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The following extremal problem is solved: Let 0 be an operator whose lowest-mass coupling is to the two

particles A and B and is given by a form factor F which is analytic in a complex plane cut along a section L
of the real line. Given values of F, at points not on L, and the partial-wave amplitudes for AB scattering in

the channels with the same quantum numbers as 0, over some portion of L, what is the optimal lower bound

for a given positively weighted integral over L of the spectral function of 0, consistent with the elastic and
inelastic unitarity relations on L? The solution involves a system of two inhomogeneous singular integral

equations of the Muskhelishvili type, which can be reduced to a singular integral equation of the Fredholm

type. The results are applied to establish an upper bound of 0.25 for the nucleon renormalization constant,

using the strong-coupling constant and 7r N scattering data in the P&& and S» channels up to a c.m. energy of
1.7 GeV. The bound indicates that the nucleon is at least 75% composite.

I. INTRODUCTION

In this paper we shall examine some of the con-
straints imposed upon form factors and propaga-
tors by analyticity and unitarity.

In the last few years it has become clear that the

general constraints on scattering amplitudes which
follow from the requirements of analyticity and

unitarity are of considerable practical impor-
tance. ' ' The investigation of the content of ana-
lyticity 2nd unitarity for form factors has been
stimulated by results from electron-positron col-
liding beams. Following the approach originated
by Meiman' and by Nguyen Van Hieu, ' several
important results have been reported. Restrictive
bounds have been derived for the pion electro-
magnetic form factor" and for the scalar K,3

form factor'" as consequences of their analytic
properties.

Several important features distinguish the anal-
ysis of form factor s from that of scattering am-
plitudes. The most obvious distinction is that a
form factor depends upon only one complex vari-
able, so that its analytic properties are much

simpler than those of a scattering amplitude. In
general, however, only the modulus of the form
factor is measurable on its cut, which corresponds
to the annihilation channel. This limitation is
compensated by the possibility of measuring the
form factor inside its domain of analyticity, either
from scattering experiments (for the pion form
factor in the spacelike region) or from three-body
decays (for the K» form factors in the timelike
region). Most importantly, the measurement of

partial-wave amplitudes enables one further to
constrain the form factor, using unitarity. In the
simplest situation the elastic partial-wave ampli-
tude fixes the phase of the form factor on the elas-
tic cut, by Watson's theorem.

The general problem we study here is that of
establishing relations between a form factor in the
annihilation channel (alternatively, information
about a propagator) and its values at measureable
or theoretically interesting points inside its domain
of analyticity. We shall be concerned fully to ex-
ploit any partial-wave information available. A
comprehensive list of problems of physical interest
has been given by Qkubo. " We shall exemplify the
content of our new inequalities by giving results,
for the coupling of an off-shell nucleon to a phys-
ical nucleon and pion, which determine an upper
bound for the renormalization constant of the nu-
cleon.

The first major problem in this program is that
of finding an optimal lower bound, consistent with
elastic unitarity, for any given quadratic functional
of the form factor in the annihilation channel (spe-
cifically a two-particle contribution to the disper-
sion relation for a propagator). By optimal we

mean the most restrictive bound consistent with
analyticity, elastic unitarity of the form factor,
and an arbitrary amount of discrete information
about the form factor (or its derivatives) on the
real line. This extremal problem has been tackled
independently by Okubo" and ourselves, "using
different techniques. The problem has been re-
duced to that of solving a singular integral equa-
tion of the Fredholm type. Recently, a quite dif-
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ferent and elegant mathematical method has been
developed by Auberson, Mahoux, and Simao. "

These general results, which use elastic unitar-
ity, have been applied to the scalar K» form fac-
tor, assuming unsubtracted dispersion relations
for the propagators of current divergences. "'"
The resulting ineonsisteney between the experi-
mental data and the general structure of spon-
taneously broken SU(3) X SU(3) symmetry strongly
indicates that the subtraction assumption is in-
valid. One is led to the important physical con-
clusion that the scale dimension of the chiral-sym-
metry-breaking Hamiltonian is greater than or
equal to 3."

Encouraged by this result, we proceed further
with our program. The general problem we solve
in this paper is that of finding an optima/ lower
bound for any given positively weighted integral
of a spectral function (for example that in the sum
rule for the nucleon renormalization constant, Z, ),
given values of the form factor and both elastic
and inelastic partial-wave amplitudes over some
region of energies. The solution involves a sys-
tem of tuo inhomogeneous singular integral equa-
tions of the type investigated by Muskhelishvili, "
which we solve completely for the we% form fac-
tor, given P„and S„partial waves up to -1.7
GeV, to obtain the bound

Z2 ~0.25 .
Qur new results complete the program of im-

plementing the content of unitarity for form fac-
tors, which had previously been partially exploited
for the pion electromagnetic form factor by Auber-
son and Li,"for the scalar K„ form factor by
Bourrely" and ourselves, "and for the md% form
factor by ourselves. " We believe that our new
results represent optimal bounds respecting elas-
tic and inelastic unitarity and that no numerical
improvement can be achieved without new input.
Our method should be readily applicable to the
computation of more restrictive bounds on the
hadronic contributions to g- 2 (Ref, 16) and on the
dimension of the scale-breaking part of the Ham-
iltonian density. '9 (See Ref. 11 for a list of other
possible applications. )

The paper is organized as follows. In Sec. II we
formulate a general extremal problem based on
the unitarity equations for propagators, form fac-
tors, and partial-wave amplitudes. We discuss
inelastic contributions to the unitarity sums, par-
ticularly those relevant to the Z, ealeulations.
Section III gives the details of solving the extremal
problem and the resulting coupled integral equa-
tions. Section IV gives bounds on Z„ together
with the numerical results. In Sec. V we sum-
mal ize our results.

