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It is shown that the standard infrared-cutoff procedures are inconsistent with the general axial gauge in

't Hooft's two-dimensional model of confinement.

I. INTRODUCTION

The aim of this paper is to investigate the con-
sistency of a non-Abelian gauge theory model. ' '
The model is quantum chromodynamics in two
dimensions with SU(N) as the gauge group, and
only the lowest-order diagrams in the 1/N ex-
pansion are considered. Since the model is in
two dimensions color confinement is straightfor-
ward; however, the full structure of the resulting
color-singlet sector has yet to be studied. In four
dimensions this latter task will come after the
conf inement has been established.

We work in axial gauges in which n A =0,
n' =-1. These gauges have the attractive feature
that no ghosts are needed for the quantization.
This is also true when n'=0, or n'=1; however,
in the spacelike or lightlike case all dependent
degrees of freedom can be explicitly eliminated,
without the need for any operators that are con-
strained to vanish on the physical states (which
is the case for n'=1). The case n'=Q has some
singularities in contributions to Feynman integrals
of individual terms in the propagator in four-di-
mensional calculations. Thus the choice n A =0
with n' =-1 seems to be the most advantageous one
one.

For the case n' =-1 the most infrared singular
terms are of the form 1/(n. k)'. Thus in any num-
ber of dimensions we will have to encounter inte-
grations of the form

d(n k)
(„.k). f(n (k-P)).

Therefore, our discussion will be relevant also
to four dimensions. (See Ref. 4 where certain
terms in the Hamiltonian look exactly like the
two-dimensional model considered here. )

In the paper of 't Hooft' in which this model was
first studied, the calculations were performed in
the light-cone gauge (i.e., the n' =Q gauge). The
structure of amplitudes in the singlet sector was
later investigated by other authors, also in the
light- cone gauge."

The infrared singularity in the gluon propagator
is treated either by the principal-value prescrip-
tion' or by the sharp-cutoff method. Using the
principal-value prescription we replace 1/(n k)'

by

1- 1 1
2 (n k+i~)' (n. k- re)'

whereas the sharp cutoff consists of taking out, a
small region of the n k integration around the ori-
gin. We show that, using the principal-value pre-
scription, there is no solution to the integral equa-
tion for the fermion propagator, for sufficiently
small but finite mo/g (mo is the bare mass of the
fermions and g the gauge field coupling constant).
We should mention that the principal-value pre-
scription is an appealing one, since it leads di-
rectly to a linear potential and involves no extra
dimensional constants; however, we shall show
that it is inconsistent in the general axial gauges.

When we employ a sharp-cutoff procedure, a
solution to the fermion propagator can be found.
We then attempt to solve the integral equations for
the bound states at rn, =0, and proceed to show
that there is no solution with a covariant mass
spectxum. This is surprising in view of the fact
that in the light-cone gauge the invariant mass
spectrum is smooth in the limit m0-0.

In Sec. II we introduce our notation and derive
the equations of motion and Feynman rules in a
genexal axial gauge, and in Sec. III we derive the
integxal equation for the fermion propagator. In
Sec. IV we demonstrate that this equation has no
solution when m, =0, when the principal-value cut-
off pxescription is used, and we solve the equation
with a sharp cutoff. We use this solution in the
next section to try and solve the bound-state equa-
tion; however, this equation is found to have no
covariant solutions. We digress in Sec. VI to show
that even in the light-cone gauge some, but not
a1.1, components of the wave function have singular
behavior as m -0. In Sec. VII we prove our
strongest result, that with the principal-value cut-
off prescription the fermion self-energy equation
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The Feynman rules for the theory under discus-
sion are given in Fig. 1 in the gauge A, =0. Note
that the gluon propagator takes on the simple form
i/k, ' (i.e., i/k ' in the light-cone gauge). A simple
way of seeing this is to note that the equations of
motion for this vector field achieve the form

&~ A, =-J',
where indices are raised according to

FIG. 1. I eynman rules for a general axial gauge in

two dimensions.

has no solutions even for nonzero (although small)
masses. Finally in Sec. VIII we present our con-
clusions.

II. GAUGE CHOICE

For reasons of clarity, we shall not be com-
plete in thi. s paper but shall refer the reader to
the original papers' ' for the clearest presenta-
tion of the model. Since our purpose is to explore
the model in a particular family of axial gauges,
it is convenient to define rotated coordinates by

x, =cos8x, +sin0x, ,

x~ = —sln8 xo + coso x~

so that the invariant length is x '=cos28(x, 2 —x~2)

-2 sin28(x, x,), and to work in the class of gauges
defined by

n'A =A~ =0 .
Thus 8 is a "gauge parameter" which interpolates
between the light-cone gauge (8 =x/4) and the axial
gauge (8 =0). In these coordinates, Lorentz-invar-
iant products will be written as A. .B=A'B, +A'B„
where x"' is defined by Eq. (1) but with raised
Cartesian indices on the right.

