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Meson scattering in quantum chromodynamics in two dimensions
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%'e report on some properties of meson collisions in quantum chromodynamics in two space-time

dimensions to leading order in 1/X, where X is the number of colors. Following a review of "Regge-like"

power behavior of two-body, nondiffractive scattering amplitudes (quprk exchange), we turn to diffractive

scattering. %'e have calculated the high-energy behavior of the "twisted loop" or "cylinder" graph and have

shown that there is no "bare" Pomeron to leading order in 1/W.

Quantum'chromodynamics (QCD), the theory of
colored quarks interacting via colored gauge fields,
may be the fundamential theory of strong inter-
actions. ' Its properties at short distances can be
calculated from perturbation theory, as if the
virtual quanta are almost noninteracting. Thus,
it possesses the approximate scaling behaviors
characteristic of certain inelastic processes,
such as deep-inelastic lepton scattering and elec-
tron-position annihilation. Attempts are being
made' to show that the theory confines quarks and

gluons to form the color-singlet bound states ob-
served' as hadrons in the world. If indeed it does
describe hadron physics, one should be able to de-
rive certain general features of experimental data
and to relate them to concepts previously em-
ployed to explain them. One striking character-
istic of high-energy collisions is the transverse-
momentum damping: When hadrons collide along
an axis, nearly all the particles produced lie near
the axis. This observation motivated Feynman to
assume that in a hadron moving with very large
momentum, the transverse-momentum distribu-
tion of its virtual constituents is also sharply
damped. ' Two other prominent phenomenological
properties of scattering should also be noted: (1)
Two-body, nondiffractive amplitudes manifest
power-law behavior at high energies, the power
depending on the quantum numbers exchanged and
simply related to Regge trajectories of particles
which can be exchanged. (2) Elastic and diffrac-
tive amplitudes grow approximately linearly with
energy, corresponding to approximately constant
total cross sections.

Some time ago, 't Hooft proposed' a classifica-
tion of the Feynman. diagrams of @CD based on an
expansion in the inverse of the number N of colors.
He showed that, in each order, the diagrams

could be put into one-to-one correspondence with
the dual perturbation theory. ' Thus, to leading
order, meson-meson scattering amplitudes con-
sist of planar graphs with no internal quark loops.
Assuming this approximation is sufficient to con-
fine quarks and gluoris, then, to this order, all
channels should be pole-dominated, just as in the
Veneziano model. ' If these amplitudes manifest
Hegge asymptotic behavior, all the usual phenom-
enology based on duality diagrams can be antici-
pated, such as exoticity criteria and exchange de-
generacy. ' Unfortunately, no progress has been
made toward solving QCD in four dimensions, even
in this extreme approximation.

However, in two space-time dimensions, 't Hooft
showed9 that the 1/N expansion may be imple-
mented and the properties of the solution demon-
strated. The two-dimensional theory is proto-
typical of a nontrivial field theory which is both
asymptotically free and confining. '0 A number of
interesting theoretical and phenomenological
questions may be analyzed in this model. "" Ex-
perimentally, transverse momenta are observed
to be strongly damped in high-energy hadron col-
lisions, so it may even be that certain results ob-
tained in two dimensions may be abstracted and
usefully applied to the real world. Be that as it
may, the two-dimensional model poses a well-de-
fined problem wherein the properties of high-en-
ergy scattering of bound-state mesons may be
evaluated. Obviously, questions related specific-
ally to crossing symmetry, to spin, or to large-
transverse-momentum behavior cannot be ap-
proached in two dimensions.

In this paper, we take up the question of the ex-
istence of a "bare Pomeron" in meson-meson
scattering to leading order in 1/¹ Our termin-
ology reflects the dual model' in which a particu-
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FIG. 1. The (st) amplitude to leading order in 1/N
( - = hadron; = = = dressed quark).

mP, cotmP; = -~'n'm, ',

lar topology (see Fig. 2 below) leads to the domin-
ant contribution to elastic scattering, whose as-
ymptotic energy dependence is not determined by
the "Regge-pole" intercepts. To establish notation
and terminology, we begin with a review of the
Regge-like behavior resulting from quark ex-
change. We then turn to the discussion of the pro-
totypical Pomeron contribution.