II. UNITARITY AND ANALYTICITY AS CONSTRAINTS IN
AN EXTREMAL PROBLEM

A. Formulation of the problem

Suppose there is some local operator 0, whose
propagator A(t) has its lowest branch point at
t= (m„+ ms)' owing to the coupling to particles A
and B. Let E(t) represent the form factor de-
scribing the coupling of 0 to particles A and B
and let T(t ) represent the partial-wave amplitude
for the elastic scattering AB-AB in a state with
the same quantum numbers (angular momentum,
parity, isospin, etc. ) as O.

Both functions n(t) and E(t) will be analytic in
the complex t plane cut along the real axis
[(m„+ms)', ~]. On the upper lip of this cut we have
the three unitarity relations

1m'(t)=w, (t} IE(t)l + g IA (t}l
N

1mE(t ) = E( t ) T& (t ) + Q A „(t) B„*(t), (2.2)

(2.3)

Here w, (t) is some positive weight function de-
termined by the spin and other quantum numbers
of 0, A, and B. The functions A„(t) and B„(t)are
proportional to the couplings of inelastic states
N to 0 and to AB, respectively. The sum over X
includes an integration over the multiparticle mo-
mentum phase space. Equations (2.1)-(2.3) are
represented diagramatically by Figs. 1(a)-1(c).

We are concerned with finding the optimal lower
bound for

dt w, (t ) Imh(t ),
~+m~) ~

(2 4)

where w, (t) is a given positive weight function,
and we are given E(t) or its derivatives at points
on the real line [-~, (m„+ ms }']and T(t }on some
portion of the cut [(m„+ms)', ~].

In the above analysis it was tacitly assumed that
0 is an operator of definite integer spin. For

First the general class of physical problems
which are of interest to us mill be described. Then
these problems will be recast in the form of an
extremal problem for a certain functional. The
functional will be defined on a class of functions
restricted by various constraints including both
unitarity and analyticity for the form factors. The
general considerations will be applied to the prob-
lem of the nucleon renormalization constant, for
which the relevant kinematics will be given.
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0 &1 —q (x)=4 g IB&(x)I, gx —I. (2.8)

T(x)= —,[q(x)e""*'—1], ex~ L,1
(2.9)

(a) where F(x) is an analytic function in the x-plane
cut along L(a, b) and is known at some points in
the interval (- b, a). On a portion L, of the cut
L(a, b) both the phase shift 5(x) and the inelasticity
q(x) are known, whereas on the remaining portion
L, only the latter is known within some limits

0 &q (x) &Ti(x) &q, (x) & 1, v x g I, , (2.10)
(b) determined by experimental uncertaintites and

unitarity bounds.
It is convenient to absorb the weight function

h(x) of Eq. (2.5) into the form factors F(x) and
A„(x). To preserve the analyticity of F(x) one
needs to construct the function H(x} which is ana-
lytic in the x-plane cut along L(a, b), satisfies

FIG. 1. The unitarity relations of Eqs. {2.1)—{2.3).
IH(x) I= &(x), ~x ~ L(a, b), (2.11)

spinor operators of definite half-integer spin (for
example an interpolating nucleon field} b(t} and
F(f) are analytic in the w = Mt plane with left-hand
and right-hand cuts [-~, —(m„+ mz)] and

[(m„+mz), + ~], the relevant partial-wave ampli-
tudes in each case having the same spin and iso-
spin as 0 but opposite parities by lVIcDowell sym-
metry.

The relevant weight functions w, (t ) and w, (t)
for the K„problem are given by Li and Pagels'
and for the Z, problem by Drell, Finn, and
Hearn, '" with subsequent amplification of the cut
structure by Okubo" and of the relevant partial-
wave amplitudes by ourselves. " We show in the
next subsection that the inelastic couplings AN and
BN for the Z, problem, as normalized by Eqs.
(2.1) and (2.3), contribute to ImF in the symmetric
fashion given in Eq. (2.2).

Incorporating half-integer-spin as well as in-
teger-spin operators, 0, we will establish the
optimal lower bound for the functional given by
Eqs. (2.1}and (2.4) as

I= —f «»'(x) IF(x)I'+ P IA„(x)I
L(a, b)

with
(2 5)

L(a, b)=(—~, —b) U(a, +~), —b&a, (2.6)

given the unitarity equations on the upper lip of the
cut(s)

and has no zeros inside its domain of Bnalyticity.
This can be achieved as follows: Transform the
complex x-plane onto the unit circle Iz I& 1, using
the mapping

1 —z (a —x)b
1+ z (b+ x)a (2.12)

which takes the points x= —b, 0, a to z = —1, 0, 1,
respectively, and maps the upper lips of the cuts
(- ~, —b) and (a, + ~) to the upper half of the unit
circle z = e', v ~ 6 ~ 0, and the lower lips to the
lower half. Then the function H(x) is simply given
by

H(x) = exp — d& ln
I
h(x(e' )) I

$1 e' + z(x)
2w —. e"-z x ~

With the notations

7(x}= H(x) F(x),

A„(x)= H(x) A~(x),

B„(x)= 2iB(x) exp[2i argH(x)],

e(x) = b(x)+ argH(x),

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

the problem formulated in Eqs. (2. 5)-(2.10) can
be recast in the following general form.

Suppose that F(x) belongs to the class H, of func-
tions which are analytic in the complex x plane,
cut along L, and are quadratically integrable on L.
Find the optimal lower bound for the functional

lmF(x) = F(x}T*(x)+QA„(x) B*(x), Vx ~ L dx IF(x) I
+ g IA„(x) I

L N

(2.18)

(2 7) subject to the constraints
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ReF(x) = —P, , +x H L
1 Im7(x') dx'
7T L X X

F(x) —F+(x)s(x) = g A~(x) BN(x), v x ~ L

0=1- Is(x)I'= P IB,(x)I',

(2.19a}

(2.19b)

(2.19c}

fined in terms of this field by

i d'xe"" 0 r(y x (I 0) 0

1
[(w+ ft) a(x)+ (w —g) a(-w)],

(2.21)
where q' = so'. The nucleon wave-renormalization
constant Z, is then given by the sum rule"

E, —= &(x;) =—,i = 1, k; x; ~ (- b, a)
1 Im7(x) dx
7T g X X$

-(m+ p)

Z -'-1=-
77 OQ m+ p)-

dw Imh(w+ I e),

(2. 22}

s(x}=q(x)exp[2ie(x)], Vx e L,

q (x) «
I s(x) I «q, (x), v x e L, ,

(2.20a)

(2.20b)

(2.20c)

B. Nucleon renormalization constant

We assume that the nucleon can be represented
by a renormalized interpolating local Dirac field
g(x}. The nucleon propagator function h(w) is de-

where L = L, U L„L,A L, = q}, and the real func-
tions e(x), q(x), },7( )x, and the numbers (F,j are
given.