In this family of gauges, only terms linear in the
vector field survive in the interaction Lagrangian,
and there are no ghosts. %hen one performs a
Lorentz transformation, one also performs a
gauge transformation to return to the original
gauge. The light-cone gauge is exceptional in the
sense that no extra gauge transformation is
needed, since the covariant Lorentz change leaves
the light-cone gauge invariant. e shall restrict
our attention to gauges of the class --,'m &8 & —,'m

only, since there are certain complications in
dealing with the proper quantization of lightlike
and timelike gauges. Of course, while we expect
that nonsingle' quantities will depend upon the
gauge and hence may not be Lorentz covariant,
the spectrum of singlet bound states must not de-
pend upon the gauge nor the frame that we choose
to work in.

B —9 -C Bq

and C = cos20, 8 = sin28. In this gauge, J A =J'A, .
These Feynman rules treat x, (x,) as the time
(coordinate) variable.

The matrix a,lgebra in terms of a and b compo-
nents is

As a reminder, note that in the light-cone gauge
C =0 and S =1, and the algebra becomes particu-
larly sample.

Before proceeding with any calculations, a pre-
scription must be given to deal with the infrared
divergences. In the light-cone gauge, two cutoff
procedures have been most popular: the pxinci-
pal-value (PV) prescription and restricting the in-
tegration so that ~k ~&X. In the former method,
the gluon propagator D is written in the form

Dpv =-,'f[(k + k) '+ (k —ie} '],
whereas in the latter method,

D, =f8(k ' ~'}/k ' .
Both procedures have been shown to lead to the
same bound-state spectra (at least to leading or-
der in the 1/N expansion). The PV prescription
has the aesthetic advantage that no new parameters
are introduced and, most importantly perhaps,
the potential in a quark-antiquark system is auto-
matically lineax in their separation distance,
whereas using the X cutoff it is perhaps easier to
interpret physically the confining mechanism. A
pxoof of confinement, however, must be carried
out in both cases. Below we shall consider both
methods and apply them in the more general axial
gauges.

III. FERMION PROPAGATOR

First, consider the fermion self-energy which is
written in the form

~=&+& r=f[s. '(P) —&'(p)],
where 8, and 8 are, respectively, the bare and
full propagator. Since only rainbow graphs contri-
bute to leading order in I/IV, the integral equation
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FIG. 2. The ferrnion self-energy equation.

light-cone results. Note that A(p) A(-p), B(p)
= -B(-p), and a'+ b' = 1.

As one might expect we have been unable to solve
the above equations for arbitrary m and 8, nor
have we been able to find a meaningful perturba-
tion expansion (in m, 8 ——,'zz, or g for m =0).

satisfied by Z is (in the C =1 gauge for simplicity)

Z(pz) = —
2

d2k D(p, —k, )yoS(k)yo

(see Fig. 2) or, transforming to coordirate space,

Z(x„o)~(x.) =-,' g '
~»,

~
~(x,)y,s(»„0)y, .

Since S(x) = {0~ T(g( x) zl(z0))~0), it is easy to show
directly that Sz(»„0)=y,S(-x„0}y„where the
x, =0 limit is the symmetrical limit as x, -+0.
Ezluation (9) then implies that &z(x„0)
=yoZ(-»„0)yo, and thus

~'(p) =y, ~{p}y. .

This equation implies directly that A. and B„are
real.

Returning to the general gauge, the equation for
Z can be written as

Sg~(p„p,) =4~
d2k

(pb —k&)'

y fy [k-B(k}]+m+A{k)}y
[k —B(k)P —[zzz +A(k) P

g dk
B(p) =4

( k), &(k),
(12)

WC[m +A(k)]
([k+ CB(k)P+ C[ +A(k)]'}'" '

[k+ CB(k)]
[[k+CB(k)]'+ C[m+A(k)P}z" '

Setting 8 =-,'7t' immediately recovers the familiar

and either the PV or ~ cutoff procedures are to be
used to regulate the k, integx ation. The right-hand
side of Ezl. (11) is independent of p„hence so are
A(p) and B,(p) Thus the. k, integration can be
done immediately.