Let us consider the Feynman diagrams corres-
ponding to meson-meson scattering. To leading
order in 1/N, the scattering amplitude consists of
planar graphs with no internal quark loops. In any

gauge in which there is no self-coupling of the
gluon field, the scattering amplitude may be de-
picted as in Fig. 1, where we have drawn one am-
plitude" for 1+2-n+ m. In the figure, T denotes
the quark-antiquark scattering amplitude, which
has beep. explicitly calculated in the light-cone
gauge, A =0."'" To be general, we have sup-
posed all mesons have different flavors and have
labeled the quark lines by their flavors a, b, c, d.
For example, meson 1 is composed of quark a and
antiquark d. Its Wave function is p',~(x), where x
is the momentum fraction carried by quark a. The
kinematics of this process has been described by
Feynman' and will not be repeated here. However,
in this model, we may go further. Recalling that'
Q", (x)- x as x-0, we can say that the proba-
bility amplitude to find quark a in meson 1 with
"wee" momentum goes as P, , where P, is the
total momentum of the meson. Similarly, the
amplitude to find antiquark a in meson 2 with wee
momentum goes as P, . Hence, the amplitude
for exchanging a wee quark of flavor a between
meson 1 and meson 2 goes as s +. An analogous
discussion applies to the exchange of quark b, so
the asymptotic behavior of this amplitude is s"'~,
where n, , = -P, —P, . (It is noteworthy that the
power is additive in the quarks. This result will
be returned to later. ) This intuitive result can be
verified by direct calculation, and one can nohow

that the asymptotic behavior of all three diagrams
in Fig. 1 is the same. '4 Recall that P& lies be-
tween 0 and 1, being determined by the equation'

where the (asymptotic) level spacing u' ' is re-
lated to the coupling constant by u' '= mg'N and
m; is the renormalized quark mass, related to the
bare quark mass m; according to m, '= m, ' g'N-/v.

(m,.' can be negative. )
The unitarity structure of the model is also in-

teresting. Similar to the discussion of virtual
brompton scattering, " it can be shown" that the
disconnected diagram, Fig. 1(a), is canceled by a.

piece of Fig. 1(b) and that there are no quark dis-
continuities coming from the remaining contribu-
tions to Fig. 1(b) or from Fig. 1(c). Of course,
this is to be expected of a field theory with con-
finement. The only discontinuities in s (for pos-
itive s) coming from Fig. 1 are meson poles, so
this much of duality is retained by the two-dimen-
sional model: The sum of s-channel poles leads
to a Regge-tike asymptotic power behavior (-s)
(Similarly, the sum of u-channel poles leads to
s .) The fact that we apparently must sum over
s- and t-channel exchanges, Fig. 1(b) and 1(c), is
gauge-dependent. In any gauge in which the self-
coupling of gluons does not vanish, this decompo-
sition of the planar diagram does not occur. "
Unitarity is quite simple: To this leading order
in 1/N, the elastic scattering of mesons may be
described by a phenomenological Lagrangian in-
volving only three-point couplings of mesons. "

To next order, O(N '), many diagrams contri-
bute corresponding to "Regge-Regge cuts", re-
normalizations of the "intercept" z„, etc. In this
paper, we concentrate on the imaginary part of the
class of planar diagrams having two quark bound-
aries and no handles, which is usually identified
with the "bare" Pomeron" [Fig. 2(a)]. [To this
graph must be added all planar gluon exchanges,
just as Fig. 1(b) and 1(c) were added to Fig. 1(a).]
Topologically, this graph with all its gluonic cor-
rections may also be depicted as a cylinder, Fig.
2(b), or, alternatively, as the twisted-loop graph,
Fig. 2(c). In four dimensions, one would describe
this diagram in terms of gluon exchange between
the quarks in each meson, as may be easily seen
from Fig. 2(b). Indeed, one expects these gluons

