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The knowledge of the renormalization constants in ultraviolet-free non-Abelian gauge theories is exploited in

exposing a new symmetry, R: A„(x)~A„(x)+r„, under which the renormalized field equations of such
theories are invariant. As a consequence, we derive the low-energy theorem for the renormalized proper
vertices I&" (...,q, ...) as 0 = PR" (...,q = 0, ...).

I. INTRODUCTION

In contrast to its more prosaic cousin the photon,
non-Abelian gauge [Yang-Mills (YM)] particles
seem to be afflicted with violent infrared difficul-
ties. ' There are extra divergences in non-Abelian
gauge theories as these massless quanta couple
among themselves, yielding more virulent infini-
ties in internal integrations, and the non-Abelian
coupling complicates any attempt to order the
chaos.

In the language of the renormalization group, the
distinction between quantum electrodynamics
(QED) and Yang-Mills theory lies in the slope of
the Callan-Symanzik function P(g) at g= 0. For
QED, P'(0) &0, and the theory is infrared (IR)
free' [and ultraviolet (UV) nonfree] for small cou-
pling constant, while for YM theory P'(0) &0 and
the theory is IR nonfree (and UV free). This means
that IR behavior in QED is exactly computable in
perturbation theory' and UV behavior in YM theory
is exactly computable in perturbation theory. This
circumstance seems to preclude perturbative
studies of UV behavior in QED4 and IR behavior in
YM theory.

In this paper we will investigate the IR behavior
in YM theories using techniques we have recently
developed. ' We will show that, precisely because
of the UV freedom, exact' statements can be made
about the zero-momentum behavior in many of
these theories. The idea is that the UV freedom
enables the renormalization constants to be exact-
ly computed. ' The implied vanishing of relevant
ratios of such constants then implies the presence
of certain new symmetries in the theory which are
not present classically or in finite orders of per-
turbation theory. These (spontaneously broken
perhaps) symmetries then imply exact zero-mo-
mentum theorems. The exact behavior implied by
these theorems is extremely simple: The proPer

A(x) =R(x) = r„x" . (1.3)

It has previously been shown' that for theories
invariant under the scalar version

y(x) y(x) +—r (1.4)

of (1.1), if an S matrix exists, it vanishes at zero
four-momentum of any (II) particle. This result is
not useful for our purposes since the existence of
the S matrix is the very question we want to inves-
tigate. We deduce the consequences of symmetry
under (1.1) for the Green's functions and study
what these consequences tell us about the existence
of an S matrix, among other things.

Our conclusions are that the transverse YM
propagator has a singularity at q' =0 and that the
proper YM vertices vanish when any four-momen-
tum vanishes. These results suggest there are
zero-mass excitations in the mass spectrum of
the theory, and that it may be possible to construct
an $ matrix for this theory along the lines of
Zwanziger. ' We should immediately emphasize
that our analysis is not a mathematically rigorous
one in that limits are freely interchanged, and
functional methods are used cavalierly. Our use
of these preocedures is more suspect here than in
the usual applications since the effects we study
are due to renormalization. Furthermore, we

YM vertex functions vanish when any boson four
momentum vanishes.

The relevant symmetry is what we have called
R invariance. Under the R transformation, the
YM field A&(x) transforms as

A„(x)-A„(x)+r„, (1.1)

where the r„are constants. Equation (1.1) is a
particular case of the Abelian gauge transformation

A„(x)—A„(x) + S„A(x),

for
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II. R INVARIANCE

The R transformations have been defined on vec-
tor fields in (1.1) and on scalar fields in (1.4).
For definiteness, we will illustrate the conse-
quences of R invariance in QED, where the trans-
formations for the Maxwell and Dirac fields are

A„(x)-A„(x) +r„,
i((x) - e'" '*

y(x) .
(2.1)

(2.2)

This is a special case of the general gauge trans-
formation

A„(x) -A„(x)+s„A(x),

g(x) y(x)eieA(x )

with

(2.3)

(2 4)

have to assume that any counterterms required by
regularization do not destroy the R invariance.
Our results should therefore be considered as
suggestive but not proved beyond a reasonable
doubt.

