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Abelian gauge invariance of non-Abelian gauge theories
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The ultraviolet asymptotic freedom of a large class of non-Abelian gauge theories enables the renormalization
constants to be computed exactly in perturbation theory. This exact knowledge is used in investigating
renormalized field equations of such theories. Many of them are shown to be invariant under an Abelian gauge
transformation on the renormalized vector field. Consequences of the Abelian invariance are derived in the
form of Ward- Takahashi identities for the renormalized proper vertices I&""(...,q, ...):
If' Ijj '"(«
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I. INTRODUCTION'

The union of a local non-Abelian group symmetry
with ordinary (Abelian) gauge invariance has led to
the introduction of non-Abelian gauge [ Yang-Mills
(YM)] fields. 2 The very existence of the gauge
field is then intimately tied to the non-Abelian
group symmetry present. The assignment of the
gauge field as a carrier of the symmetry has been
a rather attractive way of incorporating dynamical-
ly a given symmetry group in quantum field theory.

Ordinary gauge invariance originated in classical
electrodynamics because only the field strength
E„„and not the potential A„ is directly measur-
able. It acquires much greater importance in the
quantum theory, where the field A& is the quantity
more directly associated with the particle (photon)
in the theory. In fact, the renormalization of
quantum electrodynamics (QED) makes specific
use of a consequence of gauge invariance, name-
ly, the original Ward identity Z, =Z, .

In the non-Abelian version, the renormalization
is more complicated, ' ' and again a consequence
of gauge invariance, now in the form of the gen-
eralized Ward-Takahashi (WT) or the Slavnov'
identity, plays a critical role in the execution of
the renormalization program. The non-Abblian
nature of the theory necessitates the introduction
of ghost fields, which transparently manifest the
lack of positivitys peculiar to the theory.

It is this very lack which allows a desirable
state of affairs to emerge. People have been in-
terested in the 1arge- momentum (ultraviolet) be-
havior of field theories, and have found that a use-
ful tool for discussing these behaviors has been
the renormalization- group differential equationse
satisfied by these theories. The asymptotic be-
havior was found to be determined in terms of the

fixed points of the Callan-Symanzik function P(g).
It turns out that there is always a fixed point at the
origin, ' and it is then possible to determine the
asymptotic behavior from the information furnished
by low-order perturbation theory, presumably
valid at that point. '0 The catch is that the ultra-
violet (UV) behavior is determined for a negative
slope of P(g) at g=O, and the infrared (IR) behavior
in the case of a positive slope. These two cases
are referred to as UV- and IR-free, respectively.
By positivity, all known field theories have a posi-
tive slope; all, that is, except for YM theories,
many of which have indeed a negative slope and
are therefore UV free.

Thus YM theories occupy the privileged status
that their true' UV asymptotic behavior is easily
determined. In particular, the renormalization
constants are known exactly, " so that it is now pos-
sible to scrutinize the renormalized field equations
of the theory for any new features arising, so to
speak, from renormalization.

We have performed just that, and in this paper
we report on one asPect of the investigation. In
most cases, the renormalized field equation is
invariant under an additional symmetry, namely,
tlzat of ordinary aphelian gauge transformation.
Moreover, the non-Abelian gauge theory satisfies
a set of Abelian WT identities, valid at all ener-
gies.

The existence of this symmetry arises from the
fact that the renormalization constants can be
computed exactly" in these UV-free theories.
When a particular constant or relevant ratio van-
ishes, new symmetries can arise which are not
present in the classical Lagrangian. Such new
symmetries are a consequence of renormalization,
and furthermore are not present order by order in
perturbation theory. In each order, the renormali-
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zation constants are infinite (when the cutoff tends
to infinity) and it is only the sum which may be-
come zero. To deduce the presence of such a
symmetry, the group transformation must be inter-
changed with the cutoff removal limit. This means
that such symmetries have a distinct, and perhaps
more speculative, status than those which are
present classically and in each order of perturba-
tion theory. Since Green's functions can only be
computed asymptotically in the relevant gauge
theories, the existence of the symmetry can only
be directly checked in an asymptotic limit,
although the symmetry is predicted to be present
at all energies.