It is important to note than, besides the local
constraints (2.19b) and (2.19c), the functions
A„(x) and B„(x)are restricted by the integral con-
straint (2.19a}due to the analyticity of 7(x). Un-
like previous approaches, analyticity is imple-
mented in the form of an integral relation between
real and imaginary parts of F(x).

(~e note that the extension to the case where
derivatives of F are known is quite straightfor-
ward: there are constraints obtained by differ-
entiating Eq. (2.20a} with respect to x, .}

1= —[(w+ If't) E(w)+ (w —g) E(-w)]2'
x igy'r~ u(p, o. , X), (2.23)

where q=P+k, q'=w', q(x}= (iP —m), g(x) is the
nucleon source operator, and Tp, p = 1, 2, 3, are
Pauli isospin matrices. The form factor is nor-
malized by F(m}= 1, so that g is the wNN coupling
constant obtained from analyses of mN dispersion
relations. The analyticity of F(w} has been proved
by Bincer."

To obtain the unitarity relations of Eqs. (2.1)
and (2.2) we invert Eqs. (2.21) and (2.23) and take
absorptive parts. For the propagator we find

where m and p. are the nucleon and pion masses,
respectively. There is, of course, an infinity of
possible interpolating fields. Our upper bound for
Z„which involves only physical wN scattering
data, applies for any interpolating field.

The form factor F(w) is defined" in terms of
the coupling of an off-shell nucleon to a physical
pion (momentum k, isospin p) and physical nucleon
(momentum P, isospin n, helicity X) by

Im a(s w + i e) = h'(+ w ) I F(x w) I
'+ — g (2w)' 5'(q —n) I (0 I P, ,(0) I n),„,I

', (2.24)

(2.25)

For the form factor we find

where P, , are the first and third spinorial components of the Dirac field and the weight function h of Eq.
(2.5) is given by"

3g'[w+m)' —p']' '[(warn}' —g']' '
hew =

327tw' (w v m)'

ImE(s(w+ie))=F(x (w+ie}) T~(sw) — ~ } g (0I), ,(0) In),„, ,„,(nINw, s),1

tg AN Tf

(2.26)

where the state vector INw, +) represents a positive-helicity wN system with c.m. energy w, total angular
momentum J= —,', isospin I=I, = —,', and positive or negative parity; and is normalized as by Jacob and
Wick. '4 The partial-wave amplitude T is defined by
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T(+w) = —[q~(w}e"'&' ' —1],

T( w-)= —.(q~(w)e" ~' ' —1),
(2.27)

where 5»(w) and q~ ~(w) are the phase shifts and inelasticities in the P» and S» vN channels, respec-
tively. '

Comparing Eqs. (2.22}, (2.24), and (2.26) with Eqs. (2.5) and (2.7), we see that the problem discussed
here is of the general form treated in the previous subsection, with the identifications

I —= Z2
' —1,

a =6=—m+p. ,

&.(+w)-=- ~2„(, )
[&0I e, ,,(0)ln)...],1

(2x)'5'(q —n)B„(sw) -=2[,„,( n~ Nm, +}].
It remains to give the partial-wave unitary relations

fmT(+w) =~ T(sw}['+ g (2w)'5'(q —n)~ B„(+ )w}',
n& N7r

(2.28)

(2.29)

(2.30a.)

(2.30b)

(2.31)

which reproduce Eq. (2.8).
The analytic function H, constructed from the weight function h of Eq. (2.25) according to the prescrip-

tion of Eq. (2.13}, is

where

3g' '~' [C(w, m+u}C(w, m —u)]' '[C(w, —m —g)C(w, —m+u)]'~'
32 [C(w, 0}]'[C(w,m)]' (2.32)

C(w, c) = m+p. -~ c '~' ' m+p. +w

}
'/'

1+ + 1—
2 m+p, i 2 m+p,

(2.33)

for c' ~ (m+p)'. The function H(w) is analytic in the w-plane cut along L= (-~, —m —g) Ll(m+ p, , ~) and
satisfies Eq. (2.11) since

) C(w, c)j'=f w —c[, vw C f. (2.34)

We conclude this subsection by remarking that it has been assumed that no negative-metric states con-
tribute to the unitarity sums of Eqs. (2.24) and (2.31). (Such states occur in gauge theories like QED and
for these theories renormalization constants are gauge dependent. )

III. SOLUTION OF THE EXTREMAL PROBLEM

In this section the general extremal problem
of Eqs. (2.18)-(2.20) will be exactly solved by
the Lagrange-multiplier method. First it will
be shown that the lower bound is determined by
the solution of a system of two inhomogeneous
singular integral equations of the Muskhelishvili
type. The system will. then be reduced to a Fred-
holm-type singular integral equation.

A. Lagrange equations for the extrema

Let us introduce Lagrange multipliers yz(x),
g(x), h(x), (A; j and p, (x), y+{x) corresponding
to the equality constraints (2.19a), (2.19b), (2.19c),
(2.20a) and inequality constraints (2.20c), re-
spectively. " The meaning of the subscript I in

(x)=0, if q(x)&q (x},

(x)& 0, if q(x) =q (x);

g, {x)=0, if q(x)&q, (x),

u, (x)& 0, if q(x) =q, (x).