Defining the components of I3 as 8, =-SB and

B~ =-CB, where 8 is a scalar function, the inte-
gral ezluations satisfied by A and B are (define
k=k„p=p, )

A(p) =—vC f „,zz(k),

IV. ZERO-MASS LIMIT

I.et us start by examining the case m =0 for ar-
bitrary C. This should be compared to the familiar
discussion of C =0 for arbitrary m. Although the
m =0 case has certain problems, its bound-state
spectra presents no difficulties if calculated in the
light-cone gauge. The case of mW 0 will be dis-
cussed shortly. In this limit, the equations for A
and B become (recall p =p„k=k, )

B(p) =—,sgn[k+ CB(k)] .
g2 dk

(14)

V. BOUND STATES

The eigenvalue condition for the spectrum of
bound states in the q-q channel can be discussed
by decomposing the bound-state wave function into

%'hen the m 10 case is discussed, it will be
shown that a spontaneous nonzero solution for A
cannot develop if m =0.

PV method. By inspection it can be seen that
the principal-value definition of the integral will
generate poles in B(p) at those values of p where
p+CB(p) changes sign. However, since C)0,
such a series of poles in 8 is inconsistent with
Ezl. (14) because even though the right-hand side
of Ezl. (14) can reproduce such a series of poles,
their residues necessarily have the sarong sign.
Thus in any gauge with C &0, there is no solution
to Ezl. (14) for B for physical values of g'.

X method. Using the X cutoff, a solution to Eq.
(14) can be easily found for all C:

g' 1 1
B(p) = ———sgn—(p»(p'- ~') .

2m X }P}

This solution can also be shown to be unique. The
0 function is not explicitly denoted in the solution
given by 't Hooft, but it is necessary to retain it
for all C10 gauges for consistency.

Thus we arrive at the surprising eonelusion that
there are cutoff procedures which are inconsistent
with the choice of gauge. In the above simple
eases this inconsistency was rather dramatic,
namely there was no solution whatsoever in the
PV, C c 0 case. Let us now proceed to check if
the X method is consistent in the singlet sector by
examining the bound-state spectrum.
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0;(P„r)= dp, I', (p, r),

the equation for p becomes (for rb)0)

FIG. 3. The bound-state equation.

the form (y, =y,y, )

I' = I',y'+ I' y + I', (1+y, ) + I",(1 —y, ) . (16)

(p )
g 8(Pb)8(rb Pb)
2v r, + [(1—S)/C]rb+B(pb) —B(p, —rb)

x b, p (kb, r)8(pb —kb)' —X') .
"b dkb

0 Pb kb

(20)

The reason for using this expansion rather than a
series in y', yb, for example, is that the integral
equations for the above I"s decouple. In any case,
the y's can be written simply as1, 1y' = (c+ s)y' — (c —s)y

v2 vZ

The cutoff-dependent terms in this equation cancel
identically as can be seen by writing

dkb

(
'

), p (k„r)8((p, —k, )' —x')
b b

dk '„,.0 (k„r)+e (P„r)E(p„r),
'L b bJ1, 1y' = (c —s)y'+ — (c+s)y,

v2 v2 where (P means principal value and

(21)

where c = cos0, s = sin0.
The integral equation for the I"s are depicted

diagrammatically in Fig. 3. The equation for I'
can be written as (recall that m =A = 0)

b 8((Pb —kb) —~ )

). Py
n+zE ' ' P+ze

E =—8 (Xb —pbb) +—8( pb' —Xb)

+ 8(l' —(P, r,)')+- 8—((P, r,)' ~'} —. —
~b -Pb

Inserting this identity into Eq. (20), the X-depen-
dent terms cancel between E and the B's. The
final form of the bound-state equation is achieved
by introducing scaled variables according to x =Pb/
rb, y =kb/rb, and one finds

where

a, =P. -B.(p,),
p„=p„r —B (p—b

—rb} .

1 1
p, 'P (x) = — —+ P (x) -tp

1 —x
'„~ (y)'

(y x)b

(22)

[P.+D(P,) —ie(Pb)] ', (18)

where

D(P.)=, P.+B(p,) .1-S

The bound-state equation for I' becomes

2
I' =4, [p, +D(p,) —e(pb)] '

It is convenient to write n y =n y + n, y', etc, so
as to simplify the matrix algebra since y" =y ' =0.
Note the fact that for I', for example, one can
simplify expressions considerably:

where

1 —S, m

P = —2 f Jb+tI C' b g2 (23)

If C-O, the quantity p.
' becomes equal to p.2, the

invariant mass of the bound system, and Eq. (22}
is identical to that of 't Hooft. However, the
eigenvalue, p, ', is not an invariant for general
values of 8, and Eq. (22) is not a physically mean
ingful equation in general gauges.

