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It is pointed out that a suggestion of Nambu which yields diquark currents from the usual flavor or color
quark currents may be relevant for classifying similar currents which arise in gauge theories unifying strong,
weak, and electromagnetic interactions. The requirement that charges of SU(3)„„,X SU(n)„„„plus the new

diquark currents complete the generators of a simple vectorlike supergroup G can be met only in the cases
n = 3, G = F4, n = 6, G = E7; and n = 7, G = SU(15) for n (30. Black-hole "no-hair" theorems seem to indicate
an interesting but speculative motivation for diquark and leptoquark currents. The exceptional groups G, and

E, result from an analogous generalization of SU(3) and SU(3) X SU(3) X SU(3). Explicit generators involving

diquark and leptoquark charges are constructed for the groups G, and F4.

I. INTRODUCTION

As first observed by Georgi and Glashow' and by
Georgi, Quinn, and Weinberg, ' theories which at-
tempt to unify strong, weak, and electromagnetic
interactions lead, in the absence of special pre-
cautions, to processes violating baryon and lepton
number conservation. If these transitions are as-
sumed to occur through diagrams involving a sin-
gle superheavy boson propagator and if the quarks
are nonintegrally charged, currents changing
quarks to leptons must be employed together with
diquark currents which can simultaneously create
or annihilate two quarks. Naturally, the corre-
sponding charges constitute part of the generators
of the supergauge group. Charges of this type have
already been mentioned in a number of arti-
cles"'. It is also an intriguing coincidence that
the most direct way of avoiding an unacceptably
short proton lifetime, i.e. , the use of extraordi-
narily large masses for the superheavy bosons,
leads to values comparable to the Planck mass, '
suggesting that such a theory might be connected
to gravitation as well. This last view is further
encouraged by theoretical work on black holes in
general relativity; since these are believed to be
described completely by their charges, angular
momenta, and masses, ' and since it has been ar-
gued that they can explode through blackbody radia-
tion, ' a process in which a proton is dropped into a
black hole and a final state with zero baryon and
odd lepton number is obtained becomes a natural
theoretical possibility. Obviously, baryon an-
nihilation without the creation of an odd number of
leptons is forbidden by angular momentum con-
servation. If a microscopic local-field-theory de-
scription of a baryon- lepton+ mesons transition
with local currents coupling to quarks is now

sought, it is easily seen that diquark and lepto-
quark currents are again needed so that both non-

integral charge and half-integral spin can be con-
served. (As black holes are not expected to con-
serve fermion number we are not considering mod-
els' in which the proton can decay into three lep-
tons plus mesons through higher-order diagrams. }
After such a consideration of the connection be-
tween diquark/leptoquark currents and black-hole
physics, the tempting next step is to interpret
literally the superheavy propagator appearing in
the proton-decay matrix element as a virtual black
hole with the Planck mass. In this case, the si-
multaneous violation of lepton and baryon number
conservation can simply be attributed to the pre-
sence of a black hale as in the discussion involving
macroscopic black holes. Not surprisingly, the
possibility that virtual black holes may act as
baryon sinks has already been mentioned in arti-
cles on general relativity. '

Diquark currents have also been introduced in a
more general context: Nambu has argued' a mass-
less fermion Lagrangian has a built-in internal-
symmetry group larger than whatever specific in-
ternal symmetry the fermion fields may explicitly
possess. This results from the invariance under
Pauli-Giirsey"' " transformations which mix fer-
mion and antifermion fields, thus also yielding di-
quark operators when applied to the generators as-
sociated with the explicit internal-symmetry
group. It is then economical to assume that the di-
quark currents involved in baryon-lepton transi-
tions are obtained according to Nambu's suggestion
from the currents generating the internal-symme-
try group SU(3)„„,&& SU(n)„„„. This fixes the
combinations of y matrices entering into the di-
quark currents and allows us to count and classify
them by simple methods developed in Ref. 9.