(3.la. )

(3.1b)

The restrictions (3.1) merely reflect the fa,ct that
an increase (decrease) of q+ (q ) cannot result
in an increase of the minimum value of the func-
tional of Eq. (2.18}."

}{,(x) will become apparent. Unlike y, (x) and
h(x), the function g(x) will be assumed to be com-
plex, since the constraint (2.19b) is a relation
for complex quantities and must be considered
as a system of two real constraints. We record
the important properties of the inequality multi-
pliers g and p.



GENERAL BOUNDS ON FORM FACTORS AND PROPAGATORS. . . 235

The Lagrange functional. of the extremal problem is given by

dx I F(x)i'+ P I &,(x)l' —2[ x, (x)F,(x)+ x, (x)F, (x)]
m E

—Im gx Ex —E*xsx — A.PxB„x) —Ax) 1 — sx ' — B„x ' —2f XE~ x

+2 ~&E;+ — dx P, X q X —QX +@+X 'g+X —qx (3
1

' ' n'
~L, 2

where

F„(x)= ReF(x), F, (x) = ImF(x), (3.3a)

(3.3b)

f(x)=Q (3.3c)

Observe that Eq. (3.3b) defines the Hilbert transform of the Lagrange multiplier XI (x). Hence the function

I XI (x)dx
7T J X

is anal. ytic in a complex z plane with boundary values

X(x+ ie) = X„(x)+ iX, (x), y x E L.

This fact will be essential in finding the Lower bound (see next subsection).
It is convenient to complete squares in Eq. (3.2) to obtain

I = 2 = 2Q x( F; + —
I dx I F(x) —ix *(x)—if (x) ——.'i [g *(x)+g(x) s(x)] I

'
Tl

(3 4)

(3.5)

+ Q I &,(x) —lig(x)B, (x)l'+ [h(x) —ll g(x)l'] Q I B (x)l'

—
I X*(x)+f(x)+ 2[g *(x)+g (x)s(x)] I' —h(x)[1 —

I s(x)l']

+ — dx p (x)[q (x) —rl(x)]+p, (x)[q, (x)-ri(x)]
2

(3.6)

The functions Fs, (x), A„(x), B„(x)for x E L and

q(x), e(x) for x EL, will be treated as independent
variables. The requirement of vanishing first-
order variations of Z with respect to these vari-
ables leads to the Lagrange equations

F(x) —iX*(x) —if (x) ,'i[ g +(x}+-g(-x)s(x)] =0, Vx e L
(3.Va)

where, in deriving the last two relations, Eq.
(3.7a) has been taken into account. Equations
(3.7) can be greatly simplified using constraints
(2.19). Indeed„combining Eq. (3.7b) with Eqs.
(2.19b), (2.19c), one finds

F(x) —F+(x)s(x) = ——,'ig +(x)[1—
I s(x)i'].

Replacing F(x) by its expression from Eq. (3.7a),
we arrive at

X„(x)——,'ig(x)B„(x) = 0, V x ~L (3.7b)

(3.7c)
[ X*(x)+f(x)J + [X(x)+f(x)] s(x) =- [g *(x)+g (x)s(x)].

Hence

h(x}q(x)+ Im[F*(x)g(x)s(x)] —p (x) —g, (x) =0,1

20(x)
yx~ L, (3.7d)

g (x) = —[X(x)+f(x)],

which gives

(3.8)

«[F*(x)g(x)s(x)l = o, (3.7e) F(x) = ——,'i [g *(x)-g (x)s(x)]. (3 9)
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Returning to Eqs. (3.7c)-(3.7e) with this relation,
we derive

1

4g(x)
Re[g'(x)s(x)] —g (x) —p., (x) =0, vxCL,

Im[g'(x)s(x)] =0, yx~L, .

(3.10a)

(3.10b}

We show that Eqs. (3.10a) and (3.10b) cannot be
satisfied simultaneously unless g (x) =q, (x) or
q (x). The solution g(x) =0 to Eq. (3.10b) is trivial
due to Eq. (3.9). Hence

arg[g'(x)] = —args(x}+ vn, y x&L„(3.11)

where n is an arbitrary integer. Now Eq. (3.10a}
becomes

-'(-I)"
I g(x)l' —

I (x) —I,(x) =0, vxeL, .

Recalling conditions (3.1), we find two solutions:

with {X,) and XI (x), x~L, the Lagrange multi-
pliers obtained from the extremal conditions and
the constraints of Eqs. (2.19) and (2.20). Com-
parison of Eqs. (3.13) and (3.14) reveals that 2,„,
is indeed a lower bound for I. It is the oPtimal
lower bound because it can be saturated consistent
with all the constraints of analyticity, unitarity,
and data which we have imposed on the problem.
Hence

ext min '

We conclude this subsection by expressing the
extremal conditions in a form suitable for their
solution in the next subsection. The form factor
is given by Eqs. (3.9), (3.11), and (3.12a) as

1
F(x) = — Img(x)+w(x)g(x), VxEL.

y(x)

(3.15)
with

n is odd: q(x) =q, (x), axe L„
n is even: q(x) =q (x), vx~L„

(3.12a)

(3.12I3)
w(x) = —,[q(x) e" '*'.—1], yx~ L,2i

which correspond to different extrema. The
characters of thes e extr ema ar e determined by
the signs of the second-order variations of 2
with respect to the independent variabl. es. It is
easy to show that condition (3.12a) corresponds
to a local. minimum. The extremal character
of condition (3.12b) is more difficult to determine.
We shal. l content ourselves with proving that con-
dition (3.12a) corresponds to the optimal lower
bound we are seeking. Consider the following
inequality which can be obtained from Eqs. (2.20c)
and (3.6):

I ~ 2g p, , F, —— dx{~G(x)}'—Re[G'(x)s(x}]j
277 L

dxl G(x)l'[ I+q, (x)],
27T L

where {g,. j are any rea. l numbers and

(3.13)

G(x) = — —P, +i I (x) + Q
1 I (x')dx'
7r L A —X X X

where I (x}, x E L, is any rea. l function. We com-
pare the general lower bound of inequality (3.13)
with the specific extremum corresponding to con-
ditions (3.7}, (3.11), and (3.12a). We find

2,„, =2+ &, F, —— dx{g (x))' —Re[ g'(x)s(x)] j1

,'i [1+-ri, (x)], yx~ L, (3.16a)

y(x} =1, vx&L,
= [I+@,(x}]. ', yx~L,

The lower bound is given by Eq. (3.14) as

I, = 2+ X,. F, + — dx. Im[g(x)F(x)]
1

(S.16b)

(3.17)

by virtue of Eq. (3.8) and constraints (2.19a) and

(2.20a).

