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Scattering of a Dirac particle with charge Ze
by a fixed magnetic monopole*
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The helicity-flip and helicity-nonflip scattering amplitudes of a Dirac particle with spin 1/2 and charge Ze by
a fixed magnetic monopole field are calculated. To make the Hamiltonian meaningful an infinitesimal extra

magnetic moment is added to the charged particle. The sign of this extra term has measurable consequences.
The differential cross section, which is independent of the sign of Ze, is tabulated. The helicity-flip amplitude

vanishes at all angles for incoming beam helicity = + 1 if Zeg ) 0, and for incoming beam helicity = —1

if Zeg (0.

The scattering cross section of a nonrelativistic
charged partible by an infinitely heavy magnetic
monopole has been studied in the literature. ' ' In
the present paper we calculate the helicity-flip and
helicity-nonf lip amplitudes of the scattering of a
Dirac particle with charge Ze at relativistic or
nonrelativistic velocities by an infinitely heavy
magnetic monopole. This problem has not, to our
knowledge, been studied before, although there
have been discussions of the radial wave functions
for a Dirac particle in a monopole field. ' '

The method of calculation uses the monopole har-
monics of Ref. 4. The string singularity is com-
pletely absent in this formulation, and the steps
are parallel to the usual treatment of the scatter-
ing of a Dirac particle by a central potential.

It will become apparent, however, that the Ham-
iltonian that one naturally writes down for the prob-
lem is not adequate. An infinitesimal "extra mag-
netic moment is therefore added to the charged
particle. This addition makes the Hamiltonian well
defined.

The helicity-flip and -nonf lip amplitudes are
given in Sec. VI. The corresponding intensities are
tabulated in Tables I and II and Fig. 2.

I. TOTAL ANGULAR MOMENTUM J OF A CHARGED
DIRAC PARTICLE IN THE FIELD

OF A FIXED MAGNETIC MONOPOLE

HP= Eg,

H= a (-iV —ZeA) + Phf
(2)

Consider the wave equation of a Dirac particle
of charge Ze in the field of a fixed magnetic mono-
pole of strength g. It is clear that the wave equa-
tion' is dependent only on the quantity

q=Z

It is known' that q is an integral multiple of 2. The
wave equation is

We choose g and p so that

(0 (y (1 0 )
(CT 0 40 -&J

where g are the Pauli matrices and P is diagonal
with two diagonal elements equal to+1 and two

equal to -1. We use the convention

The vector potential A is defined' as two func-
tions (A), and (A), in two overlapping regions R,
and R,. The wave function is a section as dis-
cussed in detail in Ref. 4. It was further shown
there that the components of

L = r x (p —ZsA) —qr/y,

are Hermitian operators in the Hilbert space of
sections and satisfy the commutation rules with r,
(p —ZeA), and L that characterize them as orbital
angular momenta. However, they do not commute
with the matrices a as components of total angular
momenta should. If one defines, as usual,

then

[J,P] = 0, [J„,n„]= 0,

[Z„,o.„]=in„[J„,n, ]= -in„etc
These commutation rules imply that J is the total
angular momentum.

To find the wave functions we endeavor to diago-
nalize simultaneously the operators H, J', and J„
as usual. Before doing that, we first study the
eigensections of J' and J,.

II. PROPERTIES OF TWO-COMPONENT EIGENSECTIONS
OF~2 AND Jz

According to (5), J is the sum of two angular mo-
menta. Thus the eigensections of J' and J, with
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eigenvalues j(j+1) and m are It will be shown in Appendix A that one has the fol-
lowing lemmas.

1
Le~zznza 1. If j=- iq~+2,

y(2 )

4g
Yj -1/2, m+1/2

j ~+»/2
J+1/2 mg+

j +)hz+1
2/+ 2

YJ + 1/2, m + 1/2

(&.r) ~(&& rg(2&

(«o, «r) ( (2 & r ((1 &

(13)

~ = [0+5)'-q']'") 0.

Lemma Z. For

(15)

o (-.i V —ZeA)f(r) f(."= (i9„+ir ' —iver '}f),
(14)

(x ( iV-—ZeA)g(r)$!'„&=(ib„+ir '+ii(r ')g$"'

where f(r) and g(r) are arbitrary functions of r and

n» y,'.", j —,
' f)

I q=-I

for @,"&, j+-,'-=i Iql.
(8)

where we have omitted the index q from Y, , The
range of j is such that, assuming q o 0,

and

(o'r)q. = rq Iq I
'&). -

(16)

(17)

o'(-iV —ZeA)f(r)&) = -iq
I q I

'(6„+r ')fr), (18)
The square root fa,ctors in (7) a.re Clebsch-Gordan
coefficients. It is obvious that the collection of all
ft)""s and p""s form a conzplete ortIzonornzal set
of two-component sections.