In Sec. II, we introduce the R transformation and
discuss its implications in several field-theoretic
models. Section III is devoted to showing that R
invariance is present in YM theories as a result of
renormalization. In Sec. IV, we deduce the low-
energy theorems implied by R invariance in YM
theories, and conclude that all proper vertices of
YM particles vanish whenever any one of the four-
momenta of the external YM particle vanishes.
We discuss the relevance of the low-energy theo-
rem to the problem of the existence of an S matrix,
confinement, etc. , in the final Sec. V.

11„„(q)D'"(q)= 11„,(q)D'""(q) (2.8)

Here j&(x) is the electric current and 11„,is the
photon proper self-energy part:

11„„(q)= (q„q. —q'g„„)ll(q') .
Equations (2.6) and (2.8) immediately give

which implies that the transverse part

1
D 2

q'+ q'll (q')

of D„„(q) has a singularity at q' = 0:

(2.8)

(2.10)

(2.11)

(2.12)

The second method uses formal functional tech-
niques. The invariance of the Lagrangian under
(2.1) and (2.2) leads immediately to exa.ct zero
momentum theorems, including (2.10), for all the
proper vertices. In particular, the N-photon am-
plitude vanished whenever any photon four-momen-
tum vanishes.

For conventional four-dimensional QED, one has
R invariance in each order of perturbation theory,
and so (2.12) obtains and the physical photon is
thus interpreted as the Goldstone boson corre-
sponding to the spontaneous breakdown of (2.1)
(see paper I). For two-dimensional massless QED
(Schwinger model" ), on the other hand, it is shown
in paper I that A g 9 and that is why the photon can
become massive in this model. Other models il-
lustrating our conclusion were also discussed in

paper I. For example, in the derivative-coupling
model

A(x) =A(x) = rx . - (2.5) 2, =ga"AB„C, (2.13)

D»(q) -D„'„(q)=D„„(q)+r„r„6 (q) (2 6)

of the photon propagator under (2.1}and the in-
variance of the Green's function

fd x e" '( 0 ] Tj „(x)A„(0)( 0) —= II„„(q)D",(q)

(2.7)

As discussed and illustrated in paper I, it is the
presence or absence of R(x) in the gauge group 8
[8 is the set of A(x) such that (2.3), (2.4) is a sym-
metry transformation] that determines whether or
not there is a zero-mass excitation in the theory.
Namely, if R c 9, there is a singularity at zero
mass in the transverse part of the photon propaga-
tor.

We have deduced the above and other conse-
quences of R invariance in two ways. The first
method uses the transformation property (see also
paper I}

M'(A~ —0 's„s ~ A)' . (2.14)

This expression is invariant under (2.3}for A(x)
such that DA(x) 4:0, but it is not invariant under
(2.1). Correspondingly, the vector particle
acquires a mass in the model.

In all of the above examples, the R invariance
was present classically and order by order in
perturbation theory. The R invariance we will
study in this paper is not of this type, but is true
only in the exact theory. To illustrate the idea,
consider a scalar renormalized formal field equa-
tion

with A and C scalar and B„avector field, R in-
variance can be maintained in each order so that
A is massless. In gauge-invariant models of the
type recently discussed by Cornwall, " on the other
hand, there occur for example mass terms of the
form

under (2.1): a y(x) =g Z y(x) y(x), (2.15)
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where Z is a renormalization constant and further
R -invariant terms may be present. The equation
(2.15) is not invariant to (1.4} either classically,
where Z =1, or in finite orders of perturbation
theory, where Z is divergent. In terms of a cutoff
K,

divergence when p„p2-0, so that

p2
I'~'(P) ~ C'ln —,,

PwO
(2.23)

where g is the renormalization point. The IR limit
of I' v(P} is then

Z(K)= Q g"Z„(K), Z„(~) =~-
n=0

Suppose now that the exact Z(K) satisfies

Z =Z(~) =0 .
Then (2.15) becomes R invariant since

Zg(x) P(x) —Zp(x) P(x) + rZ Q(x) +Zr'

=Zy(x)y(x) .