Im[w(x)X(x)] =Fr (x) f(x)Imw(—x), (3.19a)

Im[w*(x)F(x)] =x, (x) ~
w(x)~' — Imw(x) .1

B. Muskhelishvili equations for the lower bound

The analytic functions F(x) and x(x) are related
by Eqs. (3.8) and (3.15), which give

1F (x) = ImX(x) + w (x)X(x) + w (x)f (x), V x F L.yx)

(3.18)

Eq. (3.18) can be decomposed into a system of
two equations of the Muskhelishvili type"

where

1
dxi g (x)i'[ 1+@,(x)],

L

g(x) =- X&(x)+ix, (x)+Q
X Xf

(3.14) (3.19b)

This system of equations is a generalized form
of the Hilbert problem. It will be solved for
F(x)HH„ the class of analytic functions which
are quadratically integrable on their cut L.
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Ne first construct the function

z " dxP(x)X z) = exp-
w .~ x(x —z).,

'

where

P(x) =arg~(x) {modw). (3.21a)

a(x) =-y(x)[ X(x)[',

C(x) —= y(x)m(x)~ X(x)~,

b(x) =- ImX{x)—c(x),

b(x)
a(x)

'

(3.24a)

(3.24b)

(3.24c)

(3.24d)

where K is a positive number, and

Xz ~

0& lim
H(z) )

(3.21c)

Equations (3.20)-(3.2lc) specify X(z) completely.
Equation (3.20) ensures that the functions X(z)
and X '(z) are analytic in the complex-z-plane
cut along I.. Equation (3.21b) ensures that they
are quadratieally integrable on L, except pos-
sibly at the end points z =a, —b, +~. The be-
havior at the branch points z =a, —b is fixed by

Eq. (3.2lc). The behavior at infinity is given by

0& lim
~
z X(z)~&~, (3.21d)

To specify X(z) completely we need a prescription
for the choice of p(x) in Eq. (3.2la). For the
case with both a left-hand and right-hand cut, we
require

[ y(x„) —y(x, )) —,'w+ If'[ x, -x,), ~x„x,&I.,
(3.21b)

It may be verified from Eqs. (3.16) and (3.22)
that p(x) =0 in the elastic region [r{{x)=1].

We consider Eq. (3.23b) as an inhomogeneous
equation for E(x) The. most general solution is

F
—

(x) X(x) P(„),
'

P( ')X ( )
jT X ~ X

(3.25)

where P(x) is a polynomial. We require a solution
F(x)~H, and thus from Eq. (3.2ld) we have that
P(x) is a polynomial of degree A —1, if A. & 0. For
A=O, P(x) =0. For a&0, P(x) =0 and g, (x) must
satisfy ( X( superconvergence relations on I. We.
have studied the question of subtraction constants
and superconvergence relations for ~ 0 0 and find
that they ean be accommodated in a generalization
of the method we give below. In the rest of this
section we assume A = 0, since this is the case
for the cal.culation of the next section and simpl. i-
fies the general. analysis.

Dropping the polynomial from Eq. (3.25) we

obtain
where

is determined by the input. From Eqs. (3.16b)
and (3.21a) we see that

P(x) =-,'w (modw), vxeI,„

F(x) =-X(x)[tl(x)LL(x)+X}{i(x)],

where the integral. kernel. X is defined by

( )
1 ", {(x')-{(x)

(
JL X ~ X

(3.26)

and hence A. is an integer (assuming that partial-
wave amplitudes are known only up to a finite
energy). For the Z, calculation of the next sec-
tion we find A =0, i.e., X(z) is constant as

~
z(—

From Eq. (3.21a)

where the real function m(x) is not necessarily
positive. We use X(x}=X(x+ ie} to recast Eq.
(3.19) in the form

Im[X(x)X(x)] = FI (x) —f (x) ImX(x),&(X)
c{x)

(3.23a.)

Note that the threshold behavior of the extremal
function E(x) is given by Eqs. (3.21c) and (3.25)
which ensure that the extremal form factor F(x)
=E(x)/H(x) is finite for x =a, —b.

We now eliminate F, (x) from Eq. (3.23a.), using
Eqs. (3.24) and (3.26), to obtain

Im[X(x)g(x)] = —a(x)ALL, (x) —c(x)f (x). (3.2 "t)

Our goal is to reduce Eq. (3.27) to an equation
for lz(x). Application of Cauchy's theorem to
the product of analytic functions X(z) and LL(z)

gives

LL(x) = -X '(x) — [a(x') Xx, (x') + c(x')f (x')]

Im[X '(x)E(x)] = —
LL, (x) -=—P(x)X, (x),

b(x)
a (x)

QX
X

X —X
(3.28)

(3.23b)

where for convenience the following notations have
been introduced:

It is straightforward to recast the imaginary part
of Eq. (3.28) as the Fredholm-type integral equa-
tion
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) &(x)[ X, (x}+ — dx'[ p(x') fC. (x, x') —fC, (x, x')] X, (x') =p x; SC. (x, x;),
5

(3.29}

Z, (x, x') =- [8„(x)—8s(x'}] sing(x) —[8(x) —8(x')] cosP(x)

1 8(x')
8s(x) = —P, dx'

m 4 x'-x
for 8(x}=a(x), b(x), and c(x) with a prescribed convention that c(x,) =0, x,. ef..