In the case that q=0, the sections become ordi-
nary functions, and p,'."are the s1/2y p3/2y d /2 etc.
states, while ft)j"' are the P, /„d, /„etc. states. In
such a case we have the simple relations

0'or o'er
r Is& y2&

= —IP(y2& I P& g2&
= —Is»2&r

(8)

When q&(0, since o ~ r/r commutes with 3, o r/r
operating on p,'.

"gives a section that remains an
eigensection of J' and J„with unchanged eigen-
values. In other words,

where f(r) is an arbitrary function of r, and

q(2' for-j= Iql —,
' 0. (19)

III. RADIAL WAVE FUNCTION

&) is not defined if (16) is not satisfied. The $'s
and the g's together form a complete orthonormal
set of two-component sections.

In the case q = 0, the states s1/ and p / have op-
posite parities P. P commutes with the Hamilton-
ian. For the case qcO, P no longer commutes with

the Hamiltonian. One can define a pseudoparity
P that has $j"' and (,'."as eigensections with eigen-
values (+1)and(-1), respectively. One can then show

that [H, PP~]=0. We shall, however, not develop
this idea further in the present paper.

(1) (1) (2)
~jm 11 &tjm 21~jm y

(2) (1) (2)
r ~ jm

= Z12(t' jm + Z22$ J m

(10)
The Hamiltonian in (2) is

M o (-iV —ZeA)

(T (-iV —ZeA)
(20)

The coefficients Z will be computed in Appendix
A, where it will also be shown that it is conven-
ient to form the following orthonormal combina-
tions of (f&(» and (f&(2&, for j)

I q I
+ —,':

(1 ) (1) (2)
~jm = CP jm —Sg jm

$jm
= SP jm + Cft'j

(2) (1) (2)

where

For fixed j and m, the wave function is a linear
combination of g,'.", P„'.", and q with coefficients
which are functions of r. Using lemmas 1 and 2

we find readily that there are three types of si-
multaneous eigensections of II, J2, and J,:

f(r) ~(& &

Type (1): 0'"= " (j= lql+2) i

g(r) g".

e = q((2j+ 1+ 2q)'i~+(2j+ 1 —2q}' ')

x Iql i[2(4j+2)]

s = q((2j+ 1+ 2q)' ' (2j+ 1 —2q)' ~)

x Iql [2(4ji 2)]

(12)
where

(M —E)f + i( 8„+r '+ l& r ')g = 0,
i(S,+r ' —i&.r ')f —(M+E)g=0.

(21)

(22)
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It follows that

J~.l/2(k } f = ~-1/2(k }.(
1 ik 1

f(r) $,"'
Type (2):

where

g(r) &,
'"

(24)

(M —E)f +i(S„+r ' —i/r ')g= 0,
i(S„+r '~ pr ')f —(M+ E)g= 0.

It follows that

(25)

1f = J„„/,(kr),
Vkr

Type (3): 0"'=

and

g=E J„,/, (kr) . (26)
i k 1

E+M

f(r)n (.
~ ~

0)
8r)n

(27)

(M -E)f —i q ~ q ~

'( S„+r ')g = 0,
iq lq I

'(6, +r—')f —(M+ E)g=0.
(28}

Solutions (23) and (26) for types (1) and (2) both
satisfy the boundary condition

f =g= 0 at r=0. (29)

(1+ z) .Ze
(30)

The additional infinitesimal magnetic interaction
makes the total Hamiltonian completely defined.
For type (1) a,nd type (2) angular dependence, this
additional interaction does not change solutions
(23) and (26}. For type (3) angular dependence it
changes the boundary condition from (29) to

lim g/f =iraq/~zq ~
. (31)

The solution of (28) satisfying this boundary con-
dition is unique except for normalization and is
given by

f- sin(kr+ 6,),
vkr mkr

iqg =
k

cos(kr+ 6,),gkr mkr q

(32)

In contrast, Eq. (28) does not have any nonvanish-
ing solution that fulfills (29), as one easily verifies
by using rf and rg as the dependent variables.
This means tha, t Hamiltonian (2) is not a. properly
defined operator for type (3) of angular depen-
dence. We shall analyze this point further in Sec.
1V and resolve the difficulty by adding an infini
tesimally small "extra" magnetic nzoment to the
charged particle so that its magnetic moment is

It is to be emphasized that these radial wave
functions are valid in both regions R, and B,. The
non-single-valuedness of the wave function due to
the fiber-bundle structure resides only in the mon-
opole ha.rmonics I', in Eq. (7).

