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Unitarity constraints on a + b ~ 1 + 2 + 3*
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The isobar model for a+ b~ 1+2+3 is reexamined in light of the requirements of subenergy unitarity.
Discontinuities of the amplitude across the subenergy variables are removed by means of a set of coupled
integral equations. We make a comparison of the amplitudes with and without the unitarity corrections and

suggest a ratio test to check the validity of the isobar model.

I. INTRODUCTION

In recent years there has been considerable
interest in doing partial-wave analysis of the reac-
tions of the type a+ b-1+ 2+ 3. In analyzing such
a process, one finds it convenient to assume that
the reaction proceeds through an intermediate
state dominated by a two-particle resonance or an
isobar which ultimately breaks up into its con-
stituents in the final state. Now, it may happen
that many such isobars are likely to be present
in the intermediate state. In such a case, it has
been customary to simply add the various ampli-
tudes corresponding to different isobars to obtain
the total amplitude. This is the so-called isobar
model which has been widely employed in such
reactions as pE-7tTtN. "' However, this simple
scheme is only an approximation and has been
criticized lately on grounds that it does not satisfy
unitarity. 4

In the present paper, we outline the isobar rnod-
el, state the various assumptions that go into it,
derive the necessary unitarity constraints on the
production amplitudes, and suggest some tests
to check their validity. In doing so, we shall con-
fine ourselves to considerations of normal thresh-
olds in subenergy variables only. Our aim is to
carry the formal results to a stage where numeri-
cal estimates can be easily made. For this rea-
son, we shall present all the necessary details
for performing such estimates as we develop the
formalism.

In Sec. II we introduce the necessary representa-
tions in the Hilbert space of two- and three-par-
ticle systems. Then in Sec. III we discuss the iso-
bar model as currently practiced. Next, in Sec.

IV we develop the unitarity constraints and write
them down in full detail. In Sec. V we deal with
the comparison of the isobar amplitude and the
unitarized amplitude. Finally, in Sec. VI we offer
our concluding remarks.

II. REPRESENTATIONS

We consider particles with spin and use relativ-
istically invariant normalization of states.

(2 &)

Here p, denotes the z component of spin 0,. which
we shall suppress. Going over to the angular mo-
mentum representation, the states of total momen-
tum P, energy E, angular momentum J and its
z component M have the following normalization:

(P'E'J'M'l'g'
l

PEJMlv)

5(P' —P)5(E' —E)5~.~5~, ~5, , ,5,,„
(2.2)

where the center-of-mass (c.m. ) momentum and
energy are denoted by q and ~s, respectively.
The total spin 0 and the relative angular momen-
turn l in the c.m. are coupled in the usual manner,

0 = 0'n+ 0'b,

J = t, +v.
(2.3)

A. Two particles

Quite generally, in an arbitrary reference frame,
the plane-wave states are normalized as

(Pap) ~ &a» l Pap» ~a~~)

= 2E,2E,5 (p,
' —p, )6 (p', —p, )5 „,, 6 „,,

B. Three particles

The normalization of plane-wave states in an arbitrary reference frame is given by

(P PtIP',
' O' PBP)'lP PgPy; 4»») = 2E &(O' —P ) '' ' 2E„~(P,'-P, )&,~, (2.4)
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In contrast to the case of two particles, a three-particle system has three linearly independent angular
momentum representations. We may couple particles p and y and obtain a state given in (2.2). In particu-
lar, we may construct this state in the overall center-of-mass system (o.c.m. ) so that p~= —Q, where

Q is the momentum of n in the o.c.m. This state, in fact, can be regarded as representing a "particle
py" which can then be coupled to o, again using the prescription (2.2). Finally, the state thus realized in
the o.c.m. can be given a Lorentz boost. %e shall indicate the dynamical variables of this state by a super-
script n. It is normalized as

(P E 8'M L 2 j / F s ~PEJ'M'LZj los)
4W' 4(s')'~'

&(P P')5-(E '
E)5-~a ~a ~ ~ ~ 5~ s 5(s

' —s').