The route to the emergence of such renormaliza-
tion symmetries is indirect. First we use the
known asymptotic behavior to calculate renormal-
ization constants. The obtained (suitably vanishing)
behaviors of these constants imply the presence of
(usually spontaneously broken} new symmetries,
and the consequences of these symmetries are
valid at all energies for the exact theory.

In the course of our analysis we have found it
expedient to work with field equations, commuta-
tion relations, etc. , obtained by canonical manipu-
lation of the YM Lagrangian with ghost fields. The
Slavnov identity, as an example, has been derived
in this manner from the field equations. Thus we
feel confident that the physical content of the YM
theory should be embodied in its local field equa-
tions, so that the symmetries present there should
be true symmetries of the theory.

In Sec. 0 we discuss in general terms how state-
ments invalid in the unrenormalized theory can be
valid as a consequence of renormalization, and
cite previous use of the technique. Section III con-
tains a resume of non-Abelian gauge field theory
in terms of field equations as well as functionals.
Section IV introduces renormalization constants,
and the Lagrangian and field equations are re-
written in terms of renormalized fields. It is
shown how these constants are computed via the
renormalization- group equations, with gauge-
independent results. In Sec. V w'e show that the
renormalized field equations and Lagrangian are
invariant under an Abelian gauge transformation
on the renormalized field. We deduce the WT
identities associated with the Abelian gauge sym-
metry both via equal-time commutators and by the
use of functional methods. We discuss their con-
sistency with the non-Abelian WT (Slavnov} iden-
tities usually obtained. Section VI concludes the

pape r,

our ideas in a simpler context. Consider a typical
term

S(A) =ZA(x)A(x) (2.1)

in a formal renormalized Lagrangian or field equa-
tion. Here A(x) is a renormalized quantum field
and Z is a combination of renormalization con-
stants. In the cutoff theory, both Z and A' have
expansions in powers of the renormalized coupling

z=z(N= g g "z„(x),
n=0

(2.2)

&'(x(= g g "o.(x;R(, (2.3)

where K is the cutoff parameter. In each order of
perturbation theory, the renormalization constant
Z„(K) and the ordinary field product are divergent
when the cutoff is removed:

Z„(K)
E -moo

O„(x;Z) (2.5)

Typically, in a renormalizable theory, the diverg-
ences become logarithmically worse in higher
orders; e.g. ,

Z„(K)- a„(in')" . (2.6)

exists.
ln each order, the expression (2.1) has no inter-

esting symmetry property. For example, under
the "8 transformation"

ft: A(x) -A(x)+r, r =const, (2.7)

F(A)- &(A+r) = 7(A)+2rZA(x)+r'Z,

so that

~(A+r) —0-(A)

(2.8)

(2 9)

since r and A(x) are finite. So (2.1) is not invari-
ant under (2.7). Now suppose that the exact'0 Z(K')

given by the sum (2.2) vanishes when the cutoff is
removed:

z(z) -0. (2.10)

These infinities combine with others to produce
finite (for K- ~) expressions for the renormalized
Green's functions in each order of g. That is,

lcm (0(TA(x, ) ~ ~ A(x„)~0)

II. SYMMETRY AS A CONSEQUENCE OF RENORMALIZATION

Before becoming entangled in the complexities
of non-Abelian gauge theories, we will illustrate p(A+ r) S(A)— (2.1 1)
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A =ZA +9(A, ~ ~ ~ ), (2.12)

with 9(A, ~ ~ ) R invariant. If Z =0 as in (2.10),
(2.12) is R-invariant in the exact theory even
though it is not invariant in any finite order of
pe rturbation theory.

A more precise formulation of such possibilities
can be given in terms of finite local field equa-
tions. 'z'" Equation (2.12), for example, can be
given a mathematical status in the form

with

A(x) =Z(x), (2.13)

Z(x) = lim [z(&}A(x+()A(x)+9&(A, ~ ~ ~ )),
( -+ Q

(2.14)

Here, in each order of perturbation, z(t'} is a
well-defined function with singularities at g =0
corresponding to (2.4): z(0) =Z(~)=~. Thus,
under (2.7), Jix)- J(x)+~, and the field equation
(2.13) is not R invariant. If (2.10) obtains for the
exact theory, then

and so (2.1) becomes R-symmetric in the exact
theory.