IV. ADDITION OF INFINITESIMAL EXTRA MAGNETIC

MOMENT

We have seen in Sec. III that Hamiltonian (2) is
not properly defined for wave functions of type (3):
The radial wave equation (28) for type (3) has no

meaningful solution. The reason for this is con-
tained in the discussion of Lipkin, Weisberger,
and Peshkin, ' who pointed out that the Jacobi iden-
tity is not satisfied for (p —ZeA). They showed
that

[[A,B],C]+[[B,C],A]+[[C,A], B]= 4vq&'-(r)

(35)

if we take A, B, and C to be the three components
of jI- ZeA. They further pointed out that for the
nonrelativistic spinless Schroding er equation,
there is no real difficulty, since all radial wave
functions vanish at the origin. For the present
case of the Dirac particle, wave functions of types
(1}and (2} a.iso vanish at the origin. Thus the Lip-
kin-Weisberger-Peshkin difficulty occurs only for
type (3) wave functions.

The difficulty is a manifestation of the ambiguity
of a theory of monopole-charged-particle inter-
action if one allows the charged particle to pass
through the monopole. There have been many
discussions of this topic in the literature. '

To resolve the difficulty we consider, instead
of a simple Dirac particle with charge Ze, one
with an "extra" magnetic moment so that the total
magnetic moment is given by (30). We take z to
be infinitesimal. The Hamiltonian is then

H„,„=H —zqPo r(2Mr') '. (36}

The effect of the extra magnetic moment, for
either sign of v, does not correspond to the effect
of a classical repulsive potential. However, in
quantum mechanics it prevents the charged par-
ticle from passing through the monopole. To see
this we observe that with (36) and for infinitesimal

where

tan5, = k~[~~~(M+E)] '.
With the explicit radial wave functions (23), (26),

and (32) we can easily obtain the ingoing and out-
going waves at large r. For this purpose, the
asymptotic expression of J„,», is useful:

2 '" . mp,
Z„„/,(kr) - sin kr ——(r- ~), (34)
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solutions (23) and (26) are not changed, since
they vanish at r =0 and are thus little influenced
by the infinitesimal extra magnetic moment. For
type (3), we have to consider now, instead of (28),

[M —E —K
l q l

(2Mr') ']f —i q l q l
'( 8„+r ')g = 0,

(37)

o~~ ~4S
A

=F

-iqlql '(8 +r ')f [M+E —~lql(2M r) ']g=

Set

f= zqF(r)
l
zqr

l
', g= —i G(r)r '. (38)

That is, in the (F, G) plane, a.s r ~, th-e solution
describes an ellipse. We shall normalize the so-
lution so that this limiting ellipse is

(E+M) G'+ (E M)F' = consta—nt

and is independent of x.
As g-0, the r ' terms in (39) decrease in im-

portance and the limiting ellipse is approached at
earlier (i.e. , smaller) values of r On the .other
hand, for finite z, as r —0,

G/F- -1,
F- constx exp[ —lvql(2Mr) '].

(40)

Then

dG (E-M)z lzql
lKl

(39)
(E+M). l~q l

For any TWO these equations can be integrated
subject to the initial condition (29), i.e. , G=F=O
at r=0. Thus the introduction of an extra magnetic
moment makes the wave function vanish at ~= 0, so
that H„,„is a legitimate Hamiltonian for all wave
functions if zc 0.

Now fix a value of a 40, and consider the case
of large r. We can neglect the r ' term, so that

[(E+M) G —+ (E —M)F'] = 0.dr

FIG. 1. (F, G) in the limit K 0+. For the case K

—0—,as x increases from 0 toward + ~, (F,G) moves
along QA, then winds around ellipse counterclockwise.

proa. ched and we have G/F - -1, which leads to
(31). As r increases from 0+, (F, G) goes around
the ellipse, clockwise for I(, =0+ and counterclock-
wise for II. = 0 -, once for every b, r = k '. Using
(38) one transforms this part of the (F, G) limiting
curve into (32).

V. WAVE FUNCTIONS DESCRIBING SCATTERING

We now try to construct a superposition of g" ',
and g"'.

,I) && ) ~ ~ &g (2 ),I, &2 ) + ~ a~(3 )g (3 )

gm

(41)

x= cos0,

is, according to Banderet, '

-26(1 —x —0)e '""(2iIzr) ' .

(42)

(43)

This will be proved in Appendix B, where it will
also be shown that the two-component section in
region a,

which describes the scattering' of a Dirac particle
of charge Ze with helicity +1 by the fixed monopole
at the origin. The coefficients 'E will be deter-
mined by the condition that as r-~, the incoming
part of the right-hand side of (41) ma. tches that of
the incident plane wave in region 8,.

The incoming part at large r of the plane wave
e '""' where7

These arguments lead to, in the limit a-o, the
(F, G) curve depicted in Fig. 1. For this limiting
curve, the point ~= 0 corresponds to the whole
line segment OA. As x- 0+, the point A is ap- has at r —~ an incoming part that is

{44)

(45a)
01 0 ) e- iA'rQ~ 1)1/2

26(1-~) = — .„(lql — )"' Q (0"'+ 5"')

where m stands for -q —~ and the 5 extends from j = lq l
+ 2 to ~. This gives the asymptotic incoming

section for a helicity =+ 1 particle. For negative helicity we have

{45b)
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where m stands for -q+-,' and the Z extends from
j= lql, —.