(2.16)

(2.17)

(2.18)

p2 p2 2

I'v(P) gs+gs C'ln —,+gs C'ln ~ + ~ ~ ~ .
P~0

(2.24)

Thus Z, is logarithmically UV divergent in every
finite order, and I'g(P) is IR divergent also in
finite orders. However, the infinite sum in (2.21)
is

K K
Z, (K)=1+Cln—+ Cln — + ~ ~ ~, (2.21)

where K is the cutoff, and

r'"(P) Cin~ „,, (2.22)

with Q a constant.
The renormalized I' '„"(P) still suffers from IR

It is shown in paper II how such arguments can be
made more precise when formulated in terms of
finite local field equations. ' " Ordinary gauge
invariance in QED can be mathematically formu-
lated in that way. ' We assume that similar meth-
ods can be used to infer the presence of symme-
tries even if they depend on a circumstance like
(2.17).

We can indicate the reliability of our procedure
by illustrating how it works in some diagrammatic-
model calculations. We consider a single massless
scalar field P(x) interacting via gp'. Our model
is the set of diagrams made of a chain of bubbles,
where the single bubble is defined by

d4i
Pl P2) g Jf2(P I}2 (2.19)

Thus our model (see also Sec. IV) for the unre-
normalized four-point function is

I (P) =g+gI' ~ "(P)+g[ I' i '~(p)] '+ . (2.20)

The formula (2.19) for pi '~ is of course UV di-
vergent, and this gives the contribution to the Zy

renormalization constant

z, (K) = 1

1 —Cln{K/g) x
= 0. (2.25)

At the same time, the infinite sum for I vs(p} also
ameliorates the IR divergence:

R 1r (p)~ . . . -0. (2.26)

Thus we have in fact an example of the low-energy
theorem here. The field equation is given by

(2.27)

(Z, is unity here. ) Thus precisely as Z, =0,
making the equation R invariant, we have the van-
ishing of the four-point proper vertex as the ex-
ternal momenta tend to zero, as given by (2.26).

We have also previously used'4 R invariance to
study the problem of reconciling Bjorken scaling
with the singularity structure implied by canonical
commutation relations.

To conclude our discussion of nonperturbative 8
invariance, we note that it might be possible to
reverse our procedure; that is, to proceed from
an exact zero-momentum behavior (inferred from
renormalization-group arguments in IR-free theo-
ries') which is consistent with R invariance and
to conclude that the exact equation of motion is P
invariant. Then the renormalization constants
would have to arrange themselves to give R in-
variance to the equation. One of the ways would
presumably be that relevant renormalization con-
stants vanish.

III. R INVARIANCE IN NON-ABELIAN GAUGE THEORIES

For definiteness, we consider a theory of non-Abelian gauge fields A&(x) interacting with fermions ac-
cording to the Lagrangian

Z(x) =--,'Z, S„A:„(x)—S+'„(x) 'g f"A,' (x)A„'(—

[a A„(x)]'+Z,e„c',~(x) 5"S" + ~ g„f'"A,"„(x) c,'s(x)+Z, p„(x)y„e"—i —' g„A",„(x)T. g„(x).
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The subscript R denotes that the quantity is renormalized, the Z's are renormalization constants, the f'"
are the structure constants of the gauge group, T' is the fermion representation matrix, 4 y

and c,' are
ghost fields, and nR is the renormalized gauge parameter. Variation of the Lagrangian leads to the re-
normalized field equations

0= 6"8" + —' g„f-'A;„(x) 8„Abs(x)-8, A„', (x)+—' gsf'~'A~»(x)A'„s(x)~+(Z, a.,)-'8~8 A.„( x)

+Z,Z, 'gs f' s„c,'s(x)c'„(x)+Z,Z,Z, 'gags(x)y„T, Ps(x},
[5"8" +Z,Z, 'g f«bA,"s(x}js„c,bs(x) =0,

8„[5"8" +Z,Z, 'gs f"'A,"s(x)] c,' s( x) = 0,
y& (8" —i Z,Z, 'gsA",„T,)g~(x) =0 ~

(3.2)

(3.3)

(3.4)

(3.5)

= —r" x —AA+ finite operators . 3.7)
Zy» Zy

R Z Z

In all the UV-free theories of the type (3.1), the
renormalization- group calculations give

—=0ZI
Z3

(3 6)

and the result is gauge independent. Furthermore,
for SU(N) with more than N fundamental quark rep-
resentations, "

Fermion mass terms can be added without changing
our conclusions.