(2.5}

In the above, s and q for the I3,y pair have the same meaning as defined earlier. 8 is the total energy
of the entire system in the o.c.m. The meaning of various angular momenta will be clear from the follow-
ing coupling scheme which is an extension of (2.3):

o =o's+o

+ o'ay

JO= L~+ Z~.

For further details of this canonical Iepresentation we refer the reader to Ref. 5, 6, or 7.

(2.6)

C. Transformation functions

The states introduced so far describe the two- and three-particle systems in an arbitrary frame. Since
relativistic normalization is used, the final result will not depend on the choice of the frame which we shall
now take as the o.c.m. , omitting the label P = 0 from the states.

The states defined by (2.1) and (2.2) are connected by a transformation function which is given by

(p,p, ; p,,p., ~

WJMfo) = C(o,o,o; p, p, )C(le;M ,—(p,,+ p,), p,,+ p, )FI"„'.&„,„&5(p,+ p,)5(W- (E,+E,)),

(2.7)

where ru=—(8, Q) are the spherical coordinates in the c.m. with arbitrary orientation of the axes. Similarly,
the connection between (2.4) and (2.5) is given by

(p psp„; p. ps', „~ W 4'M'L'Z'j ™Io s')

4W 4(s )'"
Z C(ohio„o; v, v„)C(l o j;m —(v~+ v„),vs+ v„)

—0 ~ IX~ 'CL ~ R

m ~ &Ss &y

x C(j a,Z;m™,p, } ( CLZ J;M, —(m + p,,},m + p,,)

x 5( W —(E, + E,+ E„))5(s —(p, +p„)'), (2.S)

where tu™=(8,@ ) and 0 =—(6, 4 ) are the spherical coordinates in the c.m. of gy and the o.c.m. , respec-
tively (see Fig. 1). The presence of the D functions is due to the fact that the spine undergo Lorentz rota-
tion. I ater we shall give explicit formulas for their arguments.

D. Recoupling coefficients

At this point, it is convenient to introduce our choice of the coordinate axes in the o.c.m. For the ~n}
representation, we take the z axis in the opposite direction to Q, the x axis toward p and orthogonal to
z axis, and the y axis out of the paper so that Oxys forms a right-handed system (see Fig. 2). Similar
choices are made for the ~g} and ~y) representations by cyclic permutations o«,g, y.
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E. Isospin states

Finally, to complete our discussion of representations, we give the necessary formulas for the isospin
states. As usual, the states have unit normalization in terms of Kronecker 5 functions. The transforma-
tion coefficients, analogous to (2.7) and (2.8), are, in an obvious notation,

&I,I,;i,~, ~l,i„li&=C(I,lg;i„i,), (2.10)

(2.11)

&I.ig„;I i T ~I.I,I„;Pi"~
= 5 „5,„Q C(igg;i~i„)C(I'I I';is+i„, i )C(I IQ;i, iq)C(T"Ig;i +iq, i„)

4 ~4 gCy

=5 ~ „5.„„(-)0" Q C(lpg;is, i„)C(I~T I;i~,is+i, )C(imI8I";i~, is)C(I I„P;in+i', i„)
i fk~igpi7

(-)"' -"[2T +1)(2T" +1)]'"W(ig II I T ) (2.12)

&Igg„;s.~,i„~ling„;I i T &=C(igg;i, i„)C(T I.I;i,+i„,i.),
where I = I z+ I „ is the intermediate isospin.

As in the configuration space, there are three equivalent isospin representations whose relationship to
the "plane-wave" states in isospin space can be obtained by cyclic permutation in (2.11). The unitary
transformation between these representations, similar to (2.9) can be expressed in terms of the Hacah
coefficients, 5'.'

In what follows, we shall always understand these states to be included in our representations.