' to -.
Now for a four-component Dirac particle with

helicity =+1, the section at r= for the incident
beam is given by

+K"=5 „&,(q/lql)&&e "~ '

x [(2j+ 1)(E M)/-2E]' ' (49)

nents, we obtain by examining the coefficients of
$'.", $'.", and g. , respectively, the equations

ke-i'
[2E(E M)]"' (46)

'K '= k(E —M) '("K.")
'Z&"=0, uq&0

(50)

k(E+M) '

One can apply (45a) separately to the upper two
components and the lower two components of this
equation to obtain the incoming part at r= ~ of 'tt):

Upper 2 components of 'g...
=k[2E(E M)] ' '[RHS of (45a)], (47)

Lower 2 components of 'g„,
= [(E -M)/2E]' '[RHS of (45b)]. (48)

These have to be matched with the incoming part
of the right-hand side of (41), which we easily ob-
tain from the explicit forms of ~]t)"', g"', and ~t)"'
of Sec. III. Matching first the upper two compo-

=0, if q&0. (54)

Substitution of (49)-(54) into (41) gives the scatter-
ing solutions 't][) and P for the two helicities of an
incident beam.

=5 „,&,k«[ qE '-(E M) ']'~'e"3, if q&0.

(51)

Matching the lower two components we obtain these
same equations.

In an entirely similar way we obtain for a nega-
tive-helicity incoming beam

(52)

(58)

k&&[qE 2(E —M) 2] 2~2 e&~3 if q) 0

VI. OUTGOING SECTION AND HELICITY-FLIP AND -NONFLIP AMPLITUDES

With the explicit expression (41) for 'g it is straightforward to obtain the outgoing section,

2 ' e'~" ~ q 2j+1
2ikr, Iq I 2E(E -M)

j./2

k&&e
"" p', —('K&2')n' [, (55)

where p, is given by (15), 'K"' by (51) and (54), and

m=-qw &. (56)

pf and Q' are four-component sections defined by

(ka ~ r+ PM) X' = EX'. (60)

X' can be explicitly written down as follows. Con-
sider the two-component normalized wave func-
tions

pk
fm gk &(E M)()&2& p (&2&)

(57) (s,.e,- ~ )
[2(1 —cosa)] ( 1-cosa j

e'"
Iql

k '(E -M) (58)

(~ ~ r)X'= ~ X', (59)

For any given direction 8, p, at large r, we now
want to resolve the outgoing section (55) into states
of +1 outgoing helicity. This is very easily done.
For given 8, p, let us define X' as the four-com-
ponent normalized amplitudes for a free plane
wave with positive energy E, with helicity +1,
propagating in the direction $'= r/r with momentum
k. That is, X' are defined, except for normaliza-
tion, by

sine

&2(2 —cos2&&
~ &2 2222& ) '

They satisfy

(0 ~ Qg'= ~ f'.
Qne can then easily verify that

(61)

(62)

k

[2E(E -M) ]
'~'

k-2(E M)]a
(63)

is normalized and satisfies (59) and (60).
Now we find that p' and 0' satisfy equations sim-
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ilar to (59) a,nd (60):

(& ' r) p, = +p/

(kn ~ r+ PM) p,'. = Ep',

(o r)&.'=qiql '&',
(km r+PM)Q' =EQ',

(64)

(65)

(66)

(67)

which can be proved with the aid of the definition
of p' and 0' and Elis. (13) and (17). Thus we con-

elude that

p', , Q' ', and y' are proportional,

p, , 0 ' ", and y are proportional.

To find the constant of proportionality between
p'j and X+, which according to (56) is the case of
interest for m = -q —&, we compute their second
elements. That of p,'. is, by (57), (11), (12), and
(7),

j m j+m+1
/- 1 /2m + 1 /2 ( + )

2
.

2 y/ ~ 1 /2, ~ + 1 /2

qp, 1 1
q((2j~ 1 )1/2~j / 1/222(j+ 1)1/2 / +1 /2

Dividing by the second element of X' we get

2qp, E(E-M) ' ' 1 1 1
k lql 2j+1 (1 —cose)'" Wj ' ' ' ' (j+1)'" '+'/' ~ -2 x'. (68)

=0 (q&0), (69)

where

In an entirely similar way we can express
pj(" q+ 1/2&y ~- q - j /» and Q q+ y/2 in terms of X' and

Substitution into (55) then allows us to read off
the helicity-flip and helicity-nonf lip amplitudes.
They are given by

C' '= C = e' »(2ikr—) 'T (8),
C' =0 (q&0),

=2qe'»(22kr) '(sin28)"' 'e "'"'2 (q&0)

+ —2qei»(22 k) r( 1jsznQ-) l 21-2iioe+2i22 (q) 0)

should evaluate the monopole harmonics in region
a or region b. If one measures the helicity-flip or
helicity-nonf lip differential cross section, the re-
sult is independent of which choice we make since
a phase e'"~ does not change the angular distribu-
tion of intensities. If interference experiments are
analyzed so that the phase e'"~ becomes important,
one should use (55), which is valid for either re-
gion a or b.