In the above circumstance, a new symmetry can
arise as a consequence of renormalization. The
R symmetry is a typical (spontaneously broken
perhaps) symmetry which can arise in this way.
Such symmetries imply interesting WT identities
and low-energy theorems. Consider, for example,
a formal field equation of the form

(2.19)

Equation (2.17) is thus gauge invariant and this
fact, together with the analogous gauge covariance
of the Dirac equation, is equivalent to the gauge
invariance of QED. Note that here the gauge in-
variance is true order by order, whereas (2.13)
was symmetric only for the exact theory.

In the following sections we will apply similar
considerations to non-Abelian gauge theories. We
will argue on the basis of formal field equations of
the form (2.12). We are confident that our conclu-
sion would also follow from using the more mean-
ingful finite localfield equations of the form (2.13)-
(2.14), although, because of the complexity of such
equations in YM theories, we have not shown this in
detail. It is our basic assumption that such em-
ployment of the field equations to determine the
symmetries of the theory is legitimate even for
the exact theory in which results of the form (2.10)
are valid.

In a nonperturbative context, we have previously
used local field equations in this way. " There we
studied the problem of consistently incorporating
scale invariance in operator product expansions
implied by canonical commutations. In a gg4 the-
ory, for example, it was shown that there must
then exist two distinct operators j (x) and k(x) of
scale dimension two, which form a two-dimension-
al reducible representation of the scale group.
They appear in the short-distance expansion of
y(x) y(0):

z(0) =0 (2.15} p(x)p(0) ~ (X, lnx'+g) j(0)+X,k(0), (2.20)
[this zero cancels an infinity in the field product
A(x+ ])A(x) for $ -0], a.nd so

J(x)- »m [z($}A(x+5)A(x)+9((A, ')

= lim [z(()q(x+t)y„y(x)+ ~ ~ ~ ] .
f -+0

(2.17)

Under a local gauge transformation,

Z„(x; () -J„(x;t')+R„(x; $),
with

(2.18)

+z(t')A(x+ &)r+z(t)rA(x)+z(&)r']

=Z(x), (2.16)

and the field equation becomes R invariant.
The finite- field-equation approach to ordinary

gauge invariance in QED proceeds in precisely the
same way. " There the Maxwell equations read

S'F„„(x)=Z„(x}

and they transform under a scale change as

j (x) j (px)
U !1p2

k(x) P lnp j (px) +k(px)i
(2.21)

The transformation law (2.21) enables the pres-
ence of logarithms in (2.20) to be compatible with
reducible scale invariance. From (2.20), j and k
have explicit representations in terms of p:

(2.22)

k(x) = »m —[:y(x+])y(x): —(z, In( +x,)j(x)].1

(~0 ~1
(2.23)

The two expressions highlight the very distinct
manners in which the two operators j and k be-
have under an R transformation (]J1 -p+r; because
of the presence of the singular function in the de-
nominator in (2.22), j (x} is R invariant, while k(x)
is not. Now from reducible scale invariance only,
j(x)j(0) has the expansion
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j (x)j (0) ~ —,(-I, lnx'+ a, )j (0)
x ~0-~

+—,5,)'b(0), (2.24)

8"s"G„„(x)=0 . (3.8)

By virtue of the group-theoretic structure of 6„„
we have

(3.9)
which is not a canonical structure because of the
presence of logarithms. However, if we have
taken measures to implement g invariance in the

system, then R invariance can be applied to the
expansion (2.24). The result is of course that the
g-noninvariant A. cannot appear, so that 5, =0, and
the expansion then assumes a purely canonical
structure:

j(x)j(o) —.s, j(o)1

x~0+
(2.25)

III. NON-ABELIAN GAUGE THEORIES

The classical theory of non-Abelian gauge fieMs
is specified by the Lagrangian density

g„(x)= --,'G„', (x)G,"'(x), (3.1)

where

G'„.(x) = s„A:{x)—s „A'„(x)+gf'"A„' {x)A;(x),
(3.2)

with f'" as the structure constants of the gauge
group, and g as the bare coupling constant. Some-
times we write

f' cL M'=— (Lx M)'. (3.3)

In this model, R invariance combined with re-
ducible scale invariance ensures a canonical struc-
ture for the operator-product expansion of com-
posite operators. It provides a mechanism to
reconcile canonical Bjorken scaling with greater
than free-field singularities in field products.
Equation (2.22) provides an explicit example of
(2.14). Unlike (2.22) the symmetries considered in
the following arise in a dynamical way in unitary
theories.

and (3.9) is valid for arbitrary A„(x). The La-
grangian (3.1) yields the classical field equation

&."b G „' „(x)= 0 . (3.10)

Note that no use of (3.10) has been made in deriv-
ing (3.7)- (3.9}.

