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Existence of bound states for a charged spin-1/2 particle
with an extra magnetic moment in the field
of a fixed magnetic monopole*
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Bound-state wave functions are found for a Dirac particle of spin 1/2 with an extra magnetic moment in the
field of an infinitely heavy magnetic monopole.

Consider a Dirac particle with spin {, charge I. TWO TYPES OF RADIAL WAVE FUNCTIONS
Ze, and magnetic moment

€ agn The Hamiltonian of the system is

H=a+(D-ZeA) +BM — kg5 -F@Mr®)t.  (3)
Z—e(l +k) (k20), (1)
2M To avoid singularities in the vector potential, the

wave function ¢ should be treated as a section.?

in the field of a fixed magnetic monopole of H commutes with® the total angular momentum

strength g#0. According to Dirac? N N
J=FTx(DP—-ZeA)—gfr  +15. (4)

= 2
q =Zeg #0 @) We shall confine our attention to eigenstates be-

longing to eigenvalues j(j +1) and m of J and J,.
There are® two two-component angular functions,
£ and £, if 7>| ¢| +1, and only one, 7, if

must be equal to ; times an integer. Except in
Sec. IX we shall not inquire into the origin of the
extra magnetic moment, but take it as a given con-
stant.

It may appear at first sight that because of the

J

j=lgl-%. Thus there are two types of eigenfunc-
tions of J%, J,, and H:

extra magnetic moment such a system has no well- Type A.

defined Hamiltonian. Upon closer examination i=lql +%,

this turns out to be not correct. We shall show ® ©

that in fact the Hamiltonian of the system is well R Rolr) € + o) 55, (5)
defined and possesses bound states. The method v= —ilhs(r) 551,2; + 1) E%]Kq/l kql |-
used in this analysis is straightforward: For the

angular wave function we use the concept of sec- Type B.

tions.? For the radial wave function we follow Fm

generally the classical ideas of the Sturm-Liouville j=lql=%, v =[ } (6)
theory. EMjm

II. TYPE-A WAVE FUNCTION

Type A is a generalization of types (1) and (2) of wave functions of Ref. 3 to the present case which in-
cludes a finite extra magnetic moment k. Using lemma 1 of Ref. 3 we find

-3, +py'1 0 Kq(ZM}’Z)'l M +E hy
0 -3, —ur~t  M+E  kq(@Mr®)T? ko -0 )
I
kqg@Mr2)"' M -E -3, +ur~t 0 ~hskq/ | kql
M-E  kq(2Mr?)~! 0 -a, —ur~! ~hakq/ | kq|
where We find (7) becomes
p=[(+3) -q* 250,

QOR© =0, 9

Change scale from » to p,

v =|kq|p2M)L. (8) where

15 2300
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hl
no=| "z, (10)
h3
h4
and
dp—pupt 0 p~? Ay +B,
Q0= 0 ap+up™" Ag+B,  p7? ,
P> Ag=B, dp—upt 0
Ay,—Byg p~2 0 9, +up~t
(11)
Ao=kq/2#0, B,=kqEQM)™*. (12)

The asymptotic behavior at large distances p is

J

B 1 ] -1
1 i _
a, = y A< y A3=
1 -1
1 i
1] g 1
1 -i
b1= s b2= s b3=
1 -1
L1 L ¢

For uniformity of notation with type-B solution,
we shall perform an orthogonal transformation on
Q© equivalent to multiplying a, by ¢ ¢|~%:

-1 -
Q =aa(1-a\ql )/ZQ(O)as(l-qld 3/2 ,
B =af-ald™h/z 0
Then

Q=0,-pasp™t +b,p"? +Aa, b, +iBa, b,, (147)

where

A=xlql/2, B=klq|E@M)™. (12)
Furthermore

Qr=0. (9)

We shall now show that the system has many
bound states. First, assume that A, B gives a
bound state, (b,Q0,)(b,%)=0. But b, Qb, is the
same as Q, but with the sign of B changed. b,x
vanishes at p =0 and p=w. Thus A, —B also gives
a bound state. A similar argument shows that

obtained by dropping p~% and p~! in (11). If (4,
+By) (Ay—By)>0, i.e., M3>E?, the solution of (9)
is a sum of hyperbolic sines and cosines. In such
a case, for suitable values of A and B we may have
bound states. If (A,+B,) (Ay~B,)<0, i.e., EZ>M?,
the solution @ is oscillatory at large p, and we
have scattering states.