A similar equation can be derived for the I',
component of the wave function I'. One finds an
equation identical to Eq. (22) but with p, , in place
of p. , where

x [p, —r, +D(p, —r, ) —ie(pb —r,}]'

d2k
, 8((P, - k,)' ~'}r (k, r) .

(P, —k, )'

Defining

(19)

1+8
jLL

= 2 a C
(24)

which also suffers from the same difficulties as
p, '. It is important to note that the boundary con-
ditions as x-0 and x-1 are independent of 0 since
they are driven by the 1/x and 1/(1 —x) terms on
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the right-hand side of Eq. (22}. The lack of co-
variance of the eigenvalue cannot be compensated
by any corresponding change in the boundary con-
ditions.

The equations for I', and I', have even more
severe problems than the above; the infrared cut-
off X does not cancel out of the equations.

VI. SCALAR AND PSEUDOSCALAR DENSITIES: AN ASIDE

Before proceeding further with the main issue of
this paper let us consider the equations for I' in
the light- cone gauge for m o 0: The reason for
this aside is to remind ourselves as to the type of
singularities expected in the m =0 limit. ' One
finds only one independent amplitude and

(ii) g
dk. (P —k)' (29)

VII. SMALL, NONZERO, MASS CASE

In this section we prove that the self-energy
equations (12), (13) ha.ve no solution if the bare
mass of the quarks is small and the principal-value
cutoff is used to regulate the infrared divergences.
In the arguments below we shall frequently use the
following two results:

(i) a(k), b(k) [as defined in Eq. (13)]are, re-
spectively, symmetric and antisymmetric func-
tions of k. This follows readily from the require-
ment that the solution of the self-energy equation
(12) be unique.

II = r

2(r- p)

m2I, = "' r,
2P (z' P)-

(25)

We sta.rt by showing that a(k) has no absolute min-
imum. Assume on the contrary that a(k) has such
a minimum at k.

Now

A(k) = Gv ca', [a(k) —a(k)], G =—,
(P k)'-

and

(26)

where d( p) =pz —mz +g /zz+ ze .
Since Q is a function of x only, it follows that

(30)
where we have used (29). But a'(k) =0, so that
the integration is now regular and the p symbol
may be omitted. Since by definition a(k) &a(k) for
all k, it follows that A(k) &0 and that the minimum
of a(k) be positive. From the integral equation
(12) it can be readily shown that the asymptotic
behavior of A and B as k —~ is

A(k) ~ „, ln —,,GCm k
(31a)

(27) B(k) ~~ ——.2G
(31b)

rn2 1 1—+ y(x).

Now consider the limit m -0. Since for x-0,
Q (x)-Ex", and P (x}-E(1—x)" for x-1, where
lz =(m/g)(3/v)'~', one sees that Q, (x) vanishes as
w -0 for any nonzero x. If x =0, however, Q,
blows up in such a way that its integral is finite.
Indeed, one finds that as m-0,

A(k) + m0&. (32)

Consider now

A(0) =Gv c —[a(k) —a(0)] .dk
k' (33)

Now (31) implies that a(k}-0 as k -~ and hence
no global minimum of a exists, and a is always
positive. Thus for all values of k

6(x) -6(S ),2r 3

Q -0.
(28)

Again no regulation of this integral is necessary,
this time because a(k) is an even function of k.
From the antisymmetry of B, and the fact that no
singular solutions of B exist at the origin, it fol-
lows that B vanishes at the origin and hence that
a(0) =1, which is the maximal value of a(k). From
(33) we now conclude that

Thus the scalar (Q, + P,) and pseudoscalar (d&,

—P,) densities become 6 functions in momentum
space in the light-cone gauge as rn -0.

A(0)&0 . (34)

Combining (32) and (34) we see that A(0) -0 as
m -0. Incidently this result is sufficient to prove
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a(k)
2 dk ak~ —ak —

2

—[a(k, ) —a(k)] („, ',),1
(36)

I

I

I

I

l

t

-kp

I

I

I

I I

I I

I I

-kI —ko

I

I

I

I

I

0 k

I

I

I

I

I

I

kp
k

A(k, ) &A(k~) .
Similarly it can be shown that

B(k,) &B(k,) .

(39)

(40)

The first term under the integral in (38) is larger
than the second so that the contribution to ~ from
this region is also positive. Thus we have shown
that

FIG. 4. Hypothetical form for the function a (k),
shown to be inconsistent in Sec. VII.