The phase shift 6, plays no role if one only mea-
sures helicity-flip or helicity-nonf lip intensities.
If one does polarization experiments, 5, is mea-
surable. It is interesting to observe that according
to (33) 5, depends on the sign of /i.

0 = 7) —8 = scattering angle (70) VII. EVALUATION OF DIFFERENTIAL CROSS SECTION

T,(O) = v2m (sec-', 8)

1
x Z I e "" ~ yqi-i/2, -2(,

j = [qf+ 1/2

By using equation (B7}of Ref. 4 we can easily
prove that

1
Qj q, (j - j./2), -q (73)

and

1
;,1/2 ~, ./. 1/2. —.(9 4)(j+ 1)

(71)

is even in q. Thus

T,(0) =T,(8).
In the rest of this section we take

q& 0.

(74)

(75)

}i=[(i+ ')' /lj'". -- (72)

5, is given by (33).
We have not given special attention to whether we

To evaluate T,(e) we express (73) in Jacobi poly-
nomials and use the difference equation'

P„'"—P„';",=(n+q+ 1)(n+1) '(1 —x)P„'", (76)
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obtaining (q) 0)

T,(0) = 2(cos~8)(sin26)"

&& Q (n+q+1)(n+1} '
n=O

~ )ie irw(-I)np24'1(cosO)

where

p, = [(n + 1)(n + 1 + 2q) ]
' i'.

(77)

(78)

The sum in (77} is not convergent, but is summa, -
ble. " To see this we notice that' for fixed
84i 0, v, P'„"(cos6}= O(1/~n) for large n, and osci-
llaies. Furthermore & = O(n). Thus, if we expand
p, in powers of

e = 2q(n+ 1) ',

the first two terms contribute divergent but sum-
mable sums to (77), while the remainder contri-
butes an absolutely convergent series. To imple-
ment this idea we write

(n+ q+1)(n+ 1) 'ii, e "~= [1+(E/2)]pe "~

=(n+1)e ""+ + I+&4- E+eZ7r 1 ir m''
4 8 8 32

= (-1)"e "i""[n+ 1+2q+ivq'/2+(n+ 1) '(q'/8)(4+4iiiq —w'q')]+R. (79)

This equation defines R, which is of the order R= 0(n ). Substitution into (77) gives, as shown in Appendix

C,

T,(8) = -qe "' . » . , 1+ 1+ sinM + — I+ivq—,sin'(&6) + U,(0},ivq . , 1 . ii'q' 1 —(sin&8)"
sin'(-,'6 1+ sin-,'0 4 cos-,'e

(80)

where

U, (8) = 2 cos20(sin20)" g (-1)"RP„"'(cos8)
n=O

is an absolutely convergent series with individual
terms of the order O(n ") for large n.

The differential cross section is dependent on the
initial helicity. It is equa. l to [according to (69)],
for an unpolarized incoming beam,

and Mott scattering

= [function of 0, Ze, and k].d 0' do'

dQ y dQ

—= (2k) [I Ti i
I'+2q'(si"20}4i 'i ]. (81)

(86)

Comparing with Rutherford scattering of charge
Ze by Coulomb field Z'e,

= (Z'Ze'/2kv)'(sing6) ',
O'Q

we obtain

(82)

(
= (gv/Z'e)'[

~ Ti, i ~

'q ' sin'(20)
dQ dQ

+ 2(sin —,6)4"i "]. (83)

This can be compa, red with Banderet's result' for
the scattering of a skinless nonrelativistic charged
particle by a fixed magnetic monopole,

(
d 0' do'

= (gv/Z'e)' x [function of 0 and q,
dQ ~ dQ z

independent of k],

(84)

The quantities in square brackets in (83)-(85}all
approach unity as 0-0. The former two are in
dependent of k. Their values have been evaluated
with a computer and are tabulated in Tables I and II and
plotted in Fig. 2. For comparison we plot similar
curves for the ratio of Mott scattering" to Ruther-
ford scattering in Figs. 3 and 4.

Notice that in Ze-g scattering the cross section
near 0 —180' represents mostly helicity-flip con-
tributions, while in the forward directions the heli-
city-nonf lip cross section dominates. At 0= 180'
the helicity-nonf lip cross sections vanish, because
of angular momentum conservation. Furthermore,
the scattered beam at 0= 180 is 100% polarized
with helicity=+ 1 for Zeg&0 and helicity= -1 for
Zeg(0 [see (69)].