III. ISOBAR MODEL

I et T» be the scattering operator for the process a+ b- n+ p+y. In the isobar model, one decomposes
this operator into a linear sum of products of two operators:

, p=1, 2, 3.
8

(3.1)

The operator M describes the process y+ n-y+ 0'. and in the context of the isobar model it is sometimes
called the decay operator. The other operator T, on the other hand, describes the process a+ b-p+ (7 n)
and is often referred to as the production operator. The kinematical factor ~~ is included for convenience
and will be defined shortly.

We can now take the matrix element of (3.1). As we are primarily interested in the partial-wave ampli-
tudes, we use the angular momentum representation. For the final state we may choose any one of the
three equivalent representations, say,

~

n& Then, ind.icating the initial angular momentum state by ~a&,

we have

(
~ ~

& p &o. lM'T'la&

g g }(Q. IP')P'(II'IM'7'I )
(3 2)

where we have inserted the unit operator implied by (2.5), with

q8 8

16W'(s')'" (3.3)

and the sum p extending over all the discrete variables in the ~p& representation. For brevity, we shall
omit the superscript p wherever possible. Again, using the unit operator,

(3.4)

Now the meaning of &p' IMMI/ ) is that

(p'JM'fp~&=(W'~'M'I. 'Z'I'f'es', ii'I'/M'f W"Z'M'I. Z"q f o s'I"i T')

tsar )J J ~.hf'hf ~I L ~~'~ ~jj' ~~ l i i ~7'~ f g
(3.5)
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that is, the matrix element describes the two-body elastic process n+ y -a+y. For the T~ term we have

(P"
~

T
~

a) =(W"Z"M"L"Zj"Po's";I'i"I"
~

T
~

WZMfo;fi)

V 8(+s S")—Vy vv —i v gv t'8 J'Vgft@VItl IV f N
~

L IJ')+»gN pter
'tC )0

BENIN

~ (3.6)

A similar expression holds for the left-hand side of (3.2). After substituting (3.3) through (3.6) and using
(2.9) and (2.12) to replace (o.'~ 6'), one can carry out the sums and integrals in (3.2) utilizing the 5 functions
to get

12
7'„(», ')= Q (, ( (()')Mq»( ')Zq (»,s')ds', (3.7)

where, for brevity, the notation is

T2, (W, s ) =—T„(W,s )I ucu~a, u &)(f&)(-

r
M()r()» (s ) =Mfa@ @st(ss »(s ))

8
Ts~» (W, s') = Tf. r, .~ ~. , —, ,~„(W, s'),
(o(~p')=(2. 9)&&(2.12), with y-p' and excluding the 5 functions 5(W —W')5znz5~n„, 5znz. 5,0...

(3.8)

gt g& gt~I+I/I+lgt ~ IIIfJII

We now choose

8

4( st)1/ 2

so that (p')'(4W/Q') I/~~ = p', and we have

(3.9)

T„(W, )s= g (o ip')M6() ()-(s')T~~ (W, )ps'd 's
Bg 8's8"

(3.10)

This is the basic expression for the total partial-wave amplitude in terms of the production and decay
amplitudes. The decay amplitude Mz,~ is usually a known function so that the production parameters Tz~„

can be determined by using (3.10) in the expression for cross section (which we shall not go into). In the
rest of the paper we shall be primarily interested in gN-ggX for which we have, when conservation of

parity is taken into account,

yl ylI

so that the I3" label becomes superfluous and will be dropped from now on.
The parameters T~ are functions of continuous variables R' and s~. In order to further simplify the task

of fitting the data, it has been customary to approximate T8 by a threshold factor times another parameter
which is independent of subenergy:

T',, (W, s') =j',, (W, s')A', , (W)

We shall call this "minimal approximation. " Equation (3.10) now becomes

(3.11)

(3.12)

With a suitable choice of barriers f, the integral can now be carried out to obtain

T„(W,s )= Q E(). (W, s )A(). (W), (3.13)

where

Index p, signifying the sum over different isobars in the ~p) representation, wiQ henceforth be absorbed
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in the index (}. Expression (3.13) is a direct outcome of (3.1) and (3.11). It contains the recoupling coef-
ficients explicitly whose presence is due to the fact that we have expressed the entire amplitude T» in one

final-state representation Io.'&. Indeed, if we carry out the partial-wave expansion of Eq. (3.1), we get