Naive application of canonical quantization to
(3.1) leads to contradiction. a a It is necessary to
introduce a gauge-fixing term in the Lagrangian,
and the associated term involving fictitious,
scalar, anticommuting ghost fields. For calcula-
tion of Feynman amplitudes, it is most convenient
to choose the gauge function

Z[A] =s„A",
and one gets the modified Lagrangian

(3.11)

1
Z(x) =Z„(x)—

2
[s A(x)]'+s„c,'(x)K),"bcb(x),

(3.12)

where o. is a constant (unrenormalized) gauge pa-
rameter, and e, and c, are anticommuting scalar
ghost fields. Now it is possible to write down the
canonical equal- time commutation relations

5(x'- y')[ G", (x),A'b(y)] = f5.b g "5a(x y), {-3.13)

5(x' —y')[n '8 A, (x},A', (y)] =f5„5'(x-y).
(3.14)

In order to discuss the invariance of the quantized
theory under various symmetry operations, we
need the equations of motion of the system. Varia-
tion of the effective Lagrangian Z(x) (3.12) gives
the A& field equation

&,"b(x)G„b„(x)+o. 'S„a A, (x)

+gf'"[s„c,'(x)] c,'(x) =0, (3.15)

We define the covariant derivative

~ab (X) 5ab Sa +gf acbAc (X)

and the Lagrangian is then invariant under the
infinitesimal gauge transformation

cbA'„(x)-A'„(x) +—&'„b (x)&ub (x),

(3.4)

and the ghost field equations

u".be„c,'(x) =0,
S„Z)."bc,b(x) =0 .

(3.16)

(3.17)

The YM field can of course be coupled to other
fields in a gauge-invariant manner. For example,
fermions can be incorporated by adding"

where u(x) is a c-number function of spacetime.
We also define

z~ =zgy~a" g, (3.18)

F„„(x)=s„A,(x) —s.A„(x) . (3.6)
DI, =lent -sgAP T', (3.19)

By antisymmetry,

s"s" F„„(x)=0, (3.7)
and T' are the fermion representation matrices.
The field equation would now be
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0= ~.",(x)a„'„(x)-n-'s„s X.(x)

+gf'"[s„c,'(x)] c,'(x)+g g(»)y„v'. [[(») .
(3.20)

It is also customary to discuss gauge theories in
terms of the vacuum functional W[Z„] given by the
functional integral

I [8]=Z[~J- d'xi„(») ft['(»), (3.23)

and we have

In order to discuss proper vertices, the functional
I'[8] is introduced via the Legendre transforma-
tion

w[z", ff„z',]

dA. dc' dc2

x exp i d'xfg(x)-3 (x) A" (x)

5Z[ «J]

5i, (x) '

5Z[Q]
58„(»)

(3.24)

Z[Z]=inW[Z, . . .].. .,=, . (3.22)
l

—K c —K, c,) (3.21)

with g(x) given by (3.12). Here Z„(x), K,(x), and

K, (x) are classical external sources coupled to the
respective fields. The connected parts of the
Green's functions are then generated by

The non-Abelian gauge invariance of the Lagran-
gian leads to the generalized%T identities con-
necting unrenormalized Green's functions or proper
vertices. To derive these identities, we perform
the gauge transformation (3.5) on the integration
variables A„ in (3.21). The only change in the
integrand comes from the gauge-fixing term and
the source terms:

w[z«, )(„x,]„„,— [dx][«(«,][a«.]«««)«( a'*(),(*)+[-t« '«&. (*i«„

+«1"*[«„«l(*)]«lf«)-z'„()]««.".(. '«, (*))) .
(3.26)

(3.27)

The transformation of the integration variable does not affect the value of the integral, and so me may put
the coefficient of the arbitrary function «), (x) equal to zero. In this way we obtain

"""a(*)-"'"''("«(:() «~(.)) " '"
which then yields" the Slavnov identity. ' For the three-point vertex, (3.27) gives