The boundary condition for 2¥ (p) for a bound
state is

lim r® (p) =lim 1@ (p) =0. (13)
We write
Q@=0,-pasp t+b,p 2 +Aga,b, +iBoa,b,.
(14)

Here a,,a,,a5 and b,,b,,b; are two sets of Pauli
matrices, so that

(15)

-A, =B also gives a bound state. Thus we have
the following:

Theovem 1. If we find a bound state for j>| ¢
+%, then changing the sign of E, «, or g would
produce another type-A bound state of the same j
and m.

Next we shall prove the following:

Theovem 2. E =0 is always a bound state for
every j,m, where j=|q|+1%.

Proof. E =0 implies B=0. Q then commutes
with ,. Choose b,=-1. Then

Q :ap_p'2_ pazp™t-Aa,

9p=p 2= pp~! -A
{ 4 )
-A 9p—p " +up

The equation Q% =0 thus has a bound-state so-
lution. Each component of 7 is of the form

Vp e~*/°x (Hankel function of p) . 17

This proof also shows that for a given j,m, the
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type-A bound state E =0 is nondegenerate, be-
cause b, =+1 does not lead to a bound state.

III. TYPE-B WAVE FUNCTION

Wave function (6) was already discussed in Ref.
3, Egs. (27), (37), (38), and (39). Thus

dG _[ (E-M)x |xql ]
- |~ - 5| F,
ar IKI 2Mvr

(18)
dF_I:(E+M)K | kg ]
Y - 7 |G,
@ | k] 2Mr
where
f=kqF )| kqr|™", g==iGE)r ". (19)
We shall now change scale of » by using (8)
above, and obtain
; 1
- fuoa-2)r
P P (20)

dar 1

do —<A +B - pz>G,

where A and B were defined above by (12’). As in
Sec. II, E2>M? implies (4 - B)(A +B)<0, which
implies oscillating behavior at large p. Thus E?
>M? describes scattering states. We shall con-
centrate on E2<M?, or A®>B? Putting

F =R cos <—%+—¢1>, G =R sin (——Z—+ i) , (21)

2 2
we obtain
4o __, ( ,2._> i
==2B+(2A - sing . (22)
dp e ¢

As p—~0, the p~? terms dominate in (20), and a
possibly meaningful solution is F~-G~exp(—p~*).
Other solutions of (20) cannot be meaningful be-
cause for them F~exp(+p~'). Thus

G/F--1, i.e., ¢~0asp—=0+. (23)
Near p =0+, ¢ can be expanded in an asymptotic
series:

¢ =—Bp>+Bp - B(A+3)p*+--- . (24)

Changing the sign of B merely switches F and G,
and changes the sign of ¢. Thus we have the fol-
lowing:

Theovem 3. I we find a bound state for j =| ¢|
— } then changing the sign of E would produce
another bound state.

IV. TYPE-B WAVE FUNCTION FOR « <0 (i.e., 4 <0)
Define
T(p,¢)=-2B +(2A —2p~2) sing . (25)
Regions in the (p, ¢) plane where 7>0 and 7<0

4® region |
7

+ region 2

—W—/—*

=27 f~

+

Irp—"

(-A>B>0)

FIG. 1. Regions of definite sign for T'(p, #), for —A
>B >0.

are shown in Fig. 1 for the case
A<0, -A>B>0. (26)

Integrals of (22) give nonintersecting curves in
the 7, ¢) plane. Maxima of these curves must lie
on the boundary lines T =0. Therefore the curve
with the desired boundary condition (23) and (24)
lies entirely in region 1 for p>0 since it cannot
cross into region 2. Thus ¢ is monotonically de-
creasing. It thus approaches a limit as p—cw:

O~ D - (27
From Fig. 1 and (22) we obtain

¢ =—sin"!|B/A|, -7/2<¢,<0. (28)
Thus, for all p>0,

-7/4<$<0,
and

-G>F>0.
Thus
%‘ <A +B - p—12)6><—A —B+—pl;>F> (<A -B)F.

(29)

Hence F increases at least exponentially as p—.
We have thus shown that there are no meaningful
solutions for case (26). It follows that there are
no bound states for this case. Using theorem 3
we conclude that there are also no bound states if
-A>-B>0.

Case —-A >B =0 can be discussed by inspecting
directly (20). One finds that the two solutions of
(20) are

F=2xG =et@pr+p™h)
No combination of the two solutions can give

meaningful results at both p~0 and p~«. Case
-A =B>0yields

_d’F
dg?