(c)

FIG. 2. Equivalent representations of the bare Pom-
eron graph: (a) planar graph with two quark bound-
aries, (b) cylinder or tube showing gluonic exchanges
in the t channel, (c) twisted loop displaying mesonic
intermediate states.
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FIG. 3. The (ut) amplitude to leading order in 1/¹

to form quarkless mesonic bound states which
would be expected to lie on the Pomeron trajec-
tory. ' In two dimensions, the gluon field contains
no dynamical degrees of freedom; there are no

gluons, hence no quarkless mesonic bound states
to support the bare Pomeron. Nevertheless, the
quarks can scatter via the potential represented
by the gluon field. Might this lead to an asymp-
totic behavior which dominates the Regge- like be-
havior discussed above and which might therefore
be identified as the "bare" Pomeron in two dimen-
sions?

To simplify the calculation, we proceed as fol-
lows: Because quarks are confined, we are as-
sured that the only discontinuities come from
mesonic intermediate states, so that the imaginary
pa, rt is given by the square of the planar (ut) am-
plitude, Fig. 3,

over all mesons m, n allowed by momentum con-
servation (A &0). We wish to discuss the asymp-
totic behavior as s-~ of Eq. (2), to determine
whether a new power emerges which dominates
the "Regge" behavior determined previously. One
would anticipate that the dominant contribution
would come from the region where both p

' and
p„' are of order s. This may be easily understood
intuitively, for example, in the center-of-mass
frame with meson 1 (2) moving to the right (left).
There is a, finite, scaling amplitude Q, (x,) to find
a right-moving quark in meson 1 carrying momen-
tum fraction x, and, similarly, a scaling ampli-
tude P,(x,) to find a left-moving antiquark in meson
2 carrying momentum fraction 1 —x,. Interacting
via the long-range Coulomb potential (in four di-
mensions, we would say "wee-gluon exchange" ),
this quark-antiquark pair bind to form meson n

with p„'= x,(1 —x,)s. Similarly, the remaining
quark-antiquark pair bind to form meson n~ with

p '= x, (1 —x,)s. Thus, one might guess that the
production amplitude would scale as s-~ for
fixed x~y x2.'

lim A» „(s) A(x„x,) . (3)

The sum in Eq. (1) may then be represented as an

integral over quark momentum fractions:

f~= g IA„„.(s)l'p„. (s) . (2)
Q p„(s)= du„'dp, „'X 't'(s, p„', p. ')

m, n

Here, P denotes the amplitude corresponding to
Fig. 2, and A» „denotes the amplitude repre-
sented by Fig. 3. The phase space p„(s) may
easily be shown to be proportional to
A. 't'(s, g ', p.„'), where A is the familiar triangu-
lar function, and p, and p„are the masses of
mesons m and n, respectively. The &urn extends

S (4)

Combining these two expressions, Eqs. (3) and
(4), would then lead to ImP growing linearly with
energy.

We have performed the calculation of A» „(s)
in the A =0 gauge. The exact form of the (ut)
amplitude, depicted in Fig. 3, can be written as"

A (s)=p p
N

»~ nmi

du dv

q+ vp2 q+up

(vp, —up )' 4, vPmu

q+vp,
~

up„
1 1

+p p„du dv p' ' y (u)p (v) @
[p, (1 —v) —p„(1—u)) ' " '

p

yq q+p, v xq q+ up

+ Fp2p dx dy du dv G (x, y,' U) @ (u) P2 (v )
[p,v+ q(1 —y)]' [p u+q(1 —x)]2

+ &'P2P

p2 + yb vp2
Qm m

dx dy du dv G (x, y; T ) p„(u) @ (v) ™
[4y+p (1 —v)]2

prt X
@

pn

[Zx+p„(1—u)]2

(5)
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All momenta appearing in the formula refer to
their minus components, i.e., q/p, =-q /p, ; all
integrals run over (0, I). Here, P,.(z) is the wave
fuQction of hadron g (=1,2, pg, LPGA), g" =-p", -p~,
a" =P", —p"„, U=-q„', 7'=-Z„', 6 is the Green's
function