A(k, ) =GoC, [a(k) —a(k, )],
1

(35)

A(k, ) =GMC f, [a(k) —a(k, )] .—
2

We define the quantity ~ by

&(k„k~) =A(k, ) —A(k2)

(36)

that no spontaneous solution for A is possible if
rn =0.

We now prove that a(k) is a monotonically de-
creasing function of k in the region of k from zero
to infinity, and hence also that b(k) is a monotoni-
cally increasing function of k in this region. As-
sume on the contrary that there is one local mini-
mum at k, and one maximum at k, . The notation is
defined in Fig. 4:

Combining (39) and (40) we see that a(k, ) &a(k, }
contrary to the initial assumption. This argument
can be readily applied to the situation with an ar-
bitrary number of maxima and minima. Let k, be
the positive position of the largest maximum of
a(k) (except at the origin, of course), and let k,
be the position of the smallest minimum of o(k)
under the condition 0 & ky & k2 o kp is defined by
a(ko) =a(k, ) with 0&k, &k, . Define b as in (37),
and again it is possible to divide the range of inte-
gration into three regions in each of which ~ is
positive:

(a) -k, &k&k„where argument (i) above applies,
(b) all k & ko, and all k & —ko such that a(k) &a(k, ),

where argument (ii) above applies, and

(c) all k& k, and all k & —k, such that a(k) & a(k, ),
where armment (iii) above applies.

We ha, ve thus shown that a(k) is a monotonically
decreasing function for positive k. Let us now
choose a k, such that (e-I }

a(k} —a(k, ) a(k) —a(k, )
(k —k, )' (k —k, )~

(37)

a(k, ) =& .

From (32) we have

m ) -A(0) = 2Gv C
" dk—,[1 —a(k)]

(41)

Again since k, and k, are by definition extrema
of a, no regulation of the integrals is necessary.
We now show that the integral equation demands
that ~ is positive. To this end it is convenient to
divide the k integration into three regions:

(i) —k, & k & k, . In this region

2GvC

Hence

k, —2 GWC(1 —&)

"dk 2GvC(1 —E}

6 6

(42)

[a(k) —a(k, ) ) & [a(k) —a(k~) ]

(k —k, )2 & (k —k~)

so that this region contributes positively to 4.
(ii) ko&k&k, and -ko&k&-k, . In this region

[a(k) —a(k, )]&0, but [a(k) —a(k, )]&0 so that this
region also contributes positively to b.

(iii) -~ & k & -k, and k, & k & ~. The contribution
to 4 from this region is

m' '
a(k) ~ 1—

G
for k~k, ,

a(k) ~ 1—
G

for k~ k, ,

A useful parametrization is now defined by

m' '
G

where m'&X and 0&a&-,', so that

(43)

(44a)

(44b)
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and

for A~A, .

Then for a fixed P&A;,

Both terms on the right-hand side vanish like a
positive power of m as m- 0. Similar expres-
sions can be written to show that A -0 also like a
positive power of the mass. Thus a(P)-0 like a
power of the mass in contradiction to (441), and
we have demonstrated that there is no solution to
the self-energy equations for a sufficiently small
bar e quark mass.

VIII. CONCLUSIONS

%e have shown that the principal-value prescrip-
tion for regulating the infrared divergences is in-
consistent with the general axial gauges, with
canonical quantization. The sharp X cutoff is also
inconsistent, but at a more subtle level. %Rile
our results have been shown only to leading order
in the 1/N expansion, it appea. rs to us unlikely
that this is the source for the inconsistency.

All our calculations and arguments hold for

small bare masses, x.e., m, «g, and zt ~s con-
ceivable that the theory is singular in this strong-
coupling regime (perhaps for m, &g/~w. The inte
gral equations that we use should allow us to con-
tinue freely in the bare mass and certainly there
is no signal for such a difficulty in the light-cone
gauge solution. The weak- coupling approximation
to the bound-state kernel has been recently
studied to see if this inconsistency manifests it-
self as a lack of invariance of the mass spectrum.
It is found that the eigenvalues are invariant; how-
ever, the inconsistency is expected to show up
only in higher orders.

Qur work here is incomplete in that we have
been unable to state the general requirements
which ensure the consistency of the cutoff pro-
cedure and the choice of gauge. %e believe that
this new' phenomenon also occurs in four dimen-
sions, in particular, in axial gauges. The full ef-
fects of this new type of inconsistency should be
further explored, in view of the interest in con-
fining theories. Even if the above consistency can
be guaranteed, one must then prove the uniqueness
of the solution. Could it be that two different cut-
off procedures lead to different, finite, gauge-in-
variant solutions. Unfortunately, in the model we
have studied we have been unable to find any
solution.
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