+(-2A/E?)F=-F, t=1/p. (30)
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FIG. 2. Regions of definite sign for T'(p, ¢), for A >B
>0. An integral of class I, and one of class II, are
schematically displayed.

> P
(A>B>0)

This is a Schrodinger equation at energy -1 for
repulsive potential —2A 7% Integrating from £ =oo
(i.e., p =0) inwards, we find that limF =« as ¢~0.
We thus arrive at the following:

Theovem 4. X k<0, there are no bound states
of total angular momentum j =| g | — 3.

V. TYPE-B BOUND STATES FOR k>0 (i.e., A>0)

E =B =0 is always a bound state, for which (20)
gives

F=—G=e"(’“’+p—1) . (31)

For this state ¢ =0 for all p.

Because of theorem 3 we now study the case
A>B>0. We again define T by (25) and show in
Fig. 2 the sign of T(p, ¢) in different regions of
the (p, ¢) plane. We study first the behavior as
p— of all integrals of

9E=1(p,9). (32)
Since ¢ =0 is an integral, other integrals must be
either above or below the ¢ =0 axis (horizontal
axis). Because of (24), which says that ¢ <0 for
very small p, we are interested only in integrals
for which ¢ <0 for O<p.

In Fig. 2 regions 1,2,..., are traps in the sense
that once any integral of (32) is in one such region
it will remain in the same region for all larger p’s,
and will be monotonically increasing for all larger
p’s. If an integral of (32) is never trapped in any
such regions, it must, for p>(A —B)~!/2, be in the
main region and be monotonically decreasing.
Since in either case the integral is monotonic for
large-enough p, all integrals approach some limit
¢. as p—~». Equation (32) implies then

T (e, ¢ao) =0, i.e., sing, =siny =B/A, (33)

where

y =sin"*(B/A), O<y<m/2. (34)

Thus, according to the behavior of an integral of
(32) as p—~», we put it into one of the following
classes:

Classes I,. All integrals trapped in region n.
For these

¢m=(7’—7)_2n”, n=1,2,3,..., (35)

Classes II,. All integrals completely outside of
any trapping regions. Furthermore

b=y =2nm, n=1,2,3,.... (36)

Classes III,. All integrals completely outside of
any trapping region. Furthermore

G =(M=y)=2nm, n=1,2,3,.... 37

We can now expand ¢ for large p into an asymptotic
expansion:

G =ty p  Hbop E e (38)
For classes II ,
b,=0, b,=B[A(A*-B*)'?]*,. ..,
for classes I, and III , (39)
b,=0, b,=—B[A(A®=B*)Y2|"%, ...,

as can be verified from (22). Equation (39) shows
that d¢/dp >0 for large p, for classes I, and III .
That means that the integral must be in a region
where T(p, ¢)>0 for large p. Thus it must be
trapped. These arguments show that class III,
does not exist for any n.

In Fig. 2 we exhibit a class-I, integral and a
class-II, integral. The importance of the classi-
fication shceme lies in what follows:

Lemma 1. Class-I, integrals give exponentially
divergent F and G as p—~« (physically inadmissi-
ble). Class-II, integrals give exponentially damped
F and G as p~» (physically admissible).

Proof. For class I,, according to definition (21),

G/F =tan[-(1/4) +(¢/2)]=tan[(7 - 2v)/4]>0.

Equation (20) then shows that | F| and | G | become
exponentially large for large p. Similarly, we
prove the lemma for class II .

Now define

¢(p,A, B) =solution of (32) satisfying (23)
and (24).
(40)
It is important to remember that ¢(p,A, B) is
analytic in p,A, B, for O<p and all A and B. For
small positive p, (23) and (24) show that ¢ is de-
creasing with p. The ¢-vs-p curve cannot cross
into region « of Fig. 2 because in region «, d¢/dp
>0. Thus the ¢-vs-p curve remains under the p
axis and above region o.
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We shall now fix A >0 and study the behavior of
the ¢(p,A, B)-vs-p curve as B changes. We shall
say that B belongs to class I (or II,) if ¢(p,A, B)
belongs to class I, (or II,). Figure 2 shows that,
for B>0,

¢ ((A=B)" Y%, A,B)=(n/2) = 2nm=B is in I,
(41)

#((A =-B)"*2,A,B)<(n/2) = 2nr ,
(42)
#((A=B)" Y% A,B)>(1/2) =2+ )7

=Bisinl , II ,orlI, .