If the supergroup is assumed to be vectorlike, "
one can thus obtain a specific quadratic expression
in n for the number of its generators involving
quark color and flavor charges, together with di-
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quark/leptoquark charges by the methods outlined
above. A vectorlike supergroup is chosen here be-
cause of the attractiveness of the idea that if both
color and weak currents are taken as generators
of a. simple group, it is more symmetric to let
them have the same y-matrix structure and assume
parity violation is caused by an additional symme-
try breakdown. Otherwise, the following analysis
could be repeated allowing an arbitrary number of
the supergroup currents tohave axial-vector com-
ponents as well. To find the total number of gen-
erators of the supergroup, one must next specify
the number of purely leptonic charges. Unfortu-
nately, we have no very reliable guiding principles
here except one of maximum economy and a gen-
eralized "universality" between observable hadron
and lepton currents; we assume" the notion that
hadronic and leptonic weak charges together make
up an SU(2) generalizes to the remaining flavor
currents, and that this exhausts all leptonic
charges. Thus the leptonie charges are already
counted among the n' —1 color-singlet flavor cur-
rents. Then the quadratic expression in n can be
set equal to quadratic expressions in k for the
number of generators of supergroups of the SU(k),
SO(k), or Sp(k) type. We looked for solutions to the
resulting Diophantine equations up to thirty flavors,
arbitrarily choosing this number as a marking
point beyond which the economic appeal of the
quark model can be safely considered as lost. "

The plan of the paper is as follows: In Sec. II,
we introduce, classify, and count the new diquark
charges. We then present the Diophantine equa-
tions mentioned above and give their solutions up
to thirty flavors. For SU(7)„,„„,the possible su-
pergroup is SU(15), while SU(3)„„„andSU(6)«,„„
lead to the correct number of generators for the
exceptional groups F, and E„respectively. When
the flavor group is equal to the identity or SU(3)
x SU(3), G, and E, are seen to be possible super-
groups, the former being presumably relevant
only for illustrative purposes. In Sec. III, we ex-
plicitly construct the generators of G, and F4 using
the diquark charges to prove that these charges,
together with the usual q~q type, indeed constitute
the generators of a larger group for these special
cases. The cases of SU(15) and E, will be taken up
in a future communication. In See. IV, we com-
pare existing unified gauge theories based on ex-
ceptional groups with our classification scheme
and present concluding remarks.

II. DIQUARK AND LEPTOQUARK CHARGES

We start with the following n'+ 7 charges of the
group SU(3)„„,x SU(n)„„,„

(8, )) J=& [q"~;.-l&i(q'"q. )l,

)), *-)) Jd=[q' q;, -()/ )&l(~"q, )], (2)

where latin and Greek indices denote color and fla-
vor indices, respectively. Following Nambu's sug-
gestion, ' we can generate diquark charges from (1)
and (2) using Pauli-Gursey transformations ex-
pressed by

q*. aq ~ +by. (q;.)' Ia I'+ lb I'=I

q, ,- exp(ivy, )q,

(3)

(4)

where q' denotes the charge-conjugate field, given
as y, q in the Dirac-Pauli representation of the y
matrices. Depending on whether (3) is applied sin-
gly or with (4), the following types of new charges

(5)

(6)

and their conjugates, in which covariant SU(3)
x SU(n) indices appear, are found. In contrast to
q~q charges, some components of (5) and (6) vanish
identically due to the symmetry properties of the
product representations of two covariant or two
contravariant quark fields. For example, in (5),
the interchange of matrix indices of y, y, gives a
minus sign just as the interchange of two anticom-
muting quark fields does, hence only representa-
tions with color and flavor both antisymmetric or
both symmetric survive. On the other hand, since
y, is symmetric, (6) leads to representations
where color and flavor indices have opposite sym-
metry. If one assumes that only color-singlet
states are observable, then only diquark charges
with antisymmetric color content can couple to
physical particles. Thus, as pointed out by Lee, '
two quarks which are necessarily in a color-anti-
symmetric state in a proton can annihilate via a
diquark current also antisym~etric in color, while
the remaining quark decays to a lepton. This ar-
gument is naturally intended only to illustrate the
group theory and cannot be taken literally unless a
lepton with exactly the proton mass is found to ex-
ist. The important point is that the color-symme-
tric diquark charges cannot contribute to any ob-
servable process as long as color-nonsinglet
states are excluded. We therefore assume that
only color-antisymmetric diquark operators are
among the generators of the unifying supergroup
and, in fact, that the number of generators of the
supergroup consists of the n + 7in (I) and (2), plus
the aforementioned number of diquarks.