&f I7'., ll&= 2 I &f Ia&p &. I7'., Ia&p.&ali&ds,
0l, a " (3.15)

where the sum and integral are over the relevant variables in the two- and three-particle states, and the
transformation functions (f I

o.'& and (a
I

i& are as given by (2.8) and the complex conjugate of (2.7), respec-
tively. Then, making use of (3.10}and (3.11) in the above, we get (omitting the isospin part)

(3.16)

= g p,(aIi&g (f IJ3&Ms(ss)fs(W, s~)As(W)p'ds8
a 8

(3.17)

~=~ Z, ~g~g~)~a~ m~ I V g
~lfy

' tt' r'
C (cr,cryo; p, p~)C(lcrJ; M —( p, ,+ p, ,), p,,+ p~)C (crea„cr; vsv„)

x C(l &r j;m —(vrr+ v„),v8+ v„)C(j &r Z';m p, )

x C(L'Z'J;M —(m'+ p ), m'+ p }Y'," ', &„,„r

Thus Eq. (3.16) with the recoupling coefficient in

it is equivalent to Eq. (3.17) which does not contain
that term. Because of this reason, the latter is
used in the analysis. However, we shall find later
that Eq. (3.16) is more suitable for comparison
with the uaitarized amplitude. Equation (3.18),
apart from an overall energy-momentum 5 func-
tion, is our expression for partial-wave decom-
position of the total amplitude. It is entirely in
the canonical representation and differs from, for
example, the Berkeley-SLAC version" in that
their spin states are the helicity states. For de-
tails see Ref. 7. It should be noted that our pro-
cedure for introducing subenergy unitarity [Eqs.
(4.7) and (4.8) below] does not, of course, depend

upon the specific representation chosen.
The shortcoming of the model lies in assuming that

the reduced amplitudes A introduced in (3.11) are
independent of the subenergy variables. We there-
fore concentrate on this problem in the next section.

IV. UNITARITY CONSTRAINTS

For the amplitude a+ b - n+ p + y, we shall be
primarily interested in the normal threshold sin-
gularities in the three-particle subenergy vari-
ables s . For a given subenergy variable, say
s, we have the discontinuity" as given in Fig.
3(a), where we have suppressed the signs of the
total energy W and the two subenergies s, s" which
should be fixed at the same values in both ampli-
tudes on the left-hand side, say, +++. For the
2- 3 bubble on the right-hand side, only W(+ ) and

s (—) canbe specified; since s and s"are integration

variables they carry a more complicated pre-
scription. For details we refer to Section 4.7 of
Ref. 11. Similar expressions can be written down

for discontinuities in s~ and s" and the three ex-
pressions can be added. The total discontinuity
due to subenergy variables is then given by Fig.
3(b). It will also be useful to define the usual two-
particle K matrix by Figs. 3(c}and 3(d).

Let us now introduce a reduced amplitude J as
in Fig. 3(e) and show that it is free from suben-
ergy discontinuities. Toward this end, we continue
the equation in Fig. 3(e) around the subenergy
thresholds and let J-I, thus obtaining the result
shown in Fig. 3(f), where the minus sign is a con-
sequence of the two-particle phase space. Now,
subtracting Fig. 3(f) from Fig. 3(e), we get Fig.
3(g). Furthermore, from Figs. 3(d) and 3(c) we

can write down the equations of Figs. 3(h) and

3(i), respectively. Then substitution of these last
two results in Fig, 3(g) yields the equation of Fig.
3(j) which, in view of Fig. 3(b), implies that J=I,
i.e. , J has no subenergy discontinuities.