It is also interesting to observe in Figs. 3 and 2
that in the important low-intermediate region of
8, curves (1) and (2) are lower than curves (3) and
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(4) for which ZZ'(0, hut are higher than curves
(5) and (6) for which ZZ'&0.

0

y
(1)

APPENDIX A

To prove lemmas j. and 2 we observe that since
Yr f commutes with J, the Z, , 's of (10) are indepen-
dent of m. We therefore evaluate Z, j by taking
m= -j. In that case (7) gives

~j+1/2, - j - l/2

X/2

2 2
1

~i + &/2~- j+&/22g+ 2

TABLE I. In the first three columns, k times the helicity-nonflip {HNF), the helicity-flip
(HF), and the total (with no superscript) cross sections for the scattering of an unpolarized
beam of Dirac particles with spin z with charge Ze on a fixed magnetic monopole of strength g
are tabulated for the case q= Zeg=+0. 5. k is the momentum of the incoming beam. The en-
tries are independent of k fsee (Sf)]. In the fourth column, we tabulate the ratio to the Ruther-
ford cross section (da/dQ)& as given by (82). The final column exhibits the ratio involving the
cross section {de/dQ)& obtained by Banderet {Ref. f) for a spinless nonrelativistic particle of
charge Ze by a fixed monopole of strength g. 8 is the scattering angle.

5
10
15
20

25
30
35
40

45
50
55
60

O. f73x10'
0.108x 10
Q.215 x fQ

0.685 x 10

0.283 x 10
0.138 x 10
0.751 x f 0
Q.444x fQ

0.280 x 10
0.185x 10
0.127 x 10
0.904

"(-")-
0.125 0.173x f05

Q. 108x fQ

0.215 x 10'
0.686 x 10

0,284 x 10
O. f39x f0
Q.764x 1Q

0.457 x 10

0.293 x f0
0.198 x 10
0.140 x 10
0.f 03x 10

{Z' e/gv )

1.00
1.00
1.00
1.00

1.00
1.00
1 .00
1.00

i.01
1.01
1.02
1.03

{Z'e/gv)' —„
1.00
1.00
f .00
1.00

1.00
f.01
1.01
1.01

1.01
1.02
1.02
1.03

65 0.658
70 0.489
75 0.370
80 0.284

85 0.221
90 0.173
95 0.136

100 0.108

for

angles

0.783
0.614
0.495
0.409

0.346
0.298
0.261
0.233

i.04
1.06
1.09
1.12

1.15
1.19
1.23
f.28

1.04
1.05
1.06
1.07

i.OS

1,09
1.10
1.11

105
110
115
12Q

125
130
135
140

145
150
155
160

165
f70
175
180

Q.857x 1Q
'

0.680 x 10-'

0.540x f 0
0.426x10 '

0.336x 10-'
0.206 x 10-'
0.200x fO '
0.15Q x 10

0.110x 10-'
0.775 x 10
0.519x 10
0.321 x10 '

0.174x fO '
0.735 x 10~
0.164x 10~
0 0.125

0.211
Q. f 93
0.179
0.168

0.159
0.151
0.145
Q. f40

0.136
0.133
Q. 130
O. f 28

0.127
0.126
0.125
0.125

1.34
f.39
1.45
1.51

1.57
1.63
1.69
1.76

1.80
1.85
f.89
1.93

1.96
1.99
i.99
2.00

1.13
1.14
1.15
1.17

1.18
1.19
1.20
1.21

1.22
1.23
1 .24
1.25

1.25
1.26
1.26
1.26
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TABLE II. Same as Table I, but with q=if.

5
10
15
20

25
30
35
40

45
50
55
60

65
70
75
80

85
90
95

100

"H'
0.691 x 10
0.433x fp
0.862 x 10
0.275 x 10

0.114x f p

0.559x 1 0
0.307 x 10
0.184 x 10

0.117x 10
0.788 x f 0
0.552 x 10
0.400 x 10

0.297 x 10
0.226 x 10
0.176 x 10
0.138x fp

0.110x 10
0.883
0.712
0.577

"H-
0.950 x 10
0.380x fp
0.850 x 10
0, 151x10 '

0.234 x 10
0.335 x 10 i

0.452x fp i

0.585 x 10-'