G(+ ~. 3)- Q in 4n 3(x) ( )

~n

The first term comes from Fig. 3(a) and the Born
term (single-gluon exchange) of Fig. 3(b); the
third term comes from the rest of Fig. 3(b). The
second term comes from Fig. 3(a) plus the Born
term of Fig. 3(c); the fourth term comes from the
rest of Fig. 3(c). Unfortunately, the intuitive dis-
cuss&on gIven above for the center-of-mass frame
does not apply in the A =0 gauge where parity
invariance is not manifest. However„one can con-
sider the limit s-~ for fixed p,„'/s, y, '/s. (ln
this limit, one also has U/s and T/s fixed. } Using
scaling relations derived earlier, "one may easily
determine the dominant contribution of each term.
In eRch cRse, the donliQRnt behavior comes from
the infx'ared region for the gluon "propagator. '*

Multiplying out the factors in Eq. (5) gives a sum
of 12 tex ms, each of which does scale, and the
argument of P, becomes, in every case, p„ /p,
=—x„as was anticipated. However, recombining
terms again, it is easy to see that this contxibution
cRncels leRving R contribution which falls by (at
least) s '. We find, therefore, that the asymptotic
behavior of A» (s) does not scale as described
by Eq. (3); in fact, it vanishes at least as rapidly
as g ', which, in turn, leads to a contribution to
Imp which falls at least as rapidly as s '. In
general, this vanishes more rapidly than the
"Regge" term vanishes, Rnd the contribution cannot
be interpreted as a Pomeron. The precise reason
for the cancellation remains obscure. Figure 3(a)
and the Born contributions to Fig. 3(b) and 3(c) are
separately gauge-dependent. Only when combined
as in the first two integrals in Eq. (5) do we ob-

tain gauge-invariant expressions. Thus, to some
extent, the cancellation of scaling amplitudes may
be regarded as an infrared or a gauge cancellation.
This reflects the vanishing of the gluon "propaga-
tors*' within the regions of integration. The same
cannot be said of the remaining two integrals
whose gluon propagators cannot vanish. Each term
in the integrals appears to be separately gauge
invariant so, even though the cancellation appears
to be similar, we hesitate to call it an expression
of gauge invariance. If we, nevertheless, conjec-
ture that the absence of the Pomeron is related to
the Rbsence of gluons in two dimensions, it could
be that when one calculatea to higher order in I/ff
and begins to build the quark-antiquark "sea",
their exchange will lead to Pomeron-like behavior
Such speculations we leave for future investi-
gations. "

In four dimensions, where the transvex'se gluon
field is an independent dynamical degree of free-
dom, the mesonic wave function must also de-
scribe the probability amplitude to find any num-

ber of gluons in addition to the valence quark-
antiquark pair. It may well be that the analogous
calculation involving the exchange of these wee
gluons will produce a bare Pomeron already in
order I/1P."

Note added. While preparing this manuscx'ipt
for publication, we received a preliminary copy
of a report ' in which conclusions similar to those
presented here have been reached. (We would like
to thank R. Savit for informing us of this work and
G. F. Chew for making this report available to us. )

We would like to thank W. A. Bardeen and
A. Mueller for conversations. S.N. and E.R.
would like to acknowledge the hospitahty of the
high-energy physics gx'oup Rt the University of
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out. Most of this work was performed while one
of us (E.R.) was still a member of the Theory
0ep ar tme Qt Rt Fer ml lab.
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