(3.30)

This completes the formal derivation of the solution. Equations (3.29) and (3.26) determine Xz(x) and

F(x), respectively, in terms of the Lagrange multipliers {X, j which are in turn fixed by the constraint
Eq. (2.20a). The evaluation of the extremum according to Eqs. (3.14) or (3.17) is a straightforward but
arduous task.

IV. BOUNDSONZ,

We apply the general results of the previous
section to establish an optimal bound for the nu-

cleon renormalization constant. We also give
a conservative bound which is valid even if the
solution to the integral equation (3.29) is known

only approximately.

8(y)=8(, 8=a, 5, c, 0, tc. (4.7)

The optimal upper bound for Z, is then given
by Eq. (3.17) as

tained from the corresponding function of x by the
mapping of Eq. (4.1), i.e.,

A. Optimal bound
Z, '-1 +~X;F;, (4.6)

It is convenient to map the cut f.=(-~, -m
—p) U (m + g, ~) in the complex x plane onto the
segment (- 1, 1) of the real line in a complex y
plane defined by the change of variabl. es

y = (m + p )/x. (4.1)

y (x) =- —Q \;s; (
where the functions S, (y), y~ (- 1, 1), are the
solutions of the integral equations

exp[4 (y)]~, (3)
+i

+ —, J
&x'[&(y')&. (y, x')-&o(y, y')]s (y')

+X, &, (X, y, ) =0, y, &(-1,1), (4.3)

1

&o(y y') =«s[4'(y)l
x

(4.4)

1 " dy'8(y')
8s y)=- —,P

y, -=(m + y )/x, ,

(4 6)

(4 6)

and we use the tilde to denote a function of y ob-

The solution Xz (x) of the integral equation (3.29)
may then be written as

F; =F(x, ) =F(x,)H(x, ), . (4

and the extremal Lagrange multipliers (A. , j are
determined by Eqs. (2.20a.), (3.26}, and (4.2),
which l.ead to

where

(4.10)

y; exp[(4s(y;)] ""
dy P (y)3, (X)

W(Bt +g)

Eliminating [A,. j from Eqs. (4.6) and (4.10), we
obtain the upper bound

-1
Z, ~ 1+g F, (M ')„.F,. .

5 y2

(4.12)

(4.13a}

where M ' is the inverse of the square matrix
M, whose elements are given by Eqs. (4.11).

Our program for calculating the upper bound
of Eq. (4.12) is as follows:

(1) Use experimental m& partial-wave data to
determine the input q(x) and 6(x), axj„asnedt
r},(x) =1, vx Ef.„ to obtain the functions w(x) and
y(x) from Eqs. (3.16), (2.17), (2.32), and (2.33).

(2) Use w(x}, xaam, to determine the phase
P(y), yE(—1, 1), from Eqs. (3.2la)-(3.21c),
which give

(f)(- 1) = v/4,

@(+1) = —3v/4 (4.13b
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and ensure that any discontinuities of P(y) are
less than v/2 in magnitude for 0&

~ y~ & l.
(3) Calculate the Hilbert transform Ps(y), using

principal-value integration, and hence, from Eq.
(3.20), determine

X{y)=exp[/„{y)+i/(y)], vye(-1, 1).
(4.14)

(4) Calculate a(y}, b(y), c(y) using Eq. (3.24),
and hence, by principal-value integration, their
Hilbert transforms, to obtain the kernels of Eqs.
(4.3) and (4.4).

(5) Find approximate solutions S, ( y), y e (- 1, 1),
to the integral equations (4.3) by approximating
them by finite-dimensional matrix equations.

(6) With these approximate solutions, calculate
an approximate optimal bound from Eqs. (4.11)
and (4.12) using as input the given values of the
form factor F(x, ) in Eq. (4.&).

(7) Verify the numerical convergence of the
result as the mesh size in step (5) is decreased
and the stability of the result against small vari-
ations of the parametrization of the data in step
(I).

It will be appreciated that this is a long and de-
manding numerical calculation. The bound involves
integra, ls of approxima. te matrix solutions to a sin-
gular integral equation whose kernel is obtained
from parametrizations of the data via two succes-
sive principal-value integrations. We have there-
fore devised the following stringent test of the ac-
curacy of our computation.

B. Conservative bound

Inequality (3.13) defines a class of rigorous
upper bounds for Z, in terms of the arbitrary real
parameters [/j, ;j and the arbitrary real function
f{x), x 6 I.. In analogy with Eq. (4.2) we set

(4.15)

where the functions T,. (y), y g (-1,1), are arbi-
trary. We now optimize the bound (3.13) with re-
spect to [p;j by requiring that the right-hand side
is an extremum with respect to variations of these
parameters. (It is easy to show that the extremum
is an absolute maximum. ) The result is the follow-
ing class of upper bounds:

(4.18)

Equations (4.16)-(4.18) define a rigorous upper
bound for Z, for any functions T, (y), y c (- 1, 1),
such that the integrals of Eq. (4.1'/) exist. The
optimal upper bound (4.12) is the special case of
the general upper bound (4.16) for which T/(y)
=S,. (y), the exact solutions to the integral equa-
tions (4.3). For any other choice of T/(y) the
bound (4.16) is certainly valid, but it is not opti-
mal. Indeed it can be shown that one obtains the
integral equations (4.3) by requiring the right-
hand side of inequality (4.16) to be an extremum
with respect to variations of T, (y), y 6 (- 1, 1),
and that this extremum be an absolute minimum.
We are therefore able to take account of any nu-
merical inaccuracies which may accrue in the
computation of S,(y). We take the approximate
values of S/(y) at the mesh points, obtained at
step 5 of our computation of the optimal bound,
and interpolate them by smooth functions T,. (y)
which we use in Eqs. (4.16)-(4.18) to obtain a
bound which is certainly valid, but may be only
approximately optimal. We call this bound a con-
servative bound. If in calculating this conserva-
tive bound we err from the optimal bound, we do
so always on the safe side.