We now prove three lemmas.
Lemma 2.

20,2 B) g torania,p. (43)
9B
Proof. Take (20) and consider a set of similar

equations at B, with solutions F, and G,. It follows
from these that

d—d—p(FIG -G,F)=(B,-B)(F,F +G,G).
Thus

P
F,G=G,F =f (B,=B)(F,F +G,G)dp .
0

Divide by B, — B and approach the limit B,~B.
We obtain

oF 3G f" 2 2
9L A~ 0.
aBG aBF A (F?+G%)dp>

By (21) this becomes

- Zigl:fp 2 2 ’
R* >3 | (F?+G?)dp>0, (43)
which proves the lemma.
Lemma 3.
#(p,A,0)=0 for A>0. (44)

Proof. This case gives the bound-state wave
function (31) for which ¢ =0.

Lemma 4. ¢(p,A,A) for A>3 is a function of p
that is 0 at p =0 and approaches —« as p—w.

Proof. When A =B>0, (20) can be transformed
into

G | <_ 24
ag* £
where £ =p~! and F =dG/dt. This is a Schridinger
equation with potential energy —2A¢~2 and total
energy —1. Near ¢ =0 the indicial equation is

-a(@-1)-2A=0.
For A>%

>G=—-G, (45)

a=+itiw, w=(B8A4-1)%/250.
Thus integrating from £ =« towards £ =0 we ob-
tain
G~CVE sin(wIng +D) ~7, = Cp~*~sin(w Inp - D)
(46)

where C and D are constants. Using F =dG /d¢
one obtains

F~Cp*?27'[-sin(wInp - D) +2w cos(w Inp - D)].

Thus (F,G) spirals outwards indefinitely in the
(F,G) plane clockwise as p—~«. By definition (21),
this implies

(;b(p,A,A)p’:-;—Zwlnp as p—~w. (47

Lemma 4 is thus proved.
We shall now separately discuss cases A >4
and 0<A<3.

VI. TYPE-B BOUND STATES FOR 4k lgi>1 (ie., A>5)

We concentrate on case B>0. Since all integrals
for case A >B>0 approach some limit, ¢(»,A, B)
exists if A>B>0. Its value is given by (35) or
(36). The plot ¢(0,A,B) vs B (Fig. 3) thus must
lie on the dashed curve describing (35) plus the
dashed curve describing (36). Now (43) shows

¢(p,A,B)>¢(D,A,Bl) if B<B;.
Thus
¢(w,A,B)>¢(=,A,B,) if B<B,. (48)

That is, ¢(w,A,B) is a nonincreasing function of
B. Thus the only possibility for ¢(~,A,B) is to
follow a steplike descent such as pgst-- -

Lemma 3 shows that ¢ ((A - B)™'/2,A, B) is small
and negative for sufficiently small B. Equation

¢ (®,A,B)

(A>0)

FIG. 3. ¢(~,A,B) vs B at fixed A >0. The curve is
monotonically decreasing. All points on it must be on
the broken dashed curve which is B=A sin¢. Thus it
must be stepwise such as pgrstu ... .
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(42) then shows that such B must be in I, II,, or
I,. Since the former two classes give ¢, >0 and
are impossible classes for positive B, such small
B must be in I,. Thus the first segment pg must
be on I, as shown.

Lemma 4 shows that for fixed A there exists p,
so that

¢(pyrA,A)<—2NT

for any large positive number N. o¢(py,A, B) is
continuous in B. Thus there exists a 0<B<A so
that ¢(py,A,B)<—2N7 +7. Thus ¢(w,A,B)<=2NT
+27. In other words ¢(~,A,B) as B~A is not
bounded from below.

We have shown that the ¢(w,A, B)-vs-B plotis a
series of steps, with vertical drops starting from
pgq in 1I;, descending towards ~«. We now prove
that if the first drop occurs at B,, then B, belongs
to II, so that» of Fig. 3 is a point on the plot. For
0<B<B,, the curve ¢(p,A,B) vs p is trapped in
region 1 (cf. Fig. 2). Its minimum is thus >- 27.
Thus

¢(p,A,B)>-2r for allp, 0<B<B,.
Hence

¢(p,A,B;) =Blir§’1 ¢(p,A,B)=-2m.
B,

Hence
¢(e0,A,B;)==21.