—,—,g" ——, D'.(p)r...(p, k, q)= —,G(q) g"'-, y(p, u, )q, (3.28)

&&here I' is the proper vertex for three YM particles, D is the YM propagator, G is the ghost propagator,
end y„ is the proper vertex for

gf""(OiTA;(x)c,"(x)cf(y)A'„(x) i0&,

related to the proper vertex y, for the coupling of a YM particle with two ghosts by

p y. ,(p, &, q)=y, (p, &, q). (3.29)

The above identity (3.27) can also be derived using the equation-of-motion approach. Combining (3.9),
which is a consequence of the gauge covariance of G„„with the equation of motion (3.15), we have

n '0) s s A(x)+g5)" [s„c)(»)]xc,(x) =0 . (3.30)

Using (3.30), and the equal-time commutation relations(3. 13) and (3.14), it is easy to deduce the WT identity
by pulling derivatives through time-ordered products:"

~-'(0)rn S T[] W(»)X"(y)W'(z))0&

=f [(oI»'5'(»- y)&'(z) Io&+(o l»&]5'(»- z)& (y) Io&]- g(o I»."[s,c,(»)]&c,(x)&"(y)&'(x) I0&,

(3.31)

which is identical with the result of taking functional derivatives twice on (3.27).
Thus the use of functional integrals and of equations of motion is equivalent for deducing the consequences
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of non-Abelian gauge invariance. A symmetry that exists on the level of equations of motion should be
exploitable also in the functional-integral framework.

IV. RENORMALIZATION AND ASYMPTOTIC FREEDOM

The non-Abelian gauge field theories have been shown to be renormalizable. We can express the La-
grangian in terms of renormalized fields and coupling constants through the introduction of renormaliza-
tion constants

Al =Z 1~2A &
3 R ~

Z

c =Z'~2c.
3 iR~

Z1
g=Z 3/2 gR ~

3

Qt =Z3CkR

and we also have'

Z-2
Z3 Z3

(4.1a)

(4.1b)

(4.rc}

(4.1d)

(4.1e)

(4.2)

as a consequence of non-Abelian gauge invariance. The renormalized field equation for gauge fields inter-
acting with fermions would be"

0= 5 S + gRf AcR(x) i SpA R(x) 8 ApR(x)+ gRf A(iR(x)AuR(x) J+Z3 'aR ' ~8'AR(x)

+ —'
gR f' 8"c,R(x)c,R(x)+, gR(R(x)y" &, &R(x), (4 8)

Z3
5"s" + —'

gR f"'A,"R(x) „s,'c(xR) =0,

S„5"8" + —' gRf"'A,"„(x) c,'R(x) =0,~1
3

I~

~ Z1„8"—' —' g A "( ) & q (x)=o.
3

ln terms of renormalized fields, the Lagrangian is

2

Z(x) =-—Z, S„A'„(x)-&„A'„(x)+—'
gR f'"A„'R(x)A;„(x)

(4.4}

(4.5)

(4.6)

[8 A ( )R]'x+Z~S&c',R(x) O' 8" + —'
gR f" A", R(x) c,R(x)+Z2/R(x) 8" i —' gR-Az(x)'T y&gR(x) .

(4.7)

Similarly, for the functional-integral approach,
if we make the scale change

I

q -=K/M, where K is the cutoff aud M is the sub-
traction point, satisfies the differential equation

Z" = Z, '~'X"

8" =Z '~28"
3 R ~

(4.8)

(4.9)

8 8 a
t) +P(gR -~R—) + y, (gR, ~R)~R

in the definition of the generating functionals, then
the functional derivatives with respect to these re-
normalized quantities would give the renormalized
Green's functions and proper vertices.