Next, following Smadja, "we go a step further
and take the 2-3 amplitudes + and J to be of the
form given in Figs. 3(k) and 3(1) where division by
the two-particle phase-space &' =q l4(s )'r' en-
sures the required smoothness of J, so that the
equation of Fig. 3(e) can be written as shown in
Fig. 3(m), where we used Fig. 3(c) in the last step.
Cancellation of the left-hand side with the second
term on the right-hand side yields Fig. 3(n} whose
one possible solution is indicated in Fig. 3(o).

Decomposition in Fig. 3(k) is similar to the one
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(g)

(k)

K

88~
0

FIG. 3. Development of the unitarity constraints. See Sec. IV for discussion.

used in ( 3.1). The equation in Fig. 3(o) is a set
of coupled integral equations which relates each
production amplitude T to other amplitudes T,
p 4 n. The term J is free from subenergy dis-

continuity and hence represents T in the isobar-
model approximation. The integral term provides
the required correction to the model.

In the terminology of Sec. III, Fig. 3(o) reads
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g go MI3TS
T =4+

2 Z g
gga

(4 1)
T = (1-X)-'d =-Hd.

and can be written in the angular momentum rep-
resentation by a procedure similar to the one used
in obtaining (3.10) from (3.1):

T (Ws )=J (Ws )

%e shall refer to H as the mixing matrix.
To deal with the barriers, we set

J (W, s )=f (W, s }J(W),

T (W, s )=f (W, s )T (W, s ).
(4.5)

(4.6)

x V'(W, ')p'ds'. {4.2)

The above can be written in a more compact form"

(4.3)

and can be formally solved to yield

Notice that s is retained in T, thus distinguish-
ing it from A of Eq. (3.11), but not int which
we assume to be constant over the Dalitz plot.
This assumption, however, is not crucial to our
analysis; that is, we could use a series expansion
in s for 8 (W, s ) at the expense, of course, of
additional parameters to be determined by the
data. Substitution of (4.5) and {4.6} into (4,2) gives

gO7"(~, ')=Z'(~)+ — Q J (a(ll)M'( ')i'(W')i'(W', )p'd ', (4.7)

or

which again implies a new mixing matrix through

T = (1 —X) 'J =HJ. —

Furthermore, since T and J are related to T and t, we can derive a relation between H and H.
Using (4.4) and (4.8} in (4.6), we have

(4 8)

H (W, s, s )J' (W, ss)ds =f (W, s")Q H (W, s', s8)J (W)ds .

Putting (4.5) in the left-hand side of this equation,

H 8(W,s, s )fs(W, s~)J (W)ds fs™(W,s )P H"~(W, s, ss)J (W}ds~
B B

E~()))()H. (we' ')f (ws~)d ' f (w s.")J(i'(w-s'", s')d ' =0.

Since the 2 's are linearly independent parameters, we get

H 8(W s ss)ds = H (W s s~)f s(W ss)dss.f (1(W I)

This result can now be incorporated into (4.8}, giving

r (w, ~ )= Ei("z'as'= g Pic"a 'EP J rr"=i'—a '
8 8 f (

(4 9)

(4.10)

where the barriers are explicit. Calculation of H, in contrast to H, does not require knowledge of the
barrier factors which are somewhat arbitrary. Equation (4.10}is our solution of the unitarity equations
(4.7).

V. ISOBAR MODEL AND UNITARITY

The production amplitude T (W, s~) of Eq. (4.2) satisfies subenergy unitarity, and since it reduces to the
isobar amplitude in the absence of unitary corrections it would be most tempting to replace 3 in (3.1'7} by
T~ of (4.10) to unitarize the isobar amplitude:
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(f &S„)&=+ P&a)(&g f (f)S&)ps&as&fs(Wss) s s Ed (W) f H"(W, ', s )f'(W s )ds P'ds'
a B

=
Q p(a) )Q'P(W) J ) (f )a)M (S )f (W, )H s.(W ss)p , ds ds

a eB
(5.1)