C. Input

Table I gives details of the partial-wave input
data on the cut (-1,1). The inelastic thresholds
in the P» and Sys channels are taken as y =y, and
—y„respectively, where

y„= (m + p)/(m +np, ) .

Note that we take the 5» partial wave as elastic
(q =1) below three-pion threshold. This is con-
sistent with the data"" and is to be expected,
since for the S» channel the two-pion final state is
inhibited by angular momentum barriers which are
not present in the P» channel.

In the elastic regions, I,&", we use the same
phase-shift parametrizations as were used in Ref.

TABLE I. Partia1-wave input on the cut (-1,1).

1 " 1
N;/ = dy Im/z;(y) Im//, .(y)

m{m+ p.), y{y)

+ Im[u(y) h;(y) h, (y)], (4.17)

Region

I„=(-1,—y, l

Iei = 4'»1)

5s
unknown

6g
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18, taken from the analysis of Roper et aL." In
the inelastic regions, I, we fit the single-en-
er gy partial-wave determinations of Almehed and
I.ovelace" with smooth functions 5P s and q».
For each function we perform a least-squares fit
of -35 data points with -10 parameters, demand-
ing continuity with the elastic regions ~ The re-
sultant phase P(y), y 6 (- 1, 1), is sketched in Fig.
2.

We have found it convenient to choose the maxi-
mum energies up to which data is used such that

Q(y) is continuous for y =yH, —yH, hence ensuring
that

where the square brackets denote integer parts
and we have used only the experimental values,
6p(m+2', ) and 5H(m+3', ).

Qur input for the form factor is

F(m) =1, (4.19)

which fixes the strong coupling constant, g. We
take"

g'/4v =14.73 + 0.29. (4.20)

As in Ref. 18, we consider whether the bound for

I
I
I

I

I

I

I

FIG. 2. Sketch of the angle f15 as determined by mN

data, using Eqs. (3.16) and (3.21).

This is achieved with yp = 0.70 and yg = 0.64, cor-
responding to c.m. energies of 1.53 GeV and 1.68
GeV in the Pyg and S» channels, respectively. Be-
low these energies the CERN and Saclay phase-
shift analyses agree well. " At higher energies
we use no data, but merely impose the unitarity
bound q &1.

In Sec. III it was claimed that X(y) tends to a
finite constant as y-0, thus obviating the neces-
sity of considering subtractions of superconver-
gence relations in Eq. (3.25). This is true inde-
pendently of the choice of yH H. Conditions (3.21a)-
(3.21c) determine the crucial integer A. as

P(m+2'. ) y(-m —3p, ) =0,
7T 7T

Z, can be improved using the approximate current-
algebra result"

I/F(- m ) =g„=1.226 + 0.011, (4.21)

where g„ is the nucleon axial-vector coupling con-
s tant.

D. Results

For our optimal bound we use the strong cou-
pling constant and nN scattering amplitudes to ob-
tain

Z, ~ 0.25 + 0.02,

where the quoted error allows for the following
uncertainties:

(i) the experimental error in the strong coupling
constant;

(ii) mass uncertainties due to isospin violation;
(iii) variations of the parametrization of the

elastic phase shifts, within the limits of Ref. 27;
(iv) variations of the parametrizations of the in-

elastic partial-wave amplitudes, within the small
discrepancies between CERN and Saclay analy-
ses"y

(v) the approximations made in solving the in-
te gral equation.

The result converges quite rapidly as the ma-
trix size is increased. For our most accurate
calculation we evaluated QH(y) at 300 points in
the interval (-1, 1). We then used cubic inter-
polation of the smooth, finite function

expIk H (y)J
(1 y)3/4(1 yy)1/4

to define a(y), b(y), and c(y), whose Hilbert trans-
forms were evaluated at 120 points in the interva, l
(- 1, 1). Thus the kernel of the integral equation
was approximated by a 120&&120 matrix, whose
resolvent was found to a high precision. The re-
sult converged smoothly as the matrix size was
increased fr om 60 && 60 to 120x 120, changing by
less than 4 jp.

No improvement of the optimal bound results
from using the current-algebra result of Eq.
(4.21). The extremal form factor corresponding
to our upper bound satisfies this constraint, with-
in the experimental errors ing„. This is not
surprising, since we found in Ref. 18 that the ex-
tremal form factor obtained using only elastic
data is consistent with the current-algebra con-
straint.

To calculate conservative lower bounds we made
smooth interpolations of the output of the matrix
inversion, performed the Hilber t transformation
of Eq. (4.18), and evaluated the matrix elements
N;, of Eq. (4.17). The resulting conservative
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bounds are extremely sensitive to the parametriza-
tion of T, (y).=S,. (y), unlike the optimal bound which
is fairly insensitive to the parametrization of the
solutions of the integral equation. It is easy to
see how this arises. The matrix elements M;,
of Eq. (4.11), which define the optimal bound, do
not involve S,. (y) in the elastic region, y C I„, be-
cause P =0 when q =1. The matrix elements N;,
on the other hand are extremely sensitive to the
parametrization of T, (y)=S.,. (y) near the elastic
thresholds at y-+1. As y-*1

pact operators. " In this case it can be proved
that finite -dimensional solutions conver ge to the
continuum solution as the dimensionality is in-
creased. The kernel of our integral equation is
not, however, completely continuous. It has sin-
gularities at y = —y~ and y =y~, which correspond
to the energies beyond which mN data is ignored.
At these points the functions a(y) and b(y) are dis-
continuous and hence their Hilbert transforms
have logarithmic singularities. The resultant sin-
gularities of the kernel are of the same type as
the singularities at y =0 of the kernels

and it appears as if the integrands of Eq. (4.17)
possess singularities like (1 —y) 'i'(1 —y) '~'

which would render the integrals divergent. In

fact, several cancellations of this singularity
occur. First of all, the leading singularity is
canceled by virtue of the threshold angles of Eq.
(4.13). A further cancellation occurs by virtue of
the integral equation (4.3), so that the integrands
actually vanish like (1 —y)'~'(1+ y)'~' at the elastic
thresholds. Clearly it is very difficult to achieve
all these cancellations with an interpolation T,(y).
of the appr oximate matr ix solution. We used a
parametrization of the threshold behavior and an

algorithm for principal-value integration which
guarantee that the integrands are no more singu-
lar than (1-y)