0.730 x 10 ~

0.895 x 10 '
0.107
0.125

0 ~ 145
0.165
0.186
0.207

0.228
0.250
0.272
0.294

"H
0.691 x 105

0.433 x 10
0.862 x 10
0.275 x 10

O. f14 xf0
p. 559 x 1p

0.307 x 10
p. 185 x 1p'

p. 118x 10
0.797 x 1 0
0.563 x 10
0.413 x 10

0 ~ 312 x 10
0.243 x 10
O. f95x fp
0.f59x 10

p. 133 x 10
0.113x 10
0.984
0.871

(z'e/gv)'—

1.00
1.00
1.00
1.00

f. .00
1.00
1.00
1.01

1.01
1 .02
1.02
1.03

1.04
1.05
1.07
1.09

1.11
1.13
1.16
1.20

(Z'e jgv)'—

1 ~ 00
1.00
1.01
1.01

1.01
1.01
1.01
1.02

1.02
1.02
1.03
1.04

1.05
1 ~ 06
1.08
1.10

1.12
1.15
1.18
1.21

105 0.468
110 0.379
115 0.306
120 0.246

0.315
0.336
0 ~ 356
0.375

0.783
0.715
0.662
0.621

1.24
1.29
1.34
1.40

1.25
1.29
1.34
1.38

125
130
135
140

145
150
155
160

0.196
0.154
0.118
0.889x fp '

0.648x fp i

0.456 x 10 '

0.299 x 10
0.165 x10-'

0.394
0.411
0.427
0.442

0.455
0.467
0.477
0.485

0.590
0.565
0.545
0.531

0.520
0.513
0.507
0.502

1.46
1.52
1.59
1.66

1.72
1.79
1.84
1.89

1.43
1.47
1.52
1.56

1.60
1.64
1 ~ 67
1.70

165 0.804 x 10
170 0.273 x 1 p

175 0.250 x f 0+
180 0

0.492
0.496
0.499
0.500

0.500
0.499
0.499
0.500

1.93
1.97
1.99
2.00

1.72
1.74
1.75
1.75

Substitution into (10) gives linear equations for the
Z's with coefficients that contain the Y's, zr '
= cose, and (x+iv)r = singe"'. Using the explicit
forms of the Y's of Ref. 4 we can solve for the Z's,
obtaining

Then (10) can be written as

(eOr)(@ &&) &t
&»)

(&t& &&

&

y &2))G

It follows from (e r)'= 1 that

G'= 1,

(A4)

(A5)
Z„= —Z„= —2q(2j+ 1) ',
Z„=Z„= —[(2j+ 1)' —4q']'i'(2j+ 1) '.

We shall write these Z's as a matrix:

(A2} which is evident also from the explicit formula
(AS). Now o (p —ZeA) commutes with J. Thus
&x (p —ZeA}&)&,'."is an eigensection of J' and J,
with the same eigenvalues as Q,'.". In other words,
there exists a 2 && 2 matrix B so that

(p ZeA)(y&» @&»)—r-&(y&» y&»)B (A6)

= —(2qr, + [(2j+ 1)' 4q'Pi'r, )(2j+ 1) '. (A3) which is entirely similar to (A4). B can be ex-
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2.0-

Z e dcr dc
I 2

gv dQ dQ R

Ze dcr dy-
I 2

gv dQe dQ R

(I) q=l/2 (Spin I/2)

(2) q=l (Spin I/2)

(3) q= I/2 (nonre). )

(4) q= I (nonrel. )

1.0

I I I I I & I ~ I ~ I I I I

0 20 40 60 80 )00 120 )40 )60 180

FIG. 2. Ratio of monopole to Rutherford cross sections. da/dQ is the cross section for scattering of a Dirac particle
of charge Ze by a fixed monopole g. (do/dQ)z is the cross section for scattering of a nonrelativistic spinless particle
of charge Ze by a fixed monopole g. (do/dQ)z is the Rutherford cross section (72) for scattering of a particle of charge
Ze by a fixed target of charge Z'e: g =Zeg, 6= scattering angle in degrees.

plicitly computed in the same way as G, but we
shall here follow a simpler method. It follows
from (A6) and (A4) that

(v r)a (p —ZeA)(&t&"', g"') =r &(&t&"', &f&"')GB.

Now

8 P&i) o

Also,

Now
(A7)

«o. Ly&&& (J2 L2 3)y&&& —(j —')&(&«&

(v r)v (p —ZeA) = r (p —ZeA) + i a'' [r" && (p —ZeA)
~

= —ie„+ir 'o ~ (L+qr)

= —ie„+ir 'o ~ L+iqr 'o r". (A8)

«o. Ly &» (J2 L2 —
)&(,

&» —( j —)/&2&

Using these and substituting (A8) into (A7), we
obtain

I 2
Z e dcr / dcr

dQ / dQ R

der / der--
dQM/' dQR

2.0-

(I) q=l/2 (Spin I/2)

(2) q=l (Spin I/2)

(3) ZZ=-50, v=0.548
(4) ZZ =-50, v=0.999
(5) ZZ =50, v=0.548
(6) ZZ'=50, v=0.999

) 0
(5)

.(4)
(6)