All the Z's occurring can be exactly computed
from perturbation theory via the renormalization
group. We briefly recapitulate the results here.
The renormalization constant Z,. as a function of

+ y ~ (gR QR) Zi (7) gR +R) (4.10)

whe re

(
i (gR1 +R) s gR

-y,. (gR, aR) SM 1uZ,.
(4.ii}

These parameters can be obtained by low-order
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pe rtu rbative calculations:

P( gR) = 5-gR',

I5= (—"c ——'c).2 3 1 3 2

2

y, (gR, &R)=
8 2[( 4 2o'R)cl 3c2],8n

y. (gR ~ )R=-8„'.~ gR. (f) ~

(4.12a)

(4.12b)

(4.13a)

[~-—', c,/c„, if c,/c, &~
Q c

if Ca/Gg a ~

(4.17)

To calculate a quantity like Z, /Z, occurring in
(4.3)-(4.V), we notice

We can distinguish hvo cases, depending on which
fixed point o, , the effective gauge parameter ~*,
approaches:

2

&,(g„c4R) = 8, [('4 —nR}e, , c—,],
plkggy Qg j 2 QgC1

SENT

2
8'Z 31.(gR o' R)=
8 ~ (b- buR)c,
BF

where

faaaf ba4 2C dab

Tr(r' T') =2c,6",

(4.13c)

(4.13d)

(4.13e)

(4.14a)

(4.14b)

(lnq)y /

~3 Q ~oo

Thus, for a, =~ —abc, /c, ,

y=8 .(-—.c +bc.»Il 4

(4.18)

(4.19)

(4.20)

(4.14c)

(4.15)

(T"T'), , =S,(f}6,, .
For UV freedom, we need 5 &0, or

11
4

When (4.15) holds, then the leading behavior of

Z, (K/M) as K-~ is obtained from [Z, (1, 0, u, ) is
an unknown constant]

and, for n =0

I 3
8g2 2

We thus conclude that

(4.21}

Z&(0, gR, aR) = Z, (1, 0, n, )e~ d, r4(g', o,)
'

P(g')
(4.16}

and (4.22) holds for all choices of the gauge pa-
rameter o.~.

V. ABELIAN GAUGE INVARIANCE

By Abelian gauge transformation are mean the transformation on the renormalized fields

(5 1)A„"(x)- AR(x)+ S"Z(x), .

with A(x) a c-number function, and no compensatory change is made in any matter field interacting with
the YM vector field. When we make the transformation (5.1) on the various terms in the renormalized
field equation (4.3), the changes in the first two terms are

5"S'+—' g„f"bA,"R(x) S„AbR(x) S,A„'R(x)+——' gRfb'4A'„„(x)A4„R(x)

=~f-'s "A, (x) s„A'„(x)—s.A„'„(x)+~g f' A', „(x)A'„„(x)

+ 5"S'+~g f-'A' (x) f'" S a'(x)A' (x)+A' S a'(x)+»'(x)S A (x) (52)
3 I

s"s 7„(x) = s"OA(x) .
-&3&S — &3~Z&Z

(5 3)
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The other terms in (4.3) are of course unchanged.
Similar considerations apply in the transformation
properties of the other field equations (4.4)-(4.6).

Renormalization-group methods can be used to
determine the singularity of the local product
A(x)A(x). This analysis is performed in Ref. 19
and the result is (apart from an irrelevant c-number)

(
Z '—' A„(x)A, (x)- 0,

3
(5.4)

' 'g„[s„c, (x)xc,„(x}]A "(x)
Z R P 1R

gzS" A(x) [S„c,~(x)xc,s(x)], (5.5)
Z

and upon variation this term gives a vanishing con-
tribution to the ghost equation of motion since
Z, /Z, =0. The (G„„)' and the fermion terms are
likewise Abelian invariant. The only change in
g(x) thus comes from the gauge-fixing term

A[g(x)]=-o.„-'S A aA. (5.6)

Again, (5.6) is identical to what prevails in QED."
The origin of the Abelian invariance is more

transparent if we consider the non-Abelian trans-
formation (3.5) and express it in terms of renor-
malized quantities:

A„,(x) —A»(x)+2~(x) x A»(x)+ ~—s„~(x) .
Zl gR

(5.7)

for SU(N) provided there are more than N funda-
mental quark representations. [For SU(3), this
requires at least four quark triplets. This is the
experimentally indicated situati'on, and so (5.4)
will be taken in the following. ]

Thus the right-hand side of (5.2) vanishes as a
consequence of renormalization. The only term in
the renormalized field equation (4.3) that changes
under the Abelian gauge transformation (5.1) is then
the gauge-fixing term, as given by (5.3). Similar-
ly, the field equations (4.4)—(4.6) are also invari-
ant. Thus we have precisely the same situation as
in an Abelian gauge theory like QED,"and strict
invariance obtains for A = 0.