' ' as y - + 1, thereby obtaining
conservative bounds of around 0.32 and 0 ~ 36, with
and without the current-algebra constraint. The
extent to which these conservative bounds fall
short of the optimal bound can be entirely attri-
buted to the elastic regions. This may be dem-
onstrated by replacing the integrand of Eq. (4.17),
in the elastic region only, by an analytic function
of the approximate solutions, T, (y), which is.
identical to the integrand in the limit that T,(y).
=S,. (y), the exact solutions. The conservative
bound then reproduces the optimal, within the
quoted errors. This agreement gives us consid-
erable confidence in our approximate solutions
outside the elastic-threshold regions, which de-
termine the approximate optimal upper bound Z,
~ 0.25+.02. We believe that this bound accurate-
ly represents the maximal constraint on the re-
normalization of the nucleon's wave function, im-
posed by low-energy nN scattering data, through
analyticity and unitarity.

E. Singularities of the kernel

It remains to comment on the use of finite-di-
mensional methods to obtain approximate solu-
tions of the integral equation. This procedure is
known to be legitimate for integral kernels which
belong to the class of completely continuous com-

lnI y/y'I
K, y, y')= —,

I

defined on some finite segment of the real line
which includes y = 0. The kernels K, and &, are
bounded operators, "with norms

Convergence properties of special-matrix-inver-
sion methods have been proved by Jones and Tikto-
poulos" for kernels having a singular component
with norm less than unity. This restriction on the
norm is not essential; what is necessary is that
the spectrum of eigenvalues of the operator does
not contain unity. There exist powerful methods
to deal with the more general case." Our ap-
proach is a pragmatic one. Rather than undertake
the task of calculating an upper limit on the norm
of our integral kernel, we content ourselves with
the observation that it is a bounded operator, that
the results of the finite-dimensional calculations
are well behaved as the dimensionality is in-
creased from n = 60 to n = 120, and that we obtain
conservative bounds which are less restrictive
than the optimal bound only by virtue of approxi-
mation errors that accrue in the elastic regions,
which are far from the singularities.

V. Conclusion

We have shown how to bound a spectral integral,
given data on the appropriate form factor and
scattering amplitudes. The combined constraints
of analyticity, elastic unitarity, and inelastic are
stringent and intricate. They lead to a system of
two singular integral equations which determine
the extremum. Using the methods developed by
Muskhelishvili" we have succeeded in reducing
the problem to the solution of a Fredholm inte-
gral equation, involving an integral operator with
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bounded norm. The numerical solution of this
equation in the case of the nucleon spectral func-
tion yields a new, stringent bound

Z, ' —1&3.0, Z, &0.25, (5.1)

given reliable vN scattering data.
The significance of Z, as a measure of the prob-

ability for finding a "bare" particle inside the
dressed, physical nucleon has been widely dis-
cussed. " We believe that the phenomenological
success of constituent quark models and the ap-
proximate scaling of deep-inelastic structure
functions leave no doubt that hadrons are predom-
inantly composite. It is therefore interesting to
inquire how the observed interactions of hadrons
may be translated into a quantitative measure of
the compositeness of the nucleon. As this mea-
sure we take Z, as defined for any interpolating
nucleon field by the sum rule of Eq. (2.22). Our
result (5.1) then indicates that the nucleon is at
least 75% composite. We find it remarkable that
this result may be obtained from low-energy mN

data on general principles, without invoking spec-
ific assumptions or approximations. The string-
ency of our bound is a good measure of just how

strong the strong interaction is.
The utility of scattering data in determining

our bound is apparent when one compares it with
previous results. Using only the strong coupling
constant, Drell et al."established the first rigor-
ous bound on Z, :

Z, '-1&0.17, Z, &0.85, (5.2)

indicating that the nucleon is at least 15% compos-
ite. Using the observed P» and S» elastic shifts
we were able" to improve this bound to

ZD & 0.2~, (5.4)

where z is an unknown parameter of order unity.
It appears that the nucleon is known to be at least
as composite as the deuteron. Of course, little
interest attaches to improving the deuteron bound.
We are sufficiently convinced of the composite-
ness of the deuteron, having detected its constitu-
ents. Until constituents of the nucleon are found,
or made to satisfy the requireme nts of confine-
ment, one may have to be content with an upper
limit of 25% on the "elementarity" of the nucleon.

knowledge of the partial-wave amplitudes in the in-
elastic region up to 1.7 GeV gives a further im-
provement of more than 100% in this lower bound.
The very inelasticity which forbade the use of
Watson's theorem at higher energies in previous
bounds" """ is now a virtue, since the inelas-
tic contributions to the scattering amplitude set
a lower bound on the inelastic contributions to
the spectral integral, thanks to the analyticity of
the form factor.

Attempts to bound Z, in terms of high-energy
data on deep-inelastic structure functions" "or
form factors" have not produced results of corn-
parable rigor. One ends up either with a plausi-
bility argument"" for Z, =0 or else with an upper
bound which involves the poorly determined longi-
tudinal structure function. ""

We conclude by remarking that our limit on the
elementarity of the proton is more stringent and

more rigorous than Weinberg's limit" on the
elementarity of the deuteron. For the renormal-
ization constant of the deuteron, Z~, Weinberg
used a nonrelativistic analysis of the nucleon-nu-
cleon interaction to obtain

Z, ' — . , Z, 0. (5.3) ACKNOWLEDGMENT
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