The renormalization constants occurring in
(3.1)-(3.5) can all be exactly calculated, because
of the UV freedom of the theory, from perturbation
theory via the renormalization group. If we make
the R transformation on the renormalized A" field,

A„„(x)-A„„(x)+r„, (3.6)

and leave all other fields unchanged, then in all
cases the changes in Eqs. (3.2)-(3.5) are propor-
tional to

elsewhere.
Similar considerations apply in performing the

R transformation (3.6) formally on the Lagrangian
(3.1). The rule to be observed here is that any
term in the transformed La.grangian that gives a
vanishing contribution to the equation of motion is
to be discarded. For example, the ghost term
give s

d
)
' 'gs[ 8/ c s(x) c.s(x)l B(x)R P iR

'ger„[8"c,„(x)xc,s(x)],

(3.11)
and this term is discarded since by Z, /Z, =0 it
does not contribute to the ghost equations of motion
upon variation. Proceeding in this way, we see
i:(x) is invariant under (3.6).

The R invariance of the renormalized theory can
again (see paper II) be directly traced to the re-
normalization effects on the non-Abelian gauge
transformations under which the classical
theory is invariant. We write

—' AA-0,

and so

(3.9)

(3.10)

A&s(x) —A»(x)+2 w, (x) x A&s(x)

Z
+ 8~ (db (x)

and choose ~, (x) such that

(3.12)

so that the theory defined by (3.1)-(3.5) is R in-
variant. We now consider models with sufficiently
many quarks so that (3.10) is valid. This corre-
sponds to the most physically interesting case of
SU(3) with four or more quark triplets. Extension
of our results to other cases will be considered

~(u, (x) -=7(x) =ger x,
1

(3.1 3)

with r a finite constant vector. Then making use
of Z, /Z, =O, we see that (3.12) becomes just the
R transformation (3.6).

IV. LOW-ENERGY THEOREM FROiVI R INVARIANCE

From the R invariance discussed in the last section we shall now proceed to unravel consequences for
the low-energy behavior of the exact solution of the YM theory. We use three different methods to derive
the conclusion; none of them are completely rigorous, but they should suggest the validity of the connec-
tion.

The first argument is due to Kramer and Palmer. ' They consider the S operator (assumed to exist).
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whose matrix elements between in and out states constitute the 8 matrix, and expand it in the set of normal
products of complete in-fields:

d'x, ~ d'x„g S'."'. . .. (x„.. . , x„):X,.„'(x,) A.,„"(x„):,
nl' ' 'an

(4.1)

where f o. ,}denotes all attributes of the field. The coefficients S„",. . .„„are then the n-particle S-matrix
elements when 9 is placed between in and out states. The invarianee of 8 under the R transformation of
the A,„ fields,

s[A.,„]=s[x,„+i], .

implies, to first order in z,

O= P g d'x, " d'x, "d'x„g S'„",I. .„„(x,, . . . , x„):~,„'(x,) "i;„'(x,} ~,"„"( x):r i,
n=o '~0!

where the caret indicates the quantity is omitted. By renaming indices, (4.2) gives

(4.2)

(4.3)

C0

c(n)y1' ' '~ yn -I ~ ~ 8 ~ ~ ~ 8. n8 ~ ~ ~ 8 (ylt ~ ~
~ 3'i -1~ x~ y i1+~ ~ ~ ~ t yn -I)

1 j -j. j+j. n-1n=0 j =0 8$ Q ~ 0 ~ y Bn

x:A,.„'(y, ) ~ ~ ~ A,„" ' (y„,):r" . (4.4}

Completeness of the in-fields then says that all individual coefficients of the expansion must vanish:

~{n)
Sg' ' ' 8i ynai+i' ' sq g(y1& ' ' ' ~ yi -& ~ x& yi+li ' ~yn-1) (4.5)

for all j=0, . . . , g —1. Thus, we have

A-e&n&+c( R 5 &qlt ' Iqj1 n
(4.6)

for a,ll j=O, .. . , n, where

S'"' (q q )(2v)'5'(q + ~ ~ ~ +q )= d'x ~ "d'x e"~*i''''""'S~".'..„(x„.. . , x ) .

The result, Eq. (4.6), thus says that all S-matrix
elements must vanish whenever any one of the ex-
ternal momenta vanish.