~ I ~ I I I I I & I & I I I w~L «~
0 20 40 60 80 100 120 140 160 180

FIG. 3. Ratio of Mott to Rutherford cross sections. (der/dQ)~ is the Mott cross section for scattering of a Dirac par-
ticle of charge Ze by a fixed target of charge Z e. (do/dQ)& is as in Fig. l. Also plotted for comparison are curves (1)
and (2) of Fig. 1. v =velocity of incoming particle.
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Ze der de2

Qv QQ d R

dy / de
dG M/ d5 R

( I) q = l/2 (Spin l/2)
(2) q= l (Spin l/2)

(5) ZZ =-80, v=0.548
(4) ZZ =-80,v=0.999
(5) ZZ =80, v=0.548
(6) ZZ = 80,v=0. 999

/

(5)

«» (6)

a I a t ) l ~ I ~ I ) I a I &~K «a

0 20 40 60 80 lOQ l20 l40 ISO l80

FIG. 4. Ratio of Mott to Rutherford cross sections (continued).

i [ 1+ (j+~2)&.1+-&qG = GB the explicit form' of the Ps to obtain

1 —i GB = qG+ (j+ 2)r, .

Now using (12) we can express (A3) and (A9). Thus

1

,, -cose+qiqi-'. 8

6 = —2csv, —(c' —s') v'„,

1 —iGB= (j+ 2}(v',+ 2csG)

(A10)
in region R,. Operating with 0 r one readily ob-
tains (17). A more elegant approach is as follows.
Since J commutes with o r and with o'(p —ZeA),
one has, similar to (A4) and (A6), the equations

=(j+&)(c' s')[(c' —s')r, 2csr„]
= p[(c' —s') v, —2csr„],

where we have used c'+ s'= 1. Now define

(A11) v'rg =g G,

o (p —ZeA)q =g Br ',
(A15)

(A16}

—s c

where 6 and B are now numbers and not 2 x 2 ma-
trices. If we now apply (AB) to ri we obtain

Equations (A10} and (A11) can be written as
i(-j—~)+iqG=GB, (A1V}

G= -Rr+ ',
1-iGB= gRv+ '.

(A12)

(A13)

which is similar to (A9), but is simpler. Next we
compute the anticommutator

{(o'r), o ~ (p-ZeA)), =r"'(p —ZeA)+(p —ZeA) ~ r

pep+pe+

2is„ i(v. r)
R is the rotation matrix from @ to & defined by
(11). Operating on the ('s, (o' r) generate the ma-
trix R GR, which by (A12) yields (13). Similarly,
(A12) and (A13) yield (14). We have thus proved
lemma 1.

To prove lemma 2 we can use (19) and (Al) and

2'l ~~ 2l/ ~

Apply this to g and we obtain

2GB = -2i . (A16)
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Thus

&=qlql ', ff= —iqlql ',
which leads to lemma 2.

(A19)

Expressing the P's in terms of the $'s defined in
(11) leads from (B4) to (45a). Equation (45b) is
derived similarly.

APPENDIX 8 APPENDIX C

To derive (43), (45a), and (45b) we start with the
well-known result

To derive (80) the main problem is to evaluate
the summable series for q&0,

OO Z/2
e ""*=Q (2l+ 1)(-i)'P,(x) Z„ii,(yr) .

E=O

The incoming part at 1 rage r is thus, by (34),
00

77
(2l ~ 1)(;)iP, (x) t kg+ i fi 1 / 2

2kr

urban

2

Wi = ~2a&~&
0

Q P„"'(y),
0

Q P„'"(y)(n+1) ',
0

8-1lvkx,

e '"=exp[-ikr+ikr(1 —cos&)]
(B3)

(»)
which is summable and gives (43). Another deri-
vation is as follows. For

where

y= cosO= —cos~= —x.
We define' the generating function

H(z) = Q P'„"'(y)z"
0

(Cl)

- iver ikrg /2 = 2'"'V'(1 z+ l~) "(1+z+ &) ' (C2)

-iver 5(g2) e-ikr5( —g2)(iy+)-1ill
where

X = (1 —2yz+ z')'i'. (C3)
which gives (43).

Equation (43) has the property that it is vanish-
ing in region B. That is, it is a well-defined sec-
tion with any fixed q. This means that we can ex-
pand

Then

1

W, =H'(1 —0), W, =H(l —0), W, = H(z)dz.
0

(C4)

25(1 x 0)
0 ijm

()54)
Thus

W = H(1 —0) = 2 ~+ (2 —2y) ' [2+ (2 —2y) ] .

Multiplying both sides by P,'."*and integrating over
the angles 0 and P give the coefficients

A'"=5, ,i, [2v(2j+1 2q)]' ', j = lql+-,'

(a5)
A'."=—5, , i, [2v(2j+1+2q)]'i', j- lql

W, and W, can be evaluated by straightforward
differentiation and integration. Collecting terms
we obtain (80), where the first term in the curly
brackets is a sum of contributions from W, and W,
and the second term in the curly brackets is the
contribution from W, .
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