even spinor dec om-

poses into 3+0.
If 8, is the adjoint representation, me take T,,

=if „, which. are antisymmetric, and we get for
case (a)

0 si
-si 0

3I =L12+ 2L45 —2L67 (s.2o)

(s.2l)

This gives
1 3 3L,3+ L24+ I5,+ L6, +

with the wave function an SO(8) spinor, and for
case (b)

3= 1 1I = L13+L24+ 2L79+ 2L s,I
+ SLY lr4+1+ SL4Sr4S+2 ~ (s.ls) 1 1

Lll 1 (5.22)

The wave function is an SO(4s+2) spinor belonging
to the even representation ~"D I I ... I or the odd

representation ~'2D i I ... i

For 8 with s = 2 me get

3 1 1 3 3
L13+ 2L24+ 2L57+ 2L6s

and the eigenvalues are, for the even representa-
tion, 2, 1,0, 0, 0, 0, -1, -2, giving the reduction
2+3 &0. For the odd representation me get the

3 3 1 1 1 1 3 3eigenvalues 2, &, 2, &, —&, -2, -2, -&, giving the
reduction 2 x 2. The reductions for other R, are
given in (c) of Table I, This completes the study
of SU(2). For SU(3) and SU(4) we will consider
only the few lowest representations. With G = SU(3)
me get the following:

If 8 is the fundamental representation 3 or 3,
only case (b) is possible. Then we can write the
diagonal operators T' and T' as (we forget about
normalization)

s
9 SrlO llr13+ 12r14 (5.23)

TABLE III. Examples of the same reduction as in
Table I, but vrith SU(2) replaced by SU(4).

Orthogonal
group

Spin or
components Spinor Reduc tion

with the wave function an SO(16) spinor.
duction for all these cases is given in Table G.
Finally, for G =SU(4) we have considered the fun-
damental and antisymmetric 6 representations in
a may that completely follows the treatment of
SU(3). The result is given in Table III. There is
one property that is particular to SU(4). This
stems from the fact that Ls«4) -

Lao«&. Therefore
there should be one R, such that the spinors of
SO(6), which are four-component, give the funda-
mental representations of SU(4). The generating
representation is 6, which can be given in terms
of antisymmetric 6x 6 matrices such thatI coin-

3 1 1I = 2L12 - 2L34

I = 3L12+3L34--'~56.s

(s.l7)

(5.18)

{5.18)

4 SO(8), 0~0t

4 SO(8), 0&0~

6 SO(6), 0 =0~

15 SO(15), 0 =9~

Even
Odd
Even
Odd
Even
Odd
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cides with the generators of SO(6}. The even and

odd spinors then correspond to 4 and 4, respec-
tively.

VI. FINAL REMARKS

. Wong' arrived at his equations of motion for a
spinless particle by applying semiclassical con-
siderations to a quantum Hamiltonian. This is not
inconsistent with our result since if one arrives
first at a particle with pseudoclassical spin, one
may neglect this spin in taking the purely classical
limit. In that case it would, however, have been
more appropriate to start from the Klein-Gordon
equation. In fact, if one considers a boson field
in the presence of an external gauge field and
carries through the same type of arguments as in
Ref. 1 one obtains Wong's equations by keeping
terms up to order h.

The pseudoclassical spin has length zero since
S' S= 0. This is understandable since the quantum
spin is seldom larger than a few multiples of h

and in our case the quantum spin is of length
S ' S= (—,}~~'K. Nevertheless, in the classical equa-
tions of motion one cannot distinguish S from a
classical vector. We suggest that in practice it
may be useful to replace it by a classical vector
with some finite length. In this way, one can
describe either a composite particle with large
rotational angular momentum or a single elemen-

tary particle in a strong magnetic field. The
same suggestion is made for the pseudoclassical
isospin.

It is interesting to notice that the correct gyro-
magnetic ratio already occurs at the pseudoclassi-
cal level.

Finally, we remark that the pseudoclassical iso-
spin operators for a given irreducible generating
representation in the quantized theory usually be-
long to a reducible representation of the Lie alge-
bra of the gauge group.

Added note. After the completion of the present
paper we received a report by A. Barducci,
R. Casalbuoni, and L. Lusanna' where a discussion
similar to ours of a Yang-Mills particle has been
carried through. The authors wish to thank
P. Di Vecchia for drawing our attention to this
work.
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