Thus ¢(»,A, B,) must give a point either at g or
v, but not s. If it were at ¢, then ¢(p,A,B;)
would be trapped in region 1, and ¢(p,A, B,+)
would still be trapped, showing that B, is not the
upper end of the I, stretch. This is a contradic-
tion. We have thus proved that

B, is in II,, giving rise to a bound state, (49)

according to lemma 1, since the wave function is
damped at both » =0 and 7 =«.
Clearly,

#((A=B,) 2 A,B,)>¢(0,A,B;)>=27.
Continuity thus indicates that
#((A =B,+)"*2 A,B,+)>~2r.

The ¢(p,A,B,+)-Vs-p curve must therefore be
trapped in region 2. That is, B,+ is in L,
Repeating the above arguments we arrive at the
conclusion that the ¢(»,A, B)-vs-B plot (Fig. 3)
consists of stretches pgq, st,..., on all the I,’s,
n=1,2,3,.... The drops are at B,,B,, B, ...,
where B, is in class II,, »=1,2,3,... . Collecting
all results together we obtain the following:
Theovem 5. For 4x|q|>1, j=|q| -4, there are
infinitely many bound states at B=B,>0, and

AE scattering states

scattering states

FIG. 4. Bound-state energy for j=|g|— 4. Solid lines
show bound-state energies E, as functions of A. The
dashed lines are thresholds outside of which there are
only scattering states. E=0 is a bound state for all
k|q|>0. The diagram is symmetrical with respect to a
reflection in the A axis. The curves are not numerically
accurate.

B=-B,, n=1,2,... (Fig. 4). Besides these and a
bound state at E =0 there are no others at this j.
For the bound state at B,, ¢#(0,4,B,)=0,
¢(=,A,B,)=vy,~2n1. ¢ is monotonically de-
creasing in p, and y, =sin"!(B, /A), O<y,<7/2.
For such a bound state, (F,G) winds monotonically
around the origin clockwise in the (F,G) plane.
Thus F(r) and G () each has n nodes exclusive of
v =0 and 7 =w. The state at —~B, is obtained from
that at B, by the switch F—G. The wave function
for the case E =B =0 was given in (31) above. All
bound-state wave functions vanish in the limit
r—-0 as

r~texp(-| kq/2Mr]), (50)
and vanish in the limitr -w as
r~texp[-r(M?-E,2)"]. (51)
We remark that the damping (50) is provided by
the extra magnetic moment.
VII. LACK OF TYPE-B BOUND STATES FOR
E+#0,0<4x|qI<1 (ie.,0<A4 <3)

For this case, we first consider B=A. The dif-
ferential equation becomes (45), the solution of
which is a Hankel function:

E=p™,
G=—e""WEHD ), p=(i-24)2 (52)
F =dG/dt .
Equation (52) is the only solution, except for a
multiplicative constant, that does not exponentially
diverge as p—0. The asymptotic forms of the

Hankel functions as £~ 0 (i.e., 7— «) are well
known. Using these results we find that as p—
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F-0(plnp) ifA=%,
F—-0(p??) if 0<A<%.

(53)

Thus these wave functions are not square-inte-
grable, and 0<B=A <3 does not give a bound
state.

We can find ¢ from (52) and (21), obtaining for
all p,

0=¢(p,A,A)>-31/2, 0<A<3.
Now apply lemma 2. We obtain
0>¢(p,A,B)>¢(p,A,A)>-31/2, 0<B<A <3

for all p. Referring to Fig. 2 we conclude that
o (p,A,B) is trapped in region 1 and does not give
a bound state.

Theorem 6. For 0<4k|q|<1, j=|q|-%, there
is only one bound state at £=0 with wave function
given by (31).

VIII. NUMERICAL CALCULATION AND ASYMPTOTIC
EXPANSIONS

The bound-state energy E,=MB,/A is shown in
Fig. 4 schematically. Actual values are tabulated
for n=1,2, 3 for three values of A in Table I.
These values are obtained by numerical integra-
tion of (22).

Asymptotic values of E, in various limiting
cases can be obtained. We list some of these be-
low:

(a) For fixed n, as 84 —-1—-0+,

In(1 -E M) =-4m (84 - 1)"2+0(1), 54)
(b) For fixed n, as A =,
E"M-l-_- VATt L0 2), (55)

(c) For case A~ =, n?A-!=fixed,

y[(f%ﬂd/ " < i—i;)”ﬂ = Z—% + O<71[T> , y=E /M.