Similar considerations apply in performing the

Abelian gauge transformation on the Lagrangian
(4.7). The rule to be observed here is that any

term that gives zero contribution upon variation
to the equation of motion is dropped. For example,
the ghost term gives

is a finite c-number function, and use Z, /Z, =0,
(5.7) becomes the Abelian gauge transformation
(5.1). This suggests that (5.1) is a symmetry trans-
formation for all finite and smooth functions A(x).
In view of the unrenormalized fermion transfor-
mation law

y(x) —[1—2iT x~(x)] g(x),

and its renormalized counterpart

y„(x) —[ 1 —2i T x ~(x)]g„(x),

(5.9}

(5.10)

A„s(x) -A„~(x)+Z, '~'S„(o(x),

i(s(x) —i(„(x)exp[ iZ, ' i'e„~( x)],
and the choice

(5.12)

(5.13)

A(x} =Z, 'i'(u(x) (5.14)

makes the gauge transformation form-invariant
under renormalization. The point is that in QED
the Ward identity mandates the same renormaliza-
tion constant Z, for both coupling-constant and
photon- wave- function renormalizations.

There are of course further implications of in-
variance under (5.7). These correspond to other
choices for &g(x). For example, if u(x) is chosen
as an operator such that

Z3
2(d X ApR + 8~ (d

Z,g
(5.15)

is a finite operator, the transformation (5.7) re-
mains non-Abelian and gives the usual non-Abelian
WT identities. "

Finally we shall now derive the WT identities
corresponding to the Abelian gauge invariance
using functional methods. We recall the generating
functional

W[ J]= [dA] [dc,] [dc, )

[~~ ~-&„"4)r, ~ ilI,

we see that in the presence of fermions the ap-
propriate Abelian transformations are (5.1) and

(5.11)

It might be instructive to compare the situation
with what prevails in QED. There the gauge trans-
formation expressed in terms of renormalized
quantities would be

If we now choose w(g) such that

(5 6)

(5.16)

with Z(x) given by (4.7). As we saw earlier, the
transformation (5.1) on (5.16) gives
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W[/]- [dA][dc, ][dc,]exp)i d'x[2(x) —Z„(x) As(x) —/x~ 'S As(x) ~ HA(x) —Js(x) S"A(x)]] .
(5.17)

The transformation of the integration variables leaves the value of the functional integral invariant, so that
we must have

-fn„-'Cs„)+s„i„"(x)w[Z]=0. (5.18)s p g ) p s

The result is more conveniently stated in terms of proper vertices. The Legendre transformations (3.23)-
(3.25) give

51"
iu„'Cl&~Q~„(x)+sq —,, ——0." a8„„jxj

(5.19}

Equations (5.18) and (5.19) are just the WT identities for Abelian gauge invariance. 2o For example, for the

renormalized n-point proper vertex, we have

q&I'z"l' ''"' ''( ~ ~, q, ~ ~ ~ )=0, n&2, (5.20}

etc.
Finally, let us note that the consistency of (5.18) with the non-Abelian WT identity (3.2V) would require

a new relation

Zj
g 3/2ZRQ ( ) R IJ XQ ( )

ps(x)

l/2gB il Z gR 5~ii{ )
~

( )
~

( ) )
+[~~+1~+ ]2 (5.21)

The Abelian identity (5.20) gives zero for both sides of the Slavnov identity (3.28), so that (3.28) is satisfied
trivially.

VI. DISCUSSION

The UV freedom of YM theories is seen to give
us precise information on the singularity struc-
tures of the theory, and that enables us to draw
conclusions valid at all energies. The very fea-
ture that allows this to be done, namely, the non-
Abelian nature of the gauge group, itself disap-
pears from the WT identities, which are usually
reliable indicators of the presence of a group
structure. This is of course connected with the
intrinsic link between the non-Abelian group struc-
ture and the interaction; they occur as the product
gf'~. The UV freedom means that g can be ne-
glected somehow, "and in those cases the theory
also behaves as an Abelian one.

We should reiterate the warning that our approach

is not rigorous. The field equation we used with
explicit Z's is a crude instrument indeed; limits
are freely exchanged whenever necessary, "the
use of functional methods is formal at best. We
feel that the derivations are only plausible.

The Abelian nature of non-Abelian theories would
have other consequences; these are being studied
and will be reported elsewhere.
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