Now we can simply obtain quadratic expressions
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in n for the number of the supergroup generators:
There are 2 && 3 &n(n —1}/2 new charges of the type
(5) and its Hermitian conjugates, and 2 x 3 x n(n
+1)/2 of the type (6), again with conjugates inclu-
ded. Thus, according to the assumptions pre-
sented in Sec. I, we have the following possibili-
ties: (i) only y, y, diquark charges, yielding n +7
+3n(n —1}genera, tora for the supergroup, (ii) only

y, diquark charges, giving n'+ 7+ 3n(n+ 1) genera. -
tors, (iii) bothy, y, and y, charges, giving n +7
+Gn' generators. To see whether these numbers
can correspond to the number of generators of
SU(k)-, SO(k)-, or Sp(k)-type groups, we have to
set them equal to k' —1, k(k —1)/2, k(2k+ 1), re
spectively. For n~ 30, the only solution of this
kind turns out to be n = 7, SU(k = 15). In this case
it is not possible to fit all the quarks and leptons
into a single fundamental representation, but this
is not a serious objection to an SU(15) gauge theo-
ry 15

Qn the other hand, it is intriguing that the num-
bers of generators for all exceptional groups other
than E, can be generated by the above method.
These are the groups G„F„E„E„eachhaving at
least one SU(3) subgroup which Giirsey"' "has
proposed to interpret as the color group. Thus,
with just a color SU(3), no flavor group, and only
the y, diquark charges, one has 8+2 x 3 = 14 gen-
erators, the correct number for 6,. Similarly,
SU(3)„„,x SU(3)«,„„extended by y, diquark
charges gives 52 generators, as is needed for F,.
SU(3)„„,x SU(6)„,„„together with y, y, diquark
charges leads to 133 generators which E, requires.
E, corresponds to a flavor group of a different
structure: an SU(3) x SU(3) flavor subgroup with

y, -type diquark charges antisymmetric in all SU(3)
spaces gives 78 generators, which is the number
of generators for E,. This seems to suggest that
diquark charges, especially in association with
SU(3)- or SU(6)-type flavor groups, have an inti-
mate connection with exceptional groups which is
not enjoyed by any other simple Lie group. Excep-
tional groups also have the comforting property
that the fundamental representation of an SU(3)„„,
&& SU(3)„,„„group can be fitted into the fundamen-
tal representation of the corresponding exceptional
group, unlike the situation with SU(3) x SU(7)
c SU(15) already commented upon. "

In the following section we will present explicit
generators for the exceptional groups 6, and F, in
terms of diquark/leptoquark charges, and verify
that they obey the required commutation relations.

III. QUARK-CHARGE GENERATORS FOR G2 AND F4

%e will start with the simpler case of G,. As al-
ready described applying (3) and (4) together on the

"color" charges

T~= dv q qg —36~ q qp

yields

D ' = dvq

Q =a& dv q~ y2qj), +b dv q py (10)

q. =a* & . .„dv q, y, q. + b* dv py, q, ,

where a, b are complex numbers to be determined
later. Note the change in the order of the dummy
indices j and k in (ll) and the presence of y, in the
last term, which comes from the Majorana char-
acter of the field. It is useful to collect the follow-
ing properties of this field here:

P y2P Py P Py27 (12)

p„*(x,0)p,(x', 0)+p, (x', 0)p„*(x,0) =5„,5'(x —x'),

p„(x, 0)p, (x', 0)+p, (x', 0)p„(x, 0) = [y, j„,5'(x —x'),

:Py.P- =o. (15)
In the above equations x, s are 4-spinor indices.
Equation (14) follows from Eqs. (13) and (12). The
well-known Eq. (15) with (13) gives the result

p„(x, 0)p„(x, 0) = 25'(0). (16)

Equation (16) must be kept in mind while trying to
verify Eq. (18}below. In addition, p anticommutes
with all quark fields since it is an SU(3) singlet.