As we mentioned in the Introduction, this deriva-
tion, while quite satisfactory for the usual (IR-
free) theories considered in Ref. 8, is, however,
inadequate for our purposes. In perturbation theo-
ry, the IR divergences for the YM fields are such
that it is not certain if the particle states can be
defined. In fact that was the rationale behind
speculations to confine YM gluons (and quarks) by
the IR mechanism. Thus, 9-matrix elements need
not be well defined, and indeed the 9 operator need
not exist as an expansion in the in-fields.

The second derivation is the one used in paper I
for QED, summarized in Sec. H. Equations (2.6)-
(2.12) remain valid in the YM theory if color indices
Rx'e Rdded 1n the obvious way. Px'oceedlng simQar-
ly with the Green's functions (O'„A'„A"„') and
(A'gt g'„), we further deduce that the proper ver-
tex function I"„~„(p,q) vanishes whenever one of the
the boson four-momenta (p, q, p+q) vanishes:

p Obc (o q)

Our third derivation uses functional methods.
Consider the generating functional for Green's
fune tlons

w[gP] —e&v 1

[&&][«][«.]l4] W]

x exp g d'x Z x —J ~ x A ~~ x)

W[ei'] -exp ifd'xT'„(x} r-& W[q&] . (4.1O)

But the transformation of the variable A& of func-
tional integration does not change the value of the
integral, so that we ean conclude that

d xJ~ xS" Jjf (4.11)

(4.9)
with g(x) given by (3.1). The R transformation on

Az", as we saw, leaves 8(x) invariant. Thus, under
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Notice that a constant r" necessitates the inte-
grated form in (4.11). Now we make the usual
Legendre transformation to the generating func-
tional of proper vertices I'[8&]: D,","'"(q) = 5 bD(",") (q) . (4.21)

where I'. ..' ' ' is the momentum-independent bare
four-particle vertex (of order g2), and the free
propagator is written as

Z'[(t ]=Z[Z„]- d'xJ (x) ~ 8 "(x)

5Z[Z ]
g„(x) '

57[8 ]
H„(x)

Then we obtain from (4.11) effectively

(4.12)

(4.13)

(4.14)

We define the left multiplication, (3, of the bubble
with the bare four-point vertex as

Z
(0) bcb c g F(1)b c de(P} F(1)bede (P)pv]I v ]I v P& ]Ivpo (4.22}

and its left multiplication with the bare three-point
vertex y ~~~&i'„" (of order g) as

(0)ab'c' (8 F( I)0'c'de(p)
Y XP&vI P&v&Pa

J ()
58„(x)

(4.15) (O)ab'c'—1 ) ]I,vi d4ID( I) 2(I)D( I) 2(P I) F(0)b 0 de

After taking n functional derivatives of (4.15), we

get

5&„(x)5&,(y, ) 5& „(y„)
We thus obtain

d'xf'0"I' ''
(x, y„.. . , y„) =0, (4.17)

where I'""I e is the (n+1}-point proper vertex
for the gauge fields. From (4.17), we. can write in

momentum space

(.I)ade (p)~ )i.pa (4.23)

then it sums to
(4.24)

It is easy to verify that the left multiplication on

the elements I"(0) and y(0) defined by (4.22) and

(4.23) satisfy the usual axioms of associativity and

distributivity with respect to addition for multipli-
cation. Thus if we consider the bubble-graph mod-
el for the three-point function

(p) (o) + (o) 3 F(1) + (o) &(I) Z
(I) +

Z'"I ' a(. . . , q, =0, . . . )=0,
where

& '" "(q„",q„)(2v)'6'(qI+ +q.)

(4.18)

or

y (p) =y(" (I - r (")-'

igi (I Zr ( I)) (0)

(4.25)

(4.26)

Z P ( I I n n)

x i' ' (z„.. . , z„) . (4.19)

p ( I) bede (p) p (0) bcb'c'
Pvpa pvpzvj

d'ID» "'(I )D 'I "2(P —I )(0)

X I' (0) b'c'de (4.20)

Our main result, the low-energy theorem (4.18),
states that the proper vertex for the coupling of n

gauge fields vanishes whenever any one of the mo-
menta of the particles is set equal to zero. The
same low-energy theorem obviously holds in the
presence of fermions as external lines.

We shall now show how the bubble-graph model
for the scalar theory discussed in Sec. II can be
generalized to the YM case at hand. This will
provide us with an example in gauge field theory
that illustrates the low-energy theorem.