This sort of unitarization of the isobar model, however, would lead to spurious effects since analyti-
city has not been included. As Aitchison has pointed out,"neglect of analyticity tends to produce some
unwanted rapid variation of T' with respect to s . This is especially the case when Me of E(l. (4.2) rep-
resents a rather narrow resonance. " Aaron and Amado have recently proposed a formalism that includes
analyticity as well as unitarity. "

The present formalism, however, can be used to test if unitarity corrections will be important. To ob-
tain this test, it is more convenient to work with E(l. (3.16) and include unitarity through E(l. (4.10) than to
compare the above equation with the isobar model. Thus,

«)I'**)I'&=E ')I' E)& I
"EJ& I

'''' Z J

=Ep(
I &EJ(fl.)p d"E J&al»sd p EJ''f")H'f'd"d"

with

(sl')g (f lo(&p ds'QPG e(w, s'),
0 0 B

(5.2)

G"(w, s )= f' g&~Iy&M p"H"edss ds'.
7

(5.3)

To recast the isobar amplitude, we use (3.13} in (3.15):

&f IT-lf&= Z p.&&If&Q &f I
~&p ds g&'~"(~ s )

a Qf B

(5.4)

Expressions (5.2) and (5.4) are now similar; their
only difference comes from the E and 0 functions.
Indeed, if the mixing matrix H is weak, we can
write it as

M(W, s",s') = 6„,5(s" —s') (5.5)

G"e(W, s')
R (W, s )= e(

'
)

(5.7)

and includes the barrier terms in it. If these ra-
tios are much different from unity or their sub-
energy dependence is appreciable or rapid, uni-
tarity corrections mill be important.

and easily verify that G=E. Thus, the effective
strength of mixing may be defined by a ratio of the
two functions. Following our practice of separating
out the barrier factors, we can set

ne( u e) Z„J(a ) y&M'H"eP"ds"
( )(o( I p&Mep

which is the ratio of the bracket terms in (5.3) and
(3.14). The full ratio R is, on the other hand,

VI. CONCLUSION

We have presented the formalism of the isobar
model and the subenergy unitarity constraints in
a systematic manner with sufficient details. For
the most part, the results derived here are quite
general and can be applied to many reactions of
interest of the type a+ b -1+2+ 3. There are
several versions of the three-body partial-wave
analysis as described in Ref. 2; the one used here
corresponds to the Berkeley-SLAC version in all
but one respect: we use canonical, instead of
helicity, representation.

We have dealt with only the subenergy discon-
tinuities here; other discontinuities, in the total
energy, arising from the two- and three-particle
intermediate states have been removed by many
authors. '"'" Our main results are the set of cou-
pled integral equations for production ampli-
tudes, (4.V), their formal solution (4.8}, and the
ratio (5.6) or (5.7). The method presented here
essentially involves the calculation of the mixing
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matrix H.
We have paid special attention to the handling of

the barrier factors. Pulling them out from the
production amplitudes will involve them in the
mixing matrix. Our preliminary results indicate
that the mixing matrix can be quite sensitive to
small changes in the barrier factors. For this
reason we have tried to separate them out as far
as possible.

The test suggested in Sec. V should help deter-
mine if the unitarity effects will be important for
the isobar model. If the H matrix is roughly dia-
gonal, unitarity corrections are not necessary. If
it is not diagonal, then one must see how their
mixing actually modifies the isobar amplitude.
This is the motivation for the ratio test. An im-
portant feature of this test is that it can be car-
ried out before any fit is performed, i.e. , it does
not depend on any fitting parameters at all. Thus
it provides an answer to the question often asked:
How much is the overlap between two given iso-
bars? Unitarity as presented here tends to over-
estimate the overlaps; only analyticity can remove

this difficulty. But if the overlaps are small, one
need not embark upon a full program of unitarity
and analyticity.

Finally, we have left out the important discussion
on identical particles in the final state. The ker-
nels X have a certain symmetry property with re-
spect to the interchange of identical particles.
This, along with the use of properly symmetrized
amplitudes, enables us to reduce the number of
independent integral equations. This and other
related topics are discussed in Ref. 7.
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