With

a=e""/2v 3 5 =(-'}"e""
one obtains the G, commutation relations given in

Eqs. (7.2) in Giinaydin and Giirsey, "which we re-
produce below for a self-contained presentation:

err"'"l'=+rr. r=f ~rre;r, rr;

where [i, jJ denotes an antisymmetrized combina-
tion, divided by a factor of two. Thus there are
indeed 14 charges as needed. However, the funda-
mental representation of G, is 7-dimensional,
where 6 of these can be interpreted as tricolored
quarks and their antiquarks. This leaves another
2-component, SU(3)-singlet field P which we take
as a Majorana "lepton. " Clearly, this field must
also appear in the generators. From the earlier
arguments involving quark-lepton transitions and
the group-theoretic fact that q*y, q*-q, we expect
to have generators of the form
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[q', q'] =- ijk

M3

[q', q, ]=7,',

[Td qp]=-6pq, +66,'qa.

(18}

(19) (6, 6)-P,'))=f dq(,'y, q„q )", (28)

Again, (nP} represents a symmetrized product di-
vided by two. The accompanying leptoquark charg-
es are

Cj = d5 Q' g j+ —35$ g (((}'pp (20)

F = d5 Q' ((jt g
—3~8

According to our hypothesis of universality be-
tween quark a.nd lepton flavor currents, an octet of
leptonic charges should be added on to (21) to form
the complete flavor-octet generators. Since the
fundamental representation contains 26 two-com-
ponent fields of which 18 are the quarks and anti-
quarks, we must construct the leptonic currents
from 8 Majorana leptons. It is perhaps worth
pointing out here that since we are not addressing
ourselves to the question of whether F, can be a
realistic supergroup {the answer to which is prob-
ably no, as will be argued in the next section) in
this discussion, we will not attempt to identify any
combinations of the Majorana leptons with ob-
served leptons. The leptons are now represented
by a traceless octet l~, with the properties

l6'(x, 0) y, I,'(x', 0) + IB(x ', 0) y, I, (x, 0)

= 5865p 6'(x —x'), (22)

I;{ )r, f', ( ) —I,'r, f'=-2:I r ~," (23)
Thus the correct, set of flavor generators are the
charges Fa defined by

(24)

where

LB = de l, y2la —358 l„"l"„

Now we extend (20) and (21) to obtain the y, -type
diquark charges as in 6,. These belong to the rep-
resentations (3, 6) and (3, 6) a,s given below:

(6, 6(-p!")-J6"...6"q, q"', (26)

(6 6(-P(..)=j 6"6"6 (.&*6)) (27}

The remaining commutation relations are usual
ones of SU(3), plus Hermitian conjugates of (17)-
(19). In comparing the above set with Eq. (7.2) of
Ref. 18, it should be observed that the q (q )
charges there transform like antitriplets (triplets),
contrary to what the notation first suggests and
the correspondence given at the bottom left of p.
1657 of Ref. 18.

In the case of F4, we first introduce the color-
and flavor-octet charges

( 6, 6) - P(„) fd=6 q'" I'„6,),. {29)

Hence we expect the proper diquark/leptoquark
generators to be of the form

q~8 +~{aB}+ kg[0(8)+ k (30)

and their Hermitian conjugates. With a=&, b=1,
we have the commutation relations of F,:

[q(6(( qP)I] g HAPP(Be)6(PPqf

[( ( qq)B] 6(q)6(( 66!q(6((

[FP q(68 ] 26(6)q8(II 6 6P qn((

[C' F"]=0

(»)
(32)

(33)

(34)

(35)

where we have left out the well-known SU(3)-octet
commutators of color and flavor charges and the
Hermitian conjugates of (31)-(34). It is tedious but
straightforward to verify the above relations if one
is careful about the following points: (i) Each com-
ponent of the Majorana lepton octet obeys a.n equa-
tion like (16}, and these infinite c-numbers cancel
with those arising from interchanging the order of
(I and qP in quark-octet charges, (ii} for two dif
ferent Majorana fields I and I', the combination
l y, l'+l'y, l vanishes identically because of the
anticommutation relations of the spinor field.

IV. DISCUSSION AND COMPARISON WITH EXCEPTIONAL
GAUGE THEORIES

We have shown that with a, number of plausible
assumptions about the properties of the super-
group, the choice of possible flavor and super-
groups becomes severely restricted. However, it
must be immediately added that these assumptions
are not at all meant to be unique, in spite of their
rather economic character. Hence we will attempt
to list below some general alternatives that are not
covered by our assumptions and discuss whether
our methods can be modified to handle these cases
as well.

First of all, instead of an SU(3) color group and
color-singlet lept. ons, one could construct models
in which leptons correspond to a fourth color. A
completely integral-charged version of this has
been proposed by Pati and Salam. ' A unified gauge
theory constructed along these lines has been
shown''" to lead to the groups SO(10) and SO(14).
Secondly, both the flavor a,nd/or the supergroup
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may be semisimple rather than simple. " Then,
for example, the former couM be any product of
simple groups, presumably with one SU(3) factor
to represent the light quarks; the latter would have
to consist of products of a single simple group so
that one coupling constant could suffice. In this
case one has, in principle, infinitely many pos-
sibilities. However, if a small subset of these is
picked out on the basis of some physical considera-
tions, one can again set up a system of Diophan-
tine equations, possibly larger than those consid-
ered here. For instance, taking an SU(3) x SU(n}-
type flavor group and a simple supergroup would

yield a small multiple of the number of equations
described in Sec. II. Similarly, P times the equa-
tions of Sec. D would cover the possibility of a su-
pergroup 6, where G is simple. Also, a,s we have
mentioned Rlreadyy the cRse where Rn RrbltrR1y
number of axial-vector currents is allowed should
also be amenable to our general treatment. In this
paper, we have only restricted ourselves to the
simplest alternatives of the above type. It is in-
teresting and encouraging that the same features,
l.e. , R simple flRvol group, flavor univelsRllty be-
tween quark and lepton currents, Rnd use of di-
quark/leptoquark currents have recently a.iso been
obtained'~ as a result of the following set of re-
quirements not all of which are identical to ours:
(i) the supergroup is simple, (ii) only color-singlet
leptons and color-triplet and antitriplet quarks ap-
pear in the fermion representation, (iii) only a
minimum number of color-singlet vector bosons
are used for a given number of fermions.

The fact that the above diquark extensions of
groups built of SU(3) and SU(6) factors leads
uniquely to exceptional groups throws new light
both on diquark/leptoquark charges and on gauge
theories based on exceptional groups. It has al-
ready been pointed out"" that such gauge theories
necessarily lead to proton decay in second order
through diquark/leptoquark currents. What is new

here is that these diquark charges represent. the
inevitable Pauli-Gursey symmetry of a massless
quark Lagrangian and that this symmetry uniquely
favors the exceptional groups when the explicit in-
ternal symmetry consists of familiar particle-
physics groups such as SU(3) and SU(6}. Of

course, we are not referring here to the phenom-
enological quark model SU(6) but to recently pro-
posed models ' ' w1th s1x quarks wh1ch also happen
to be the smallest set of quarks to incorporate a
description of CP vlolatlon. Also, 1Q view of the
connection. between exceptional groups and octoni-
ons and the very attractive proposal of Gusey""
that interna, l symmetries correspond to a natural
generalization of quantum mechanics, employing
oetonions instead of the usual complex numbers,
we find unified gauge theories ba,ses on E, (Ref. 28)
and E, (Befs. 5, 23) more appealing candida, tes than
the SU(15) possibility also found here. The other
exeeptiona, l groups are not. likely to be relevant for
realistic gauge theories for the following reasons:
(i) 6, does not admit a flavor group, (ii) F, only
admits three flavors of quarks and one Qew charged
lepton in addition to the electronic and muonic lep-
tons, and therefore cannot account for the new
(presumably) hadronic degrees of freedom repre-
sented by 'the f family (Refs. 29' 30) and the high
value of ft =o(e'e -hadrons)/o(e'e —p, "p ), (iii) E,
involves color-octet quarks. '

The relation of E7 with Pauli-Gursey transforma, -
tions Rnd its commutation relations will be given
in a forthcoming paper.
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