Consider the same set of diagrams as discussed
in Sec. II, where now the lines are the YM quanta.
We have to be slightly more careful in multiplying
the bubble diagrams, thanks to the presence of
indices. We shall write the bubble as

Thus y~ would have to vanish if 1 ' diverges. The
same considerations as in Sec. II then show that

Z, =0, and the low-energy theorem is satisfied.
Such models are of course of dubious merit.

Since the sum is not even gauge invariant, it need
not have anything to do with the actual behavior of
the theory.

V. DISCUSSION

A comparison of our results with that obtained
in the usual perturbative approach' to IR behavior
in @ED is in order. The usual approach considers
only finite orders in perturbation theory with the
usual bare couplings as vertices. By virtue of the
relative simplicity of the photon-electron coupling,
it is possible to sum (in n) exactly the IR diverg-
ences contributed by n real (external legs) and
virtual (internal integrations) photons separately.
The resulting contributions from the two kinds of
IR photons then cancel each other exactly in the
observable cross section. Our approach, instead,
makes use of the decomposition of a complete
Green's function into exact propagators and proper
vertices, and exact statements on the vanishing of
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the proper vertices. Expressed in terms of the
full propagators and irreducible vertices, the
various Green's functions have a treelike structure.
Because of our lack of control over the precise
nature of the singularity in the propagators and of
the zeros in the proper vertices, it remains to be
seen whether the removal of the IR divergence
from the S matrix can be accomplished in the
usual sense. On the other hand, the Abelian gauge
invariance (see paper ll) of the theory should per-
haps reduce the difficulty in summing treelike
structures in YM theory, since much of the diffi-
culty is to be attributed to the noncommutativity of
the external line insertions.

In the usual field theories, a low-energy theorem
of the type we have derived is sufficient to guaran-
tee the existence of the on-shell S matrix for the
zero-mass excitations. In chiral-symmetric field
theories, "the Adler self-consistency condition
decrees the absence of IR divergences for the
Goldstone particle. Individual Feynman diagrams
show IR divergences, but they cancel in each finite
order of perturbation. The situation we encounter
is more complex; the amplitudes might vanish as
q& -0 but still diverge as the invariant q'-0. We
have not investigated this problem.

Our conclusions are relevant to the question of
color ' confinement in hadron physics. " A theory
of hadrons based on YM gluons is extremely at-
tractive, largely because of the UV freedom.
The catch is that massless YM quanta, or indeed
any color nonsinglet states, have never been seen.
The by now conventional resolution of breaking the
color YM symmetry via the Higgs mechanism
does not work here unless the UV freedom is lost,"
and in any case, the presence of elementary scalar
mesons is unattractive. Furthermore, it is desir-
able to keep the color symmetry exact in order to
understand the apparent confinement of quarks in
spite of their presumed small effective masses. "
The hope was that the "violent" IR divergences in
the YM theory would dynamically accomplish this
color confinement. Our results indicate that the

IR behavior is not really so violent, and it there-
fore is not clear to us that the confinement will
occur.

This of course does not mean that YM hadron
theory is ruled out. One possibility is to alter
the large-distance behavior of the theory, a pos-
sibility mentioned in Ref. 18. Another possibility
is that nonperturbative solutions of the theory,
with the desired properties, exist. Also, it might
be possible to obtain a desirable theory by some
resummation of the conventional perturbation ex-
pansion. As a final possibility, we note that there
might be a Hilbert spa.ce of bound-state (color-
singlet) states which is orthogonal to the color-
nonsinglet Hilbert space, and in which there is a
unitary $ matrix. The trouble with all this is that
no one knows how to do calculations in any of these
suggested frameworks.

The IR behavior is also relevent to on-shell
quantities of theories with mass. ' To investigate
processes like form factors and large-transverse-
momentum hadronic collisions, one needs infor-
mation both at the UV and the IR ends. However,
it would be necessary to know precisely how fast
the vertices vanish in the IR regime, and that inf or-
mation is lacking. It would be desirable to investi-
gate models which possess both UV freedom and low-
energy theorems. It is clear from the derivation
that even though the UV freedom gives a logarith-
mically vanishing value for 2,/Z„ this does not
mean that the proper vertices vanish at that ra.te
in the IR limit.

Fascinating questions like these must await
future efforts for their answer.
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