(56)
(d) For case n— «, fixed A >3,

In(1 —E M) =-4m (84 - 1)"*/2+0(1). (57)

IX. DISCUSSION

(a) Examination of the radial wave function of
type A discussed in Sec. II and the radial wave
function of type B in the other sections show that
Hamiltonian (3) with « #0 is well defined. Further-
more, for a fixed value of k#0, the bound states
at E2<M?® and the scattering states at £E< - M and
E =+ M together form a complete set. We thus
are free of the Lipkin-Weisberger-Peshkin diffi-
culty*® because the wave function at » =0 is al-

TABLE I. Lowest three positive-energy levels for

some values of A =x|q|/2.

A (M-E\)/M (M - Ey)/M (M -E3)/M
1.0 5.75% 107 5.12x 107 4.47x1077
1.5 1.41 %1072 3.28x10™ 7.53x1078
2.0 2.35x 1072 9.45x10™ 3.74x10°
2.5 3.37x107? 1.92x103 1.08x10™

ways damped, for both signs of k, and all values
of E, by the extra magnetic interaction. It is
worth mentioning that the other difficulty that has
plagued the analysis of the physics of monopoles,
the string of singularities, has already been dis-
posed of by the use of the concept of sections.?

(b) For both types A and B states, the addition
of an interaction proportional to 5*(») does not
change anything since since the damping factor
(50) prevents the charged particle from passing
through the monopole.

(c) Can the monopole capture more than one elec-
tron? This is a very interesting question current-
ly under investigation. Preliminary results indi-
cate that two electrons can be bound simultaneous-
ly to one monopole.

We observe that the strong binding of electrons
to monopoles applies also to binding of positrons
to monopoles. The following possibility then
arises. Create a pair of e*e”, expending an en-
ergy of 2M. Capture each member into a bound
state with E=0, of the type described in Theorems
2, 5, and 6. This releases an energy of 2M. The
Coulomb interaction between e¢* and ¢~ presum-
ably helps to produce a net energy surplus. Thus
it is energetically favorable to create pairs and
bind them to the monopole. Since there are in-
finitely many bound states of the type of Theorem
2, this argument suggests that a monopole will
be enclothed in a plasma of e*e” pairs. In other
words, there is a very strong vacuum polariza-
tion. The polarization cannot, however, change
the magnetic charge on the monopole.

The discussion of the paragraph above is not
quite decisive because of the complication to be
mentioned below in (e).

(d) Can the analysis of the present paper be used
to describe the motion of a proton in the field of
a fixed magnetic monopole? The answer is clearly
no. The hadronic cloud around the proton (which
gives rise to its static extra magnetic moment
k =1.79) embodies many degrees of freedom which
must be taken into consideration in the very strong
magnetic field around the monopole.

(e) Can the analysis of the present paper be used
to describe the motion of an electron in the field of
a fixed magnetic monopole? We are not able to
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answer this question with certainty since physically
the extra magnetic moment is due to radiative cor-
rections, and a complete field theory of electron-
monopole interaction remains to be worked out.
Lacking a complete theory we argue, however,:
that the bound state E =0 probably does exist for

j= lq |— z. Two points are needed for this argu-
ment. (a) For this value of j, the wave function
(31) is (for k>0)

F =-G=exp(-Mr ~|kg/2Mr|), (58)

which is independent of k except for very small
values of » < |kg/M|. The wave function is quad-
ratically integrable even if we put k=0 in (58). In
other words, for j=|q|-3, E=0, the electron dis-
tribution is little influenced by the value of x, pro-
vided its sign is positive. (b) For large distances®
'r’

1
K='(ﬁ,?)2—ﬂ+"'. (59)

For small distances, the magnetic field becomes
very strong. For the distance most relevant for
the wave function (58), »~M", and one has the

following order of magnitude for the magnetic field:
e=gr2~gM?. (60)
The relevant parameter® is
exM=2=q.

For such a strong magnetic field there are “polar-
ization” effects® on the electron which lead to,
among other effects, changes in the value of «.
The results of Ref. 6 are not really applicable to
the strong nonhomogeneous field we encounter.
But they suggest that k does not change sign.

Combining (a) and (b) we thus suggest that the
bound states at £=0, j= lq[—é exist, with a wave
function

F=_G=exp(-M7),
except at very small distances where F and G are
damped in